Package ‘RSA’

September 14, 2017

Encoding UTF-8
Type Package
Title Response Surface Analysis
Version 0.9.11
Date 2017-09-12
Maintainer Felix Schönbrodt <felix@nicebread.de>
Description Advanced response surface analysis. The main function RSA computes
and compares several nested polynomial regression models (full polynomial,
shifted and rotated squared differences, rising ridge surfaces, basic
squared differences). The package provides plotting functions for 3d
wireframe surfaces, interactive 3d plots, and contour plots. Calculates
many surface parameters (a1 to a4, principal axes, stationary point,
eigenvalues) and provides standard, robust, or bootstrapped standard errors
and confidence intervals for them.
Suggests fields, SDMTools, rgl, qgraph, AICcmodavg
Depends R (>= 2.15.0), lavaan (>= 0.5.20), ggplot2, lattice, tkrplot,
tcltk
Imports plyr, RColorBrewer, aplpack
License GPL (>= 2)
RoxygenNote 6.0.1
NeedsCompilation no
Author Felix Schönbrodt [aut, cre],
 Sarah Humberg [ctb]
Repository CRAN
Date/Publication 2017-09-14 10:19:35 UTC

R topics documented:
aictab ... 2
compare ... 3
compare2 ... 4
aictab

Show a table of AIC model comparisons

Description

Show a table of AIC model comparisons

Usage

aictab(x, plot = FALSE, bw = FALSE,
 models = names(x$models)[!names(x$models) %in% c("absdiff", "absunc")],
 digits = NA)

Arguments

x An RSA object
plot Should a plot of the AICc table be plotted?
bw Should the plot be black & white?
models A vector with all model names of the candidate set. Defaults to all polynomial models in the RSA object.
digits The output is rounded to this number of digits. No rounding if NA (default).

Details

For detailed information on the function, see the help file for aictab
Value

- **Modnames** Model names.
- **K** Number of estimated parameters (without intercept).
- **AICc** Akaike Information Criterion (corrected)
- **Delta_AICc** Difference in AICc between this model and the best model.
- **AICcWt** The Akaike weights, also termed "model probabilities" by Burnham and Anderson (2002). Indicates the level of support (i.e., weight of evidence) of a model being the most parsimonious among the candidate model set.
- **Cum.Wt** Cumulative Akaike weight. Models with a Cum.Wt > .95 can be discarded.
- **Evidence.ratio** Likelihood ratio of this model vs. the best model.

References

Examples

```r
## Not run:
data(motcon)
r.m <- RSA(postva~epow*iPow, motcon, verbose=FALSE)
aictab(r.m, plot=TRUE)
## End(Not run)
```

```
<table>
<thead>
<tr>
<th>compare</th>
<th>Compare a full list of RSA models</th>
</tr>
</thead>
</table>

Description

Compare several fit indexes of all models computed from the RSA function

Usage

```
compare(x, verbose = TRUE, plot = FALSE, digits = 3, ...)
```

Arguments

- **x** An RSA object
- **verbose** Should the summary be printed?
- **plot** Should the comparison be plotted (using the `modeltree` function)?
- **digits** Digits of the output
- **...** Additional parameters passed to the `modeltree` function

Details

No details so far.
### compare2  
*Compare two specific RSA models*

**Description**

Compare several fit indexes of two models computed from the RSA function

**Usage**

```r
compare2(x, m1 = "", m2 = "full", digits = 3, verbose = TRUE)
```

**Arguments**

- **x**: An RSA object
- **m1**: Name of first model
- **m2**: Name of second model
- **digits**: Digits of the output
- **verbose**: Should the summary be printed?

**Details**

You must take care yourself that the compared models are nested! There is no automatic check, so you could, in principle, compare non-nested models. This is valid for AIC, BIC, CFI, and R2 indices, but *not* for the chi^2-LR test!

### confint.RSA  
*Computes confidence intervals for RSA parameters, standard or bootstrapped*

**Description**

Computes confidence intervals for RSA parameters, standard or bootstrapped (using a percentile bootstrap)

**Usage**

