Package ‘RPyGeo’

February 19, 2015

Type Package
Title ArcGIS Geoprocessing in R via Python
Version 0.9-3
Date 2011-09-07
Author Alexander Brenning
Maintainer Alexander Brenning <brenning@uwaterloo.ca>
Description Provide access to (virtually any) ArcGIS Geoprocessing tool from within R by running Python geoprocessing scripts without writing Python code or touching ArcGIS. Requires ArcGIS >=9.2, a suitable version of Python (for ArcGIS 9.2: Python 2.4; for ArcGIS 10.0: 2.6), and Windows.
License GPL
Depends shapefiles, RSAGA
SystemRequirements Windows, Python (>= 2.4.0), ArcGIS (>= 9.2)
OS_type windows
Repository CRAN
Date/Publication 2012-10-29 08:57:32
X-CRAN-Original-OS_type windows
NeedsCompilation no

R topics documented:

RPyGeo-package .. 2
ArcGIS ASCII/Raster Conversion 2
ArcGIS Geoprocessing Tools 4
ArcGIS Hydrology Geoprocessing Tools 6
ArcGIS Map Algebra ... 7
ArcGIS Solar Radiation ... 8
RPyGeo Helper Functions 10
rpygeo.build.env ... 11
rpygeo.geoprocessor ... 12
rpygeo.required.extensions 15
Description

Provide access to (virtually any) ArcGIS Geoprocessing tool from within R by running Python geoprocessing scripts without writing Python code or touching ArcGIS.

Details

Package: RPyGeo
Type: Package
Version: 0.9-3
Date: 2011-09-07
License: GPL

The function `rpygeo.geoprocessor` is the core function of this package. It creates and runs a Python script that executes your ArcGIS/Python geoprocessing command from within R. This function can be used to define more convenient wrappers for frequently used geoprocessing tools. Some are already implemented, for example `rpygeo.Slope.sa` and `rpygeo.EucDistance.sa`, more are to be added in future releases.

Author(s)

Alexander Brenning <brenning@uwaterloo.ca>

Examples

```r
## Not run: rpygeo.geoprocessor("Slope_sa('dem','slope')",
  "Aspect_sa('dem','aspect')",
  "Hillshade_sa('dem','hshd')")
rpygeo.Slope.sa("dem","slope")
## End(Not run)
```

Description

Wrappers for ASCII/raster conversion functions from the Conversion toolbox.
Usage

```r
rpygeo.ASCIIToRaster.conversion(in.ascii.file, out.raster,
data.type = c("FLOAT","INTEGER"), ...)
rpygeo.RasterToASCII.conversion(in.raster, out.ascii.file, ...)
```

Arguments

```r
in.ascii.file, in.raster, out.raster, out.ascii.file
```

Names of ArcGIS raster datasets, or raster feature classes in a geodatabase (relative to the current workspace defined in a `rpygeo.env` environment). Shapefiles must include the extension ".shp".

```r
data.type
```

Arguments to be passed to the Python geoprocessing tool. See ArcGIS help files (link below) for information on the usage of scripting commands and their arguments.

```r...
```

Additional arguments to be passed to `rpygeo.geoprocessor`.

Details

These functions simply interface the behaviour of the ArcGIS/Python geoprocessing functions with the equivalent names. See `rpygeo.geoprocessor` for details on what happens behind the scenes.

ArcGIS 9.2 online help for the geoprocessing tools can be accessed through the following URLs:

- ASCIIToRaster

 ![ASCiIToRaster](http://webhelp.esri.com/arcgisdesktop/9.2/body.cfm?tocVisible=1&ID=13098&FieldName=ASCiIToRaster&Conver)

- RasterToASCII

 ![RastertoASCII](http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=RastertoASCII&Conver)

Value

The functions return NULL if no error occurred, otherwise a character vector containing the error message.

Author(s)

Alexander Brenning

See Also

`rpygeo.geoprocessor`, `rpygeo.build.env`
Wrappers for selected ArcGIS functions

Description

Wrappers for a small selection of ArcGIS geoprocessing functions based on the rpygeo.geoprocessor.

