Package ‘RHT’

February 19, 2015

Type Package
Title Regularized Hotelling's T-square Test for Pathway (Gene Set) Analysis
Version 1.0
Date 2011-11-14
Author Lin S. Chen and Pei Wang
Maintainer Lin S. Chen <lchen11@uchicago.edu>
Description This package offers functions to perform regularized Hotelling's T-square test for pathway or gene set analysis. The package is tailored for but not limited to proteomics data, in which sample sizes are often small, a large proportion of the data are missing and/or correlations may be present.
License GPL
LazyLoad yes
Repository CRAN
Date/Publication 2012-10-29 08:57:31
NeedsCompilation no

R topics documented:

 RHT-package ... 2
 RHT.2samp ... 3
 RHT.fun ... 4

Index 6
Description

This package offers functions to perform regularized Hotelling’s T-square test for pathway or gene set analysis. The package is tailored for but not limited to proteomics data, in which sample sizes are often small, and a large proportion of the data are missing and/or correlations may be present.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>RHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2011-11-14</td>
</tr>
<tr>
<td>License:</td>
<td>GPL</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>

Author(s)

Lin S. Chen and Pei Wang
Maintainer: Lin S. Chen <lchen11@uchicago.edu>

References

See Also

RHT.fun, RHT.2samp

Examples

```r
## we simulate a data set with N=10 samples and p=50 proteins.
## 20% of the data are missing.
## Among the 50 proteins, we randomly assign 2 pathways, with 5 and 12 proteins, respectively.

set.seed(1)
X <- matrix(rnorm(500), nrow=10)
X[sample(1:500, 0.2*500)] <- NA
path.idx <- list()
path.idx[[1]] <- 1:5
path.idx[[2]] <- 13:24
```
RHT.2samp

Description

This function tests if a pathway (or gene set) consists of any protein (or gene) that shows different mean abundance (or expression) between two groups of samples.

Usage

```r
RHT.2samp(path.idx, datX, datY, nsim = 1000, seed = 123)
```

Arguments

- `path.idx`: This is a LIST. Each element in the list contains the indice of proteins (or genes) for a pathway in the data set.
- `datX`: An N1 by p matrix of protein abundance (or gene expression) from one group of samples. Each row represents one sample and each column represents a protein (or a gene).
- `datY`: An N2 by p matrix of protein abundance (or gene expression) from another group of samples. Each row represents one sample and each column represents a protein (or a gene).
- `nsim`: Number of resamples needed to calculate the p-value. By default, nsim=1000.
- `seed`: A single integer that controls the random number generator in the resampling.

Value

The function returns the p-values for each pathway in the list `path.idx`.

Author(s)

Lin S. Chen and Pei Wang

References

See Also

See Also \texttt{RHT.fun}

Examples

\begin{verbatim}
We simulate a data set X with N=10 samples and p=50 proteins,
and a second data set Y with N=8 sample and the same number of proteins.
20% of the data are missing.

set.seed(1)
X <- matrix(rnorm(500), nrow=10)
X[sample(1:500, 0.2*500)] <- NA

Y <- matrix(rnorm(400), nrow=8)
Y[sample(1:400, 0.2*400)] <- NA

Among the 50 proteins, we randomly assign 2 pathways, with 5 and 12 proteins, respectively.
path.idx <- list()
path.idx[[1]] <- 1:5
path.idx[[2]] <- 13:24
names(path.idx) <- c("pathway A", "pathway B")

The following function tests each pathway to see
if any of the proteins in each pathway shows different
abundance/expression between data X and Y.

pval <- rht squeX(path.idx, datX=X, datY=Y)
\end{verbatim}

\textbf{RHT.fun} \hspace{1cm} \textit{One-sample Regularized Hotelling's T-square Test}

Description

This function tests if a pathway (or gene set) consists of any protein (or gene) that shows non-zero abundance (or expression).

Usage

\texttt{RHT.fun(path.idx, dat, nsim = 1000, seed = 123)}

Arguments

\begin{description}
\item \texttt{path.idx} This is a LIST. Each element in the list contains the indice of proteins (or genes) for a pathway in the data set.
\item \texttt{dat} An N by p matrix of protein abundance (or gene expression). Each row represents one sample and each column represents a protein (or a gene).
\item \texttt{nsim} Number of resamples needed to calculate the p-value. By default, nsim=1000.
\item \texttt{seed} A single integer that controls the random number generator in the resampling.
\end{description}
RHT.fun

Value

The function returns the p-values for each pathway in the list path.idx.

Author(s)

Lin S Chen and Pei Wang

References

See Also

See Also RHT.2samp

Examples

we simulate a data set with N=10 samples and p=50 proteins
20% of the data are missing.
Among the 50 proteins, we randomly assign 2 pathways, with 5 and 12 proteins, respectively.

set.seed(1)
X <- matrix(rnorm(500), nrow=10)
X[sample(1:500, 0.2*500)] <- NA
path.idx <- list()
path.idx[[1]] <- 1:5
path.idx[[2]] <- 13:24
names(path.idx) <- c("pathway A", "pathway B")

The following function tests each pathway to see
if any of the proteins in each pathway shows non-zero
abundance/expression

pval <- RHT.fun(path.idx, dat=X)
Index

*Topic RHT
 RHT.2samp, 3
 RHT.fun, 4

RHT (RHT-package), 2
RHT-package, 2
RHT.2samp, 2, 3, 5
RHT.fun, 2, 4, 4