```r
S3 method for class 'RSA'
confint(object, parm, level = 0.95, ..., model = "full",
 digits = 3, method = "standard", R = 5000)
```
Arguments

object  An RSA object
parm    Not used.
level   The confidence level required.
... Additional parameters passed to the bootstrapLavaan function, e.g., parallel="multicore", ncpus=2.
model   A string specifying the model; defaults to "full"
digits  Number of digits the output is rounded to; if NA, digits are unconstrained
method  "standard" returns the CI for the lavaan object as it was computed. "boot" computes new percentile bootstrapped CIs.
R       If method = "boot", R specifies the number of bootstrap samples

Details

There are two ways of getting bootstrapped CIs and p-values in the RSA package. If you use the option se="boot" in the RSA function, lavaan provides CIs and p-values based on the bootstrapped standard error (not percentile bootstraps). If you use confint(..., method="boot"), in contrast, you get CIs and p-values based on percentile bootstrap.

See Also

RSA

Examples

```R
Not run:
set.seed(0xBEEF)
n <- 300
err <- 2
x <- rnorm(n, 0, 5)
y <- rnorm(n, 0, 5)
df <- data.frame(x, y)
df <- within(df, {
diff <- x-y
absdiff <- abs(x-y)
SD <- (x-y)^2
z.sq <- SD + rnorm(n, 0, err)
})

r1 <- RSA(z.sq-x*y, df, models="SSQD")
(cl <- confint(r1, model="SSQD"))

Dummy example with 10 bootstrap replications - better use >= 5000!
(cl2 <- confint(r1, model="SSQD", method="boot", R=10))
multicore version
confint(r1, model="SSQD", R=5000, parallel="multicore", ncpus=2)

End(Not run)
```
Plots a response surface of a polynomial equation of second degree
with interactive controls

Description
Plots an RSA object, or a response surface with specified parameters, with interactive controls for coefficients.

Usage
demoRSA(x = NULL, y = 0, x2 = 0, y2 = 0, xy = 0, w = 0, wx = 0,
wy = 0, x3 = 0, xy2 = 0, x2y = 0, y3 = 0, b0 = 0, type = "3d",
zlim = c(-2, 2), xlim = c(-2, 2), ylim = c(-2, 2), xlab = NULL,
ylab = NULL, zlab = NULL, points = TRUE, model = "full",
project = c("PA1", "PA2"), extended = FALSE, ...)

Arguments
x Either an RSA object (returned by the rsa function), or the coefficient for the X predictor
y Y coefficient
x2 X^2 coefficient
y2 Y^2 coefficient
xy XY interaction coefficient
w W coefficient (for (un)constrained absolute difference model)
wz WX coefficient (for (un)constrained absolute difference model)
wy WY coefficient (for (un)constrained absolute difference model)
xz X^3 coefficient
x2y XY^2 coefficient
x2y^2 X^2Y coefficient
y3 Y^3 coefficient
b0 Intercept
type 3d for 3d surface plot, contour for 2d contour plot. Shortcuts (i.e., first letter of string) are sufficient; be careful: "contour" is very slow at the moment
zlim Limits of the z axis
xlim Limits of the x axis
ylim Limits of the y axis
xlab Label of the x axis
ylab Label of the y axis
zlab Label of the z axis
demoRSA

points
A list of parameters which define the appearance of the raw scatter points:
show = TRUE: Should the original data points be overplotted? value="raw": Plot
the original z value, "predicted": plot the predicted z value. jitter=0: Amount
of jitter for the raw data points. cex = .5: multiplication factor for point size. See