Usage

rpygeo.EucDistance.sa(in.data, out.raster, maxdist = NULL, cellsize = NULL, out.direction.raster = NULL, env = rpygeo.env, ...)
rpygeo.Hillshade.sa(in.raster, out.raster, azimuth = 315, altitude = 45, model.shadows = c("NO_SHADOWS", "SHADOWS"), z.factor = 1, ...)
rpygeo.Slope.sa(in.raster, out.raster, unit = c("DEGREE", "PERCENT_RISE"), z.factor = 1, ...)
rpygeo.Aspect.sa(in.raster, out.raster, ...)
rpygeo.Curvature.sa(in.raster, out.curvature.raster, z.factor = 1, out.profile.curve.raster = NULL, out.plan.curve.raster = NULL, ...)
rpygeo.Delete.management(in.data, data.type = NULL, ...)

Arguments

in.raster, in.data, out.raster, out.curvature.raster, out.profile.curve.raster, out.plan.curve.raster
Names of ArcGIS raster or vector datasets or feature classes in a geodatabase (relative to the current workspace defined in a rpygeo.env environment). Shapefiles must include the extension ".shp".

eenv
A list defining an RPyGeo working environment as built by rpygeo.build.env.

maxdist, cellsize, out.direction.raster
see ArcGIS online help

azimuth, altitude, model.shadows, z.factor
see ArcGIS online help

unit, data.type
Arguments to be passed to the Python geoprocessing function. See ArcGIS help files for information on the usage of scripting commands and their arguments.

... Additional arguments to be passed to rpygeo.geoprocessor.

Details

These functions simply try to replicate the behaviour of the ArcGIS/Python geoprocessing functions of the same name. See rpygeo.geoprocessor for details on what happens behind the scenes.

ArcGIS 9.2 online help for the geoprocessing tools can be accessed through the following URLs:
ArcGIS Geoprocessing Tools

- EucDistance [http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=EucDistance]

Value

The function return NULL if no error occurred, otherwise a character vector containing the error message.

Author(s)

Alexander Brenning

See Also

rpygeo.geoprocessor, rpygeo.build.env

Examples

Allow ArcGIS to overwrite existing datasets:
Not run: rpygeo.env$overwriteoutput = 1
Calculate the slope of a DEM raster dataset
in the current ArcGIS workspace:
rpygeo.geoprocessor("Slope_sa",c("dem","slope"))
Same:
rpygeo.geoprocessor("Slope_sa('dem','slope')")
Same, using the more convenient wrapper:
rpygeo.Slope.sa("dem","slope")
End(Not run)

Three at a time or separately:
Not run: date()
rpygeo.geoprocessor("Slope_sa('dem','slope')",
 "Aspect_sa('dem','aspect')", "Hillshade_sa('dem','hshd')")
date() # ~20 sec on my computer
rpygeo.Slope.sa("dem","slope")
rpygeo.Aspect.sa("dem","aspect")
rpygeo.Hillshade.sa("dem","hshd")
date() # ~50 sec
rpygeo.Delete.management("slope")
rpygeo.Delete.management("aspect")
rpygeo.Delete.management("hshd")
End(Not run)

Calculate the Euclidian distance from railway lines
up to a max. distance of 1000 map units:
Wrappers for functions from the Hydrology toolset

Description

Wrappers for selected geoprocessing tools from the ArcGIS Hydrology toolset of the Spatial Analyst extension.

Usage

rpygeo.FlowAccumulation.sa(in.flow.direction.raster,
 out.accumulation.raster, in.weight.raster = NULL,
 data.type = c("FLOAT","INTEGER"), ...)
rpygeo.FlowDirection.sa(in.surface.raster,
 out.flow.direction.raster, force.flow = c("NORMAL","FORCE"),
 out.drop.raster = NULL, ...)
rpygeo.FlowLength.sa(in.flow.direction.raster,
 out.raster, direction.measurement = c("DOWNSTREAM","UPSTREAM"),
 in.weight.raster = NULL, ...)
rpygeo.Sink.sa(in.flow.direction.raster, out.raster, ...)

Arguments

in.flow.direction.raster, in.surface.raster, in.weight.raster, out.accumulation.raster, out.flow.direction.raster, force.flow, out.drop.raster, direction.measurement

Names of ArcGIS raster or vector datasets or feature classes in a geodatabase (relative to the current workspace defined in a rpygeo.env environment). Shape-files must include the extension ".shp".

data.type, direction.measurement

Arguments to be passed to the Python geoprocessing tool. See ArcGIS help files (link below) for information on the usage of scripting commands and their arguments.
ArcGIS Map Algebra

forceNflow see ArcGIS help

Additional arguments to be passed to rpygeo.geoprocessor.

Details

These functions simply interface the behaviour of the ArcGIS/Python geoprocessing functions with the equivalent names. See rpygeo.geoprocessor for details on what happens behind the scenes.

ArcGIS 9.2 online help for the geoprocessing tools can be accessed through the following URLs:

Value

The functions return NULL if no error occurred, otherwise a character vector containing the error message.

Author(s)

Alexander Brenning

See Also

rpygeo.geoprocessor, rpygeo.build.env

ArcGIS Map Algebra

Wrapper for the Map Algebra tool

Description

Wrappers for the Single Output Map Algebra tool of the Spatial Analyst extension.

Usage

rpygeo.SingleOutputMapAlgebra.sa(expression.string, out.raster, in.data = NULL, ...)

Arguments

in.data, out.raster
Names of ArcGIS raster or vector datasets or feature classes in a geodatabase (relative to the current workspace defined in a rpygeo.env environment). Shape-files must include the extension “.shp”.

eexpression.string
Valid Map Algebra expression as described in the ArcGIS help files (link below).

Details

These functions simply interface the behaviour of the ArcGIS/Python geoprocessing functions with the equivalent names. See rpygeo.geoprocessor for details on what happens behind the scenes.

ArcGIS 9.2 online help for the geoprocessing tools can be accessed through the following URLs:

Value

The functions return NULL if no error occurred, otherwise a character vector containing the error message.

Author(s)

Alexander Brenning

See Also

rpygeo.geoprocessor, rpygeo.build.env

Description

Wrappers for ArcGIS geoprocessing tools for calculating solar radiation and viewsheds (Spatial Analyst extension).
ArcGIS Solar Radiation

Usage

```python
rpygeo.AreaSolarRadiation.sa(in.surface.raster,
    out.global.radiation.raster, latitude = 45, sky.size = 200,
    time.configuration, day.interval = 14, hour.interval = 0.5,
    each.interval = c("NOINTERVAL", "INTERVAL"),
    z.factor = NULL, slope.aspect.input.type = c("FROM_DEM", "FLAT_SURFACE"),
    calculation.directions = 32, zenith.divisions = 8,
    azimuth.divisions = 8,
    diffuse.model.type = c("UNIFORM_SKY", "STANDARD_OVERCAST_SKY"),
    diffuse.proportion = 0.3, transmittivity = 0.5,
    out.direct.radiation.raster = NULL, out.diffuse.radiation.raster = NULL,
    out.direct.duration.raster = NULL, ...)
```

```python
rpygeo.Viewshed.sa(in.raster, in.observer.features,
    out.raster, z.factor = 1,
    curvature.correction = c("FLAT_EARTH", "CURVED_EARTH"),
    refractivity.coefficient = 0.13,
    x.field = "x", y.field = "y", tmpdir = tempdir(), ...)
```

Arguments

- `in.surface.raster`, `in.raster`, `out.global.radiation.raster`, `out.raster`, `out.direct.radiation.raster`, `out.direct.duration.raster` (optional) Names of ArcGIS raster datasets, or feature classes in a geodatabase (relative to the current workspace defined in a rpygeo.env environment).
- `latitude`, `sky.size`, `time.configuration`, `day.interval`, `hour.interval`, `each.interval`, `z.factor`, `slope`, `aspect` (optional) Arguments to be passed to the Python geoprocessing tool. See ArcGIS help files (link below) for information on the usage of scripting commands and their arguments.
- `in.observer.features` (optional) Name of shapefile (including file extension ".shp") with observer point or polygon features, or data.frame with observer point features. If this is a data.frame, it will be written to a temporary shapefile in folder tmpdir, and x and y coordinates will be taken from the attributes identified by `x.field` and `y.field`
- `x.field`, `y.field` (optional) names of x and y coordinates if `in.observer.features` is a data.frame
- `tmpdir` (optional) name of folder for temporary files (when `in.observer.features` is a data.frame
- `...` Additional arguments to be passed to `rpygeo.geoprocessor`.

Details

These functions simply interface the behaviour of the ArcGIS/Python geoprocessing functions with the equivalent names. See `rpygeo.geoprocessor` for details on what happens behind the scenes.