?plotRSA for details.

model
If x is an RSA object: from which model should the response surface be com-
puted?

project
Which features should be projected on the floor? See ?plotRSA for details.

extended
Show additional controls (not implemented yet)

... Other parameters passed through to plot.RSA (e.g., xlab, ylab, zlab, cex, legend)

Details
No details so far. Just play around with the interface!

See Also
plotRSA, RSA

Examples

# Plot response surfaces from known parameters
# example of Edwards (2002), Figure 3
## Not run:
demoRSA(x=.314, y=.118, x2=-.145, y2=-.102, xy=.299, b0=5.628, type="3d")
demoRSA(x=.314, y=.118, x2=-.145, y2=-.102, xy=.299, b0=5.628, legend=FALSE, type="c")

## End(Not run)

# Plot response surface from an RSA object
## Not run:
set.seed(0xBEEF)
n <- 300
err <- 2
x <- rnorm(n, 0, 5)
y <- rnorm(n, 0, 5)
df <- data.frame(x, y)
df <- within(df, {
  diff <- x-y
  absdiff <- abs(x-y)
  SD <- (x-y)^2
  z.diff <- diff + rnorm(n, 0, err)
  z.abs <- absdiff + rnorm(n, 0, err)
  z.sq <- SD + rnorm(n, 0, err)
  z.add <- diff + 0.4*x + rnorm(n, 0, err)
  z.complex <- 0.4*x + - 0.2*x*y + + 0.1*x^2 - 0.03*y^2 + rnorm(n, 0, err)
})

r1 <- RSA(z.sq-x*y, df)
demoRSA(r1)
fitted.RSA  

Return fitted values of a RSA model

Description
Return fitted values of a RSA model

Usage
```r
S3 method for class 'RSA'
fitted(object, ..., model = "full")
```

Arguments
- `object` An RSA object.
- `...` Other parameters (currently not used)
- `model` Model on which the fitted values are based

getPar  

Retrieves several variables from an RSA object

Description
Retrieves several variables from an RSA object

Usage
```r
getPar(x, type = "coef", model = "full", digits = NA, ...)
```

Arguments
- `x` RSA object
- `type` One of: "syntax", "coef", "R2", "R2.adj", "free", "summary", "p.value"
- `model` A string specifying the model; defaults to "full"
- `digits` Number of digits the output is rounded to; if NA, digits are unconstrained
- `...` Additional parameters passed to the extraction function

Details
None so far.
modeltree

See Also

RSA

Examples

set.seed(0xBEEF)
n <- 300
er <- 2
x <- rnorm(n, 0, 5)
y <- rnorm(n, 0, 5)
df <- data.frame(x, y)
df <- within(df, {
diff <- x-y
absdiff <- abs(x-y)
SD <- (x-y)^2
z sq <- SD + rnorm(n, 0, err)
})

r1 <- RSA(z sq~x+y, df, models=c("full", "SSQD"))
getPar(r1, "syntax")
getPar(r1, "R2")
getPar(r1, "coef")

modeltree

Plots a flow chart with model comparisons

Description

Plots a flow chart with model comparisons from a RSA object

Usage

modeltree(x, digits = 3, sig = 0.05, borderline = 0.1, ...)

Arguments

x
 digs
 sig
 borderline
 ... 

A cRSA object (= output from the compare function)
The number of digits to which numbers are rounded
Threshold for models to be marked as "not significant"
Threshold for models to be marked as "borderline significant" (used for color of arrows)
Additional parameters (not used yet)

Details

The plot can be either requested within the compare function: compare(r1, plot=TRUE) Or it can be plotted from a cRSA object (= output from the compare function): c1 <- compare(r1) plot(c1)
See Also

RSA, compare

Examples