ArcGIS 9.2 online help for the geoprocessing tools can be accessed through the following URLs:

- [AreaSolarRadiation](http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Area_Solar_Radiation)
- [ViewShed](http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Viewshed)
Value

The functions return NULL if no error occurred, otherwise a character vector containing the error message.

Author(s)

Alexander Brenning

See Also

rpygeo.geoprocessor, rpygeo.build.env

RPyGeo Helper Functions

Helper functions for RPyGeo

Description

Helper functions.

Usage

```r
write.point.shapefile(d, file, x.field = "x", y.field = "y",
    id.field = NULL)
write.temp.point.shapefile(d, pattern = "file", tmpdir = tempdir(), ...)
rpygeo.extent.to.character(x)
```

Arguments

- `d` : data.frame representing point data
- `file` : name of shapefile (WITHOUT file extension)
- `x.field, y.field` : names of attributes with x and y coordinates in d
- `id.field` : (optional) name of attribute that serves as unique identifier; will use values 1:nrow(d) if not specified
- `pattern` : initial part of temporary shapefile name
- `tmpdir` : folder where temporary shapefiles should be stored
- `x` : list with components x and y, each a vector of length 2, specifying lower and upper x/y limits.
- `...` : additional arguments for write.point.shapefile

Author(s)

Alexander Brenning
rpygeo.build.env

See Also

rpygeo.geoprocessor.rpygeo.build.env, write.shapefile

rpygeo.build.env RPyGeo Geoprocessing Environments

Description

Set up a geoprocessing environment for ArcGIS/Python scripting

Usage

rpygeo.build.env(modules = "arcgisscripting",
 init = "gp = arcgisscripting.create()",
 workspace = NULL, cellsize = NULL, extent = NULL,
 mask = NULL, snapraster = NULL,
 overwriteoutput = 0, extensions = NULL,
 python.path = "C:\software\Python24",
 python.command = "python.exe")

Arguments

modules (Do not modify!) Name of Python module for ArcGIS geoprocessing.
init (Do not modify!) Python code for initializing the Python geoprocessor.
workspace Path of ArcGIS workspace (or name of geodatabase) in which to perform the
 geoprocessing.
cellsize Default cellsize (default: maximum(?) of inputs - see ArcGIS documentation).
extent, mask, snapraster
 Optional datasets or character strings defining the analysis extent and mask and
 what to snap to - see ArcGIS documentation.
overwriteoutput
 Overwrite existing ArcGIS datasets (=1) or not (=0 - default)?
extensions Names of extensions to be used in geoprocessing; it is usually not necessary to
 specify this here. Possible values: "Spatial","3d","geostats","network", "datainteroperability"
python.path Where to find the Python interpreter (depends on Python version).
python.command Name of the Python command line interpreter executable.

Details

See ArcGIS documentation. This geoprocessing environment reflects only a small fraction of the
ArcGIS environment settings. Future releases of this package may include more than the properties
listed above.
Value

A list whose components are exactly the arguments passed to the `rpygeo.build.env` function.

Author(s)

Alexander Brenning

See Also

`rpygeo.geoprocessor`

Examples

```r
# Everything in this workspace will be masked with DEM extent
# and have a cellsize of 100m:
## Not run: env.lo <- rpygeo.build.env( mask="clip", cellsize=100 )
# and this is for high-resolution output:
## Not run: env.hi <- rpygeo.build.env( mask="clip", cellsize=1 )

# Slope from different DEMs at different target resolutions
# (which may be different from the original DEM resolution):
## Not run: rpygeo.Slope.sa("srtm-dem","slope-lo",env=env.lo)
```

Description

This function creates a Python geoprocessing script file and runs it from the operating system using the ArcGIS Geoprocessor.

Usage

```r
rpygeo.geoprocessor(fun, args = NULL, py.file = "rpygeo.py",
msg.file = "rpygeo.msg", env = rpygeo.env, extensions = NULL,
working.directory = getwd(), quote.args = TRUE, add.gp = TRUE,
wait = TRUE, clean.up = wait, detect.required.extensions = TRUE)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fun</code></td>
<td>This can be either a complete Python geoprocessing command (see examples), a single geoprocessing function name, or a vector of function or Python expressions to be evaluated by the Python geoprocessor.</td>
</tr>
<tr>
<td><code>args</code></td>
<td>Vector or list of arguments to be passed to the function listed in <code>fun</code>. The argument <code>quote.args</code> determines whether these arguments will be decorated with quotation marks.</td>
</tr>
</tbody>
</table>
pyNfile
Name of the temporary Python script file (in the working directory).

msgNfile
Name of the temporary file in which to dump Python/ArcGIS error messages (in the working directory).

env
A list defining the RPyGeo working environment. Defaults to the standard working environment rpygeo.env, which is created at start-up. See rpygeo.build.env for details.

extensions
Optional character vector listing ArcGIS extension that should be enabled before using the geoprocessing function. This adds to any extensions that are listed in the environment or eventually detected by rpygeo.required.extensions.

working.directory
The working directory for temporary files (i.e. the Python script and error message files); defaults to R’s current working directory.

quoteNargs
Logical value (default: TRUE) or logical vector that determines whether quotation marks have to be added to the args arguments before passing them to Python. If this is a vector, it must have the same length as args. See Details.

addNgp
Logical (default: TRUE). See Details.

wait
Logical (default: TRUE). Experimental(!) option. If FALSE (NOT recommended), do not wait for the operating system / ArcGIS to finish the Python geoprocessing script.

cleanNup
Logical (default TRUE) or character vector ("msg", "py", or c("msg", "py")). Determines whether the error message file, the Python script file, or both (default) should be deleted after geoprocessing is finished. Ignored if wait is FALSE.

detectNrequiredNextensions
Logical (default: TRUE). Determines whether rpygeo.required.extensions should try to find out which ArcGIS extensions are required to evaluate the function(s).

Details
This function is the R geoprocessing workhorse that creates a Python geoprocessing script, runs it, and returns any error messages.

If fun is a ready-to-use Python expression such as , then addNgp only determines whether the "gp." has to be added as a prefix to access the Python geoprocessor or not.

In most cases however, fun will be a single ArcGIS geoprocessing script function such as "slope_sa", where "_sa" tells us that this function can be found in the Spatial Analyst extension of ArcGIS (rpygeo.required.extensions will check this for you if the detected... argument is TRUE) Now args will be a vector or list of arguments to Slope_sa, e.g. c("dem", "slope") or list(“dem”,”slope”,”PERCENT_RISE”) (see ArcGIS help files for information on the arguments of Slope_sa). These will result in Python expressions gp.Slope_sa("dem", "slope") and gp.Slope_sa("dem”, "slope”, “PERCENT_RISE”, 2) if addNgp==TRUE and if we use the quoteNargs arguments TRUE and c(T,T,F). respectively.

Dataset names will always be relative to the path or geodatabase defined in the geoprocessing environment settings env$workspace. Also, ArcGIS will be allowed to overwrite any existing output files (env$overwriteoutput==1) or not (==0). See rpygeo.build.env for details.
Value

The function returns **NULL** if is was successful, or otherwise a character vector with the ArcGIS error message. In addition, the ArcGIS function will generate the output described in the ArcGIS help files etc. Depending on the `clean.up` argument, the Python code may still be available in the `py.file`, and error messages in `msg.file`.

Note

The Python script created by this geoprocessor is loaded with initialization code for setting up the ArcGIS workspace and enabling ArcGIS extensions. This makes this function pretty inefficient, but you save a lot of time because you don’t have to switch between three applications and two programming languages...

ArcGIS is pretty flexible with respect to numeric arguments such as the z factor in `slope_sa` being passed as character string. As a consequence, `quote.args=TRUE` will normally work fine.

`wait==FALSE` is experimental and not recommended. Watch for file name conflicts if you really want to try it - competing geoprocessing scripts must use different temporary Python script files etc.

Author(s)

Alexander Brenning

See Also

[rpygeo.build.env](#)

Examples

```
# Allow ArcGIS to overwrite existing datasets:
## Not run: rpygeo.env$overwriteoutput = 1
# Calculate the slope of a DEM raster dataset
# in the current ArcGIS workspace:
## Not run: rpygeo.geoprocessor("Slope_sa",c("dem","slope"))
# Same:
## Not run: rpygeo.geoprocessor("Slope_sa('dem','slope')")
# Same, using the more convenient wrapper:
## Not run: rpygeo.Slope.sa("dem","slope")