```r
Not run:
data(motcon)
r.m <- RSA(postVA_ePow_iPow, motcon)
c1 <- compare(r.m)
modeltree(c1)
End(Not run)
```

motcon

Data set on motive congruence.

Description

A dataset containing the explicit power motive, implicit power motive and self ratings of affective valence during a spontaneous speech. The variables are as follows:

Format

A data frame with 84 rows and 3 variables

Details

- `ePow` Explicit power motive, measured with a questionnaire (Unified Motive Scales, Schönbrodt & Gerstenberg, 2012). Raw values have been z standardized.
- `iPow` Implicit power motive, measure with picture story exercise (6 pictures). Raw motive scores have been controlled for word count and z standardized
- `postVA` z standardized valence rating after the speech (`'How did you feel during the speech'`). Consists of two bipolar items from the PANAVA questionnaire (Schallberger, 2005): ‘zufrieden ... unzufrieden’ (satisfied ... unsatisfied) and ‘ungluecklich ... gluecklich’ (unhappy ... happy).

References

Schallberger, U. (2005). Kurzskala zur Erfassung der Positiven Aktivierung, Negativen Aktivierung und Valenz in Experience Sampling Studien (PANAVA-KS) [Short scales for the assessment of positive affect, negative affect, and valence in experience sampling studies]. University of Zurich.

Another data set on motive congruence.

Description

A dataset containing the explicit intimacy motive, implicit affiliation/intimacy motive and self ratings of affective valence. The variables are as follows:

Format

A data frame with 362 rows and 3 variables

Details

- EM Explicit intimacy motive, measured with a questionnaire (Unified Motive Scales, Schönbrodt & Gerstenberg, 2012). Raw values have been z standardized.
- IM Implicit affiliation/intimacy motive, measured with picture story exercise (6 pictures). Raw motive scores have been controlled for word count and z standardized.
- VA z standardized valence rating. Consists of two bipolar items from the PANAVA questionnaire (Schallberger, 2005): ‘zufrieden ... unzufrieden’ (satisfied ... unsatisfied) and ‘unglücklich ... glücklich’ (unhappy ... happy).

References

Schallberger, U. (2005). Kurzskala zur Erfassung der Positiven Aktivierung, Negativen Aktivierung und Valenz in Experience Sampling Studien (PANAVA-KS) [Short scales for the assessment of positive affect, negative affect, and valence in experience sampling studies]. University of Zurich.


Create a movie of plotRSA plots, with changing surface and/or rotation

Description

Create a movie of plotRSA plots, with changing surface and/or rotation

Usage

movieRSA(name, frames, dur = 2000, fps = 30, width = 800, height = 600, mirror = TRUE, savetodisk = TRUE, clean = TRUE)
Arguments

name  Name for the subfolder containing all still pictures, and for the final movie file.
frames  A list of lists: Each list contains parameters which are passed to the plotRSA function. See plotRSA for details.
dur  Duration of the movie in milliseconds
fps  Frame per second (defaults to 30)
width  Width of the final movie in pixels
height  Height of the final movie in pixels
mirror  If TRUE, the frame sequence is mirrored at the end so that the movie ends at frame 1.
savetodisk  If TRUE, the files are saved to the disk. If FALSE, the movie is only shown on the screen
clean  Should the still images be deleted?

Details

frames is a list of the first, intermediate, and the final parameters of the surface. Each scalar parameter defined in frames is interpolated between steps in order to create a smooth sequence of plots. Logical and character parameters are inherited from the first frame. Plots are saved as individual still pictures in a subfolder called name and finally glued together using ffmpeg. Hence, a ffmpeg installation is needed to create the movie (the still pictures can be produced without ffmpeg).

See Also

plotRSA

Examples