# Three at a time or separately:
## Not run: date()
## Not run: rpygeo.geoprocessor("Slope_sa('dem','slope')",
# "Aspect_sa('dem','aspect')", "Hillshade_sa('dem','hshd')")
## End(Not run)
## Not run: date() # ~20 sec on my computer
## Not run: rpygeo.Slope.sa("dem","slope")
## Not run: rpygeo.Aspect.sa("dem","aspect")
## Not run: rpygeo.Hillshade.sa("dem","hshd")
## Not run: date() # ~50 sec
## Not run: rpygeo.Delete.management("slope")
## Not run: rpygeo.Delete.management("aspect")
## Not run: rpygeo.Delete.management("hshd")
```
rpygeo.required.extensions

Check required ArcGIS extensions

Description
Internal function that checks which ArcGIS extensions have to be enabled to evaluate a Python expression.

Usage
rpygeo.required.extensions(expr)

Arguments
expr A vector or list of character strings with Python geoprocessing expressions or function names.

Value
Returns a character vector with the ArcGIS extension names (currently e.g. "Spatial", "3d", "geostats", "network", and/or "datainteroperability").

Note
This internal function is used by rpygeo.geoprocessor.

Author(s)
Alexander Brenning
See Also

rpygeo.geoprocessor
Index

*Topic database
 ArcGIS ASCII/Raster Conversion, 2
 ArcGIS Geoprocessing Tools, 4
 ArcGIS Hydrology Geoprocessing Tools, 6
 ArcGIS Map Algebra, 7
 ArcGIS Solar Radiation, 8
 RPyGeo Helper Functions, 10
 RPyGeo-package, 2
 rpygeo.build.env, 11
 rpygeo.geoprocessor, 12
 rpygeo.required.extensions, 15

*Topic interface
 ArcGIS ASCII/Raster Conversion, 2
 ArcGIS Geoprocessing Tools, 4
 ArcGIS Hydrology Geoprocessing Tools, 6
 ArcGIS Map Algebra, 7
 ArcGIS Solar Radiation, 8
 RPyGeo Helper Functions, 10
 RPyGeo-package, 2
 rpygeo.build.env, 11
 rpygeo.geoprocessor, 12
 rpygeo.required.extensions, 15

*Topic package
 RPyGeo-package, 2
 ArcGIS ASCII/Raster Conversion, 2
 ArcGIS Geoprocessing Tools, 4
 ArcGIS Hydrology Geoprocessing Tools, 6
 ArcGIS Map Algebra, 7
 ArcGIS Solar Radiation, 8
 RPyGeo (RPyGeo-package), 2
 RPyGeo Helper Functions, 10
 RPyGeo-package, 2
 rpygeo.AreaSolarRadiation.sa (ArcGIS Solar Radiation), 8
 rpygeo.ASCIIToRaster.conversion (ArcGIS ASCII/Raster Conversion), 2
 rpygeo.Aspect.sa (ArcGIS Geoprocessing Tools), 4
 rpygeo.build.env, 3, 5, 7, 8, 10, 11, 13, 14
 rpygeo.Curvature.sa (ArcGIS Geoprocessing Tools), 4
 rpygeo.Delete_management (ArcGIS Geoprocessing Tools), 4
 rpygeo.env (rpygeo.build.env), 11
 rpygeo.EucDistance.sa (ArcGIS Geoprocessing Tools), 4
 rpygeo.extent.to.character (RPyGeo Helper Functions), 10
 rpygeo.FlowAccumulation.sa (ArcGIS Hydrology Geoprocessing Tools), 6
 rpygeo.FlowDirection.sa (ArcGIS Hydrology Geoprocessing Tools), 6
 rpygeo.FlowLength.sa (ArcGIS Hydrology Geoprocessing Tools), 6
 rpygeo.geoprocessor, 3–5, 7–12, 12, 16
 rpygeo.Hillshade.sa (ArcGIS Geoprocessing Tools), 4
 rpygeo.RasterToASCII.conversion (ArcGIS ASCII/Raster Conversion), 2
 rpygeo.required.extensions, 15
 rpygeo.SingleOutputMapAlgebra.sa (ArcGIS Map Algebra), 7
 rpygeo.Sink.sa (ArcGIS Hydrology Geoprocessing Tools), 6
 rpygeo.Slope.sa (ArcGIS Geoprocessing Tools), 4
 rpygeo.Viewshed.sa (ArcGIS Solar Radiation), 8
 write.point.shapefile (RPyGeo Helper Functions), 10
write.temp.point.shapefile (RPyGeo Helper Functions), 10