```r
Not run:
movieRSA(name="SD0",
frames <- list(
 step1 = list(b0=0, xy=-.40, x2=.20, y2=.20,
 rotation=list(x=-63, y=32, z=15),
 legend=FALSE, zlim=c(0, 4), param=FALSE),
 step2 = list(b0=0, xy=-.10, x2=.05, y2=.05,
 rotation=list(x=-54, y=39, z=25)),
 step3 = list(b0=0, xy=-.40, x2=.20, y2=.20,
 rotation=list(x=-45, y=45, z=35))
),
mirror=TRUE, fps=30, dur=5000)

End(Not run)
```
plotRSA

Plots a response surface of a polynomial equation of second degree

Description

Plots an RSA object, or a response surface with specified parameters

Usage

plotRSA(x = 0, y = 0, x2 = 0, y2 = 0, xy = 0, w = 0, wx = 0,
wy = 0, x3 = 0, x2y = 0, y3 = 0, b0 = 0, type = "3d",
model = "full", xlim = NULL, ylim = NULL, zlim = NULL, xlab = NULL,
ylab = NULL, zlab = NULL, main = "", surface = "predict",
lambda = NULL, suppress.surface = FALSE, suppress.box = FALSE,
suppress.grid = FALSE, suppress.ticklabels = FALSE, rotation = list(x =
-63, y = 32, z = 15), label.rotation = list(x = 19, y = -40, z = 92),
gridsize = 21, bw = FALSE, legend = TRUE, param = TRUE,
coefs = FALSE, axes = c("LOC", "LOIC", "PA1", "PA2"),
project = c("contour"), maxlines = FALSE, cex.tickLabel = 1,
cex.axesLabel = 1, cex.main = 1, points = list(data = NULL, show = NA,
value = "raw", jitter = 0, color = "black", cex = 0.5, out.mark = FALSE),
fit = NULL, link = "identity", tck = c(1.5, 1.5, 1.5),
distance = c(1.3, 1.3, 1.4), border = FALSE, contour = list(show =
FALSE, color = "grey40", highlight = c()), hull = NA, showSP = FALSE,
showSP.CI = FALSE, pal = NULL, pal.range = "box", pad = 0,
demo = FALSE, ...)

Arguments

x Either an RSA object (returned by the RSA function), or the coefficient for the X predictor
y Y coefficient
x2 X^2 coefficient
y2 Y^2 coefficient
xy XY interaction coefficient
w W coefficient (for (un)constrained absolute difference model)
wx WX coefficient (for (un)constrained absolute difference model)
wy WY coefficient (for (un)constrained absolute difference model)
x3 X^3 coefficient
xy2 XY^2 coefficient
x2y X^2Y coefficient
y3 Y^3 coefficient
b0 Intercept
type
3d for 3d surface plot, contour for 2d contour plot, "interactive" for interactive rotatable plot. Shortcuts (i.e., first letter of string) are sufficient

model
If x is an RSA object: from which model should the response surface be computed?

xlim
Limits of the x axis

ylim
Limits of the y axis

zlim
Limits of the z axis

xlab
Label for x axis

ylab
Label for y axis

zlab
Label for z axis

main
the main title of the plot

durface
Method for the calculation of the surface z values. "predict" takes the predicted values from the model, "smooth" uses a thin plate smoother (function Tps from the fields package) of the raw data

lambda
lambda parameter for the smoother. Default (NULL) means that it is estimated by the smoother function. Small lambdas around 1 lead to rugged surfaces, big lambdas to very smooth surfaces.

suppress.surface
Should the surface be suppressed (only for type="3d")? Useful for only showing the data points, or for didactic purposes (e.g., first show the cube, then fade in the surface).

suppress.box
Should the surrounding box be suppressed (only for type="3d")?

suppress.grid
Should the grid lines be suppressed (only for type="3d")?

suppress.ticklabels
Should the numbers on the axes be suppressed (only for type="3d")?

rotation
Rotation of the 3d surface plot (when type == "3d")

label.rotation
Rotation of the axis labels (when type == "3d")

gridsize
Number of grid nodes in each dimension

bw
Print surface in black and white instead of colors?

legend
Print color legend for z values?

param
Should the surface parameters a1 to a4 be shown on the plot? In case of a 3d plot a1 to a4 are printed on top of the plot; in case of a contour plot the principal axes are plotted.

coefs
Should the regression coefficients b1 to b5 be shown on the plot? (Only for 3d plot)

axes
A vector of strings specifying the axes that should be plotted. Can be any combination of c("LOC", "LOIC", "PA1", "PA2"). LOC = line of congruence, LOIC = line of incongruence, PA1 = first principal axis, PA2 = second principal axis

project
A vector of graphic elements that should be projected on the floor of the cube. Can include any combination of c("LOC", "LOIC", "PA1", "PA2", "contour", "points")
maxlines  Should the maximum lines be plotted? (red: maximum X for a given Y, blue: maximum Y for a given X). Works only in type="3d"

cex.tickslabel  Font size factor for tick labels

cex.axes label  Font size factor for axes labels

cex.main  Factor for main title size

points  A list of parameters which define the appearance of the raw scatter points:

- data: Data frame which contains the coordinates of the raw data points. First column = x, second = y, third = z. This data frame is automatically generated when the plot is based on a fitted RSA-object
- show = TRUE: Should the original data points be overplotted?
- color = "black": Color of the points
- value="raw": Plot the original z value, "predicted": plot the predicted z value
- jitter = 0: Amount of jitter for the raw data points. For z values, a value of 0.005 is reasonable
- cex = .5: multiplication factor for point size
- out.mark = FALSE: If set to TRUE, outliers according to Bollen & Jackman (1980) are printed as red X symbols, but only when they have been removed in the RSA function: RSA(. . . , out.rm=TRUE).
  - If out.rm == TRUE (in RSA()) and out.mark == FALSE (in plotRSA()), the outlier is removed from the model and *not plotted* in plotRSA.
  - If out.rm == TRUE (in RSA()) and out.mark == TRUE (in plotRSA()), the outlier is removed from the model but plotted and marked in plotRSA.
  - If out.rm == FALSE (in RSA()): Outliers are not removed and cannot be plotted.
  - Example syntax: plotRSA(r1, points=list(show=TRUE, out.mark=TRUE))

As a shortcut, you can also set points=TRUE to set the defaults.

fit  Do not change that parameter (internal use only)

link  Link function to transform the z axes. Implemented are "identity" (no transformation; default), "probit", and "logit"

tck  A vector of three values defining the position of labels to the axes (see ?wireframe)

distance  A vector of three values defining the distance of labels to the axes

border  Should a thicker border around the surface be plotted? Sometimes this border leaves the surrounding box, which does not look good. In this case the border can be suppressed by setting border=FALSE.

contour  A list defining the appearance of contour lines (aka. height lines). show=TRUE: Should the contour lines be plotted on the 3d wireframe plot? (Parameter only relevant for type="3d"). color = "grey40": Color of the contour lines. highlight = c(): A vector of heights which should be highlighted (i.e., printed in bold). Be careful: the highlighted line is not necessarily exactly at the specified height; instead the nearest height line is selected.
plotRSA

hull
Plot a bag plot on the surface (This is a bivariate extension of the boxplot. 50% of points are in the inner bag, 50% in the outer region). See Rousseeuw, Ruts, & Tukey (1999).

showSP
Plot the stationary point? (only relevant for type="contour")

showSP.CI
Plot the CI of the stationary point? (only relevant for type="contour")

pal
A palette for shading. You can use colorRampPalette to construct a color ramp e.g. plot(r.m, pal=colorRampPalette(c("darkgreen", "yellow", "darkred"))(20)). If pal="flip", the default palette is used, but reversed (so that red is on top and green on the bottom).

pal.range
Should the color range be scaled to the box (pal.range = "box", default), or to the min and max of the surface (pal.range = "surface")? If set to "box", different surface plots can be compared along their color, as long as the zlim is the same for both.

pad
Pad controls the margin around the figure (positive numbers: larger margin, negative numbers: smaller margin)

demo
Do not change that parameter (internal use only)

Details

Each plot type has its distinctive advantages. The two-dimensional contour plot gives a clear view of the position of the principal axes and the stationary point. The 3d plot gives a three dimensional impression of the surface, allows overplotting of the original data points (in case an RSA object is provided), and allows the interactive adjustment of regression weights in the RSA function. The interactive plot allows rotating and exploring a three-dimensional surface with the mouse (nice for demonstration purposes). If you want to export publication-ready plots, it is recommended to export it with following commands: p1 <- plot(r1, bw=TRUE) trellis.device(device="cairo_pdf", filename="RSA_plot.pdf")

print(p1) dev.off()

References


See Also
demoRSA, RSA

Examples

# Plot response surfaces from known parameters
# example of Edwards (2002), Figure 3
## Not run:
# Default: 3d plot:
plotRSA(x=.314, y=-.118, x2=-.145, y2=-.102, xy=.299, b0=5.628)
# Contour plot:
plotRSA(x=.314, y=-.118, x2=-.145, y2=-.102, xy=.299, b0=5.628, type="c")
residuals.RSA

Return residual values of a RSA model

Description

Return residual values of a RSA model

Usage

## S3 method for class 'RSA'
residuals(object, ..., model = "full")

Arguments

object

An RSA object.

...  

Other parameters (currently not used)

model

Model on which the fitted values are based
Performs several RSA model tests on a data set with two predictors

Usage

RSA(formula, data = NULL, center = FALSE, scale = FALSE, na.rm = FALSE,
out.rm = TRUE, breakline = FALSE, models = "default", cubic = FALSE,
verbose = TRUE, add = "", estimator = "MLR", se = "robust",
missing = NA, ..., control.variables = c())

Arguments

formula A formula in the form \( z \sim x \times y \), specifying the variable names used from the data frame, where \( z \) is the name of the response variable, and \( x \) and \( y \) are the names of the predictor variables.
data A data frame with the variables
center Should predictor variables be centered on each variable's sample mean before analyses? You should think carefully about this option, as different centering of the predictor variables can affect the commensurability of the predictor scales.
scale Should predictor variables be scales on the SD of each variable before analyses? You should think carefully about this option, as different scaling of the predictor variables can affect the commensurability of the predictor scales.
na.rm Remove missings before proceeding?
out.rm Should outliers according to Bollen & Jackman (1980) criteria be excluded from the analyses? In large data sets this analysis is the speed bottleneck. If you are sure that no outliers exist, set this option to FALSE for speed improvements.
breakline Should the breakline in the unconstrained absolute difference model be allowed (the breakline is possible from the model formulation, but empirically rather unrealistic ...). Defaults to FALSE.
models A vector with names of all models that should be computed. Should be any from c("absdiff", "absunc", "diff", "mean", "additive", "IA", "SQD", "RR", "SRR", "SRRR", "SSQD", "SSRD", "SSES", "SSRR", "SSSS", "SSSR", "SSSRR", "SSSSS", "SSSSR", "SSSSR", "SSSSRR", "SSSSRR"), For models="all", all models are computed, for models="default" all models besides absolute difference models are computed.
cubic Should a cubic model with the additional terms \( Y^3, XY^2, YX^2, \) and \( X^3 \) be included? WARNING: This is experimental, and not all functions will treat the cubic extension properly yet.
verbose Should additional information during the computation process be printed?
add Additional syntax that is added to the lavaan model. Can contain, for example, additional constraints, like "p01 == 0; p11 == 0"
estimator

Type of estimator that should be used by lavaan. Defaults to "MLR", which provides robust standard errors, a robust scaled test statistic, and can handle missing values. If you want to reproduce standard OLS estimates, use estimator="ML" and se="standard"

se

Type of standard errors. This parameter gets passed through to the sem function of the lavaan package. See options there. By default, robust SEs are computed. If you use se="boot", lavaan provides CIs and p-values based on the bootstrapped standard error. If you use confint(..., method="boot"), in contrast, you get CIs and p-values based on percentile bootstrap (see also confint.RSA).

missing

Handling of missing values. By default (NA), Full Information Maximum Likelihood (FIML) is employed in case of missing values. If cases with missing values should be excluded, use missing = "listwise".

... Additional parameters passed to the lavaan sem function.

control.variables

A string vector with variable names from data. These variables are added as linear predictors to the model (in order "to control for them"). No interactions with the other variables are modeled. WARNING: This feature is not implemented yet!

Details

Even if the main variables of the model are normally distributed, their squared terms and interaction terms are necessarily non-normal. By default, the RSA function uses a scaled test statistic (test="Satorra-Bentler") and robust standard errors (se="robust"), which are robust against violations of the normality assumption.

Why does my standard polynomial regression give different p-values and SEs than the RSA package? Shouldn’t they be the same? This is due to the robust standard errors employed in the RSA package. If you set estimator="ML" and se="standard", you get p-values that are very close to the standard approach. (They might still not be identical because the standard regression approach usually uses an OLS estimator and RSA uses an ML estimator).

You can also fit binary outcome variables with a probit link function. For that purpose, the response variable has to be defined as "ordered", and the lavaan estimator changed to "WLSMV":
r1 <- RSA(Z.binary ~ X+Y, dat, ordered="Z.binary", estimator="WLSMV") (for more details see the help file of the sem function in the lavaan package.). The results can also be plotted with probabilities on the z axis using the probit link function: plot(r1, link="probit", zlim=c(0, 1), zlab="Probability")

See Also
demoRSA, plotRSA, RSA.ST, confint.RSA, compare

Examples

# Compute response surface from a fake data set
set.seed(8xBEEF)
n <- 300
err <- 15
```r
x <- rnorm(n, 0, 5)
y <- rnorm(n, 0, 5)
df <- data.frame(x, y)
df <- within(df, {
diff <- x-y
absdiff <- abs(x-y)
SD <- (x-y)^2
z.diff <- diff + rnorm(n, 0, err)
z.abs <- absdiff + rnorm(n, 0, err)
z_sq <- SD + rnorm(n, 0, err)
z.add <- diff + 0.4*x + rnorm(n, 0, err)
z.complex <- 0.4*x + 0.2*x*y + 0.1*x^2 - 0.03*y^2 + rnorm(n, 0, err)
})
Not run:
r1 <- RSA(z_sq-x*y, df)
summary(r1)
compare(r1)
plot(r1)
plot(r1, model="SRSQD")
plot(r1, model="full", type="c")
getPar(r1, "coef") # print model parameters including SE and CI
RSA.ST(r1) # get surface parameters

Motive congruency example
data(motcon)
r.m <- RSA(postVA-ePow*iPow, motcon)

Get bootstrapped CIs with 10 bootstrap samples (usually this should be set to 5000 or higher), # only from the SSQD model
c1 <- confint(r.m, model="SSQD", method="boot", R=10)

Plot the final model
plot(r.m, model="RR", xlab="Explicit power motive", ylab="Implicit power motive", zlab="Affective valence")

End(Not run)
```

### RSA.ST

#### Surface tests

**Description**

Calculates surface parameters a1 to a4, the stationary point, the principal axes, the eigenvectors and eigenvalues.

**Usage**

```
RSA.ST(x = 0, y = 0, x2 = 0, xy = 0, y2 = 0, b0 = 0, SE = NULL,
 COV = NULL, df = NULL, model = "full")
```
Arguments

- **x**: Either an RSA object (returned by the RSA function), or the coefficient for the X predictor.
- **y**: Y coefficient.
- **x2**: X^2 coefficient.
- **xy**: XY interaction coefficient.
- **y2**: Y^2 coefficient.
- **b0**: The intercept.

**SE**: In case that the coefficients are provided directly (as parameters x, y, x2, y2, xy), SE can provide the standard errors of these estimates. SE has to be a named vector with exactly five elements with the names of the coefficients, e.g.: \( SE = c(x = .1, \ y = .2, \ x2 = .1, \ y2 = .5, \ xy = .3) \). SEs of all parameters have to provided, otherwise the function will print an error. In case standard errors and the covariances (see below) and df (see below) are provided, parametric confidence intervals for a1 to a4 are calculated.

**COV**: Covariances between parameters. COV has to be a named vector with exactly four elements with the names of four specific covariances, e.g.: \( COV = c(x_y = .1, \ x2_y = .2, \ x2_xy = .3) \), where \( x_y \) is the covariance between x and y, and so on. All these covariances have to provided with exactly these names, otherwise the function will print an error.

**df**: Degrees of freedom for the calculation of a1 to a4 confidence intervals. The df are the residual dfs of the model (df = n - estimated parameters). For the full polynomial model, this is n - 6 in a regular regression (the following parameters are estimated: Intercept, x, y, xy, x2, y2). df should be a single number.

**model**: If x is an RSA object, this parameter specifies the model from which to extract the coefficients.

Details

No details so far.

Value

Returns surface parameters a1 to a5. If an RSA object or SE, COV and df are provided, also significance test and standard errors of a1 to a5 are reported. The stationary point (X0, Y0, and Z0). First principal axis (PA) relative to the X-Y plane (p10 = intercept, p11 = slope), second PA (p20 = intercept, p21 = slope). M = eigenvectors, l = eigenvalues, L = lambda matrix as1X to as4X: surface parameters of the PA, relative to X values as1Y to as4Y: surface parameters of the PA, relative to Y values PA1.curvX: quadratic component of the first PA, as seen from X axis PA2.curvX: quadratic component of the second PA, as seen from X axis PA1.curv: quadratic component of the first PA, after optimal coord transformation PA2.curv: quadratic component of the second PA, after optimal coord transformation.
References

See Also
RSA

Examples

```r
get surface parameters from known parameters
example from Shanock et al. (2010), p. 548, Table 2
RSA.ST(x=-.23, y=.77, x2=-.07, y2=-.10, xy=.27)

Compute standard errors and p values for surface parameters
from external regression coefficients:
standard errors for coefficients
SE <- c(x=.09, y=.09, x2=.07, y2=.07, xy=.11)
covariances for specific coefficients:
COV <- c(x_y=-.000, x2_y2=.001, x2_xy=-.003, y2_xy=-.004)
RSA.ST(x=.131, y=.382, x2=.074, xy=.002, y2=.039, SE=SE, COV=COV, df=181)

Get surface parameters from a computed RSA object
set.seed(8xBEEF)
n <- 300
err <- 2
x <- rnorm(n, 0, 5)
y <- rnorm(n, 0, 5)
df <- data.frame(x, y)
df <- within(df, {

diff <- x-y
absdiff <- abs(x-y)
SD <- (x-y)^2
z.diff <- diff + rnorm(n, 0, err)
z.abs <- absdiff + rnorm(n, 0, err)
z.sq <- SD + rnorm(n, 0, err)
z.add <- diff + 0.4*x + rnorm(n, 0, err)
z.complex <- 0.4*x + 0.2*x*y + 0.1*x^2 - 0.03*y^2 + rnorm(n, 0, err)
})
r1 <- RSA(z.sq~x*y, df, models="full")
RSA.ST(r1)
```
Index

*Topic datasets
  motcon, 10
  motcon2, 11

aictab, 2, 2

colorRampPalette, 16
compare, 3, 9, 10, 19
compare2, 4
confint (confint.RSA), 4
confint.RSA, 4, 19

demoRSA, 6, 16, 19
demoSRR (demoRSA), 6
demoSRRR (demoRSA), 6

fitted.RSA, 8

getPar, 8

modeltree, 3, 9
motcon, 10
motcon2, 11
movieRSA, 11

plotRSA, 7, 12, 13, 19

resid (residuals.RSA), 17
residuals.RSA, 17
RSA, 5, 7, 9, 10, 16, 18, 22
RSA.ST, 19, 20

sem, 19