Package ‘RSeed’

October 7, 2016

Type Package
Title Borenstein Analysis
Version 0.1.60
Date 2016-10-07
Author Claus Jonathan Fritzemeier
Maintainer Claus Jonathan Fritzemeier <clausjonathan.fritzemeier@uni-duesseldorf.de>
Description An implementation of the analysis about seed components from Borenstein et.al. 2008.
License GNU General Public License
LazyLoad yes
Depends R (>= 2.15.0), methods, sybil, RBGL, graph
Suggests Rgraphviz
Collate RSeed-class.R borenstein.R
NeedsCompilation no
Repository CRAN
Date/Publication 2016-10-07 10:53:07

R topics documented:

findCurrencyMetabolites ... 2
RSeed-class ... 3

Index 6
findCurrencyMetabolites

Find currency metabolites

Description
Find currency metabolites in a metabolic network by the number of reactions using a metabolite.

Usage
findCurrencyMetabolites(object, ...)

Arguments
object object 'modelorg' object
... cutoff lower cutoff (default 20).

Details
Identification is performed as follows: From the binary S-matrix is calculated in how many reactions a metabolite participates. If it participates in more than 'cutoff' reactions, it is returned as currency metabolited.

Value
character vector with the metabolite IDs of the currency metabolites.

Author(s)
Claus Jonathan Fritzemeier
<clausjonathan.fritzemeier@uni-duesseldorf.de>

References
Master Thesis
by Claus Jonathan Fritzemeier
at Heinrich-Heine-Universitaet Duesseldorf,
Department of Bioinformatics
in 2012

Borenstein et. al. 2008

See Also
modelorg RSeed
Examples

```r
data(Ec_core)
findCurrencyMetabolites(Ec_core) # cutoff = 20
findCurrencyMetabolites(Ec_core, 10)
```

Description

Data structure to perform Borenstein algorithm and save results.

Objects from the Class

Objects can be created by calls of the form `new("RSeed", model, connectedComponentCutOff, currencyMetabolites)`.

This is the startup, where the basic parameters are set. They can also be set later.

Slots

- `env`: Object of class "environment"

Methods

- `buildGraph` signature `rs = "RSeed"`: Builds a graph from the stoichiometric matrix. In this process is checked whether the graph is connected. Unconnected parts are removed from the graph, if they are smaller than `connectedComponentCutOff`. If the parts are greater, there will be an error.

- `combined_nodes` signature `rs = "RSeed"`: Names of the nodes, which combine metabolites.

- `combined_nodes<-` signature `rs = "RSeed"`: Setter method for this slot. This should not be used by the user, until you really know what you're doing!

- `confidenceLevel` signature `rs = "RSeed"`: Return a confidence level for every seed compound as defined in the original paper. The threshold is 0.2.

- `connectedComponentCutOff` signature `rs = "RSeed"`: Return the cut off, until which size it is allowed to remove unconnected components from the graph. Default value is 10.

- `connectedComponentCutOff<-` signature `rs = "RSeed"`: Set this Value.

- `currencyMetabolites` signature `rs = "RSeed"`: Metabolite IDs, which should be treated as currency metabolites and therefore be removed from the network. If this value is NULL, nothing is removed.

- `currencyMetabolites<-` signature `rs = "RSeed"`: Sets this slot. The replace Value has to be a character vector. The return value from `findCurrencyMetabolites` is suitable.
getSourceMetabolites signature(rs = "RSeed"): Returns a list, with the metabolite IDs of the as essential identified metabolites. Each list entry represents a source compound.

graph_network signature(rs = "RSeed"): Graph representation of the network.

graph_network<- signature(rs = "RSeed"): Setter method for this slot. This should not used by the user, until u really know, what ur doing!

graph_scc signature(rs = "RSeed"): Graph representation of the network with the nodes, which belong in one scc, aggregated to one node.

graph_scc<- signature(rs = "RSeed"): Setter method for this slot. This should not used by the user, until u really know, what ur doing!

initialize signature(.Object = "RSeed"): General initialize method. Automatically called from 'new'.

list_sc signature(rs = "RSeed"): Return node names of source compounds.

list_sc<- signature(rs = "RSeed"): Setter method for this slot. This should not used by the user, until u really know, what ur doing!

makeExperiment signature(rs = "RSeed"): Performs the whole analysis. The result is stored in the object and in addition to this a reference is returned, too.

model_changes signature(rs = "RSeed"): Returns the names of removed metabolites and reactions. These metabolites were either removed because they had no connection to the biggest part in the graph, or because they were given as source metabolites. Reactions are removed if all participating metabolites were removed.

model_changes<- signature(rs = "RSeed"): Setter method for this slot. This should not used by the user, until u really know, what ur doing!

model_edited signature(rs = "RSeed"): The 'modelorg' after removing metabolites and reactions.

model_edited<- signature(rs = "RSeed"): Setter method for this slot. This should not used by the user, until u really know, what ur doing!

model_original signature(rs = "RSeed"): The 'modelorg' from the beginning.

model_original<- signature(rs = "RSeed"): Setter method for this slot. This should not used by the user, until u really know, what ur doing!

plot signature(x = "RSeed", y = "missing"): Plots the graph_scc. Rgraphviz is needed.

scc_sizes signature(rs = "RSeed"): Sizes of the SCCs.

scc_sizes<- signature(rs = "RSeed"): Setter method for this slot. This should not used by the user, until u really know, what ur doing!

scc signature(rs = "RSeed"): Returns a named list, which represents the aggregated nodes for every SCC (strongly connected component).

scc<- signature(rs = "RSeed"): Setter method for this slot. This should not used by the user, until u really know, what ur doing!

sourceCompounds signature(rs = "RSeed"): Aggregates metabolites from the same SCC into a common node.

show signature(object = "RSeed"): Prints a short summary about the Object. (Called from generic 'print')
Note

Most slots of this object are automatically set by the algorithm and contain calculated results. So there is low sense in setting them by ur own.

Node names are chosen as follows: ’n’ + the number of the metabolite. So n4 would mean, that met_id(model)[4] is the represented metabolite.

Author(s)

Claus Jonathan Fritzemeier
<clausjonathan.fritzemeier@uni-duesseldorf.de>

References

Master Thesis
by Claus Jonathan Fritzemeier
at Heinrich-Heine-Universitaet Duesseldorf,
Department of Bioinformatics
in 2012

Borenstein et. al. 2008

See Also

findCurrencyMetabolites, modelorg

Examples

data(Ec_core)
ec <- new("RSeed", Ec_core)

run the experiment
calls of
buildGraph(ec)
sourceCompounds(ec)
would do the same in two steps.
makeExperiment(ec)

look which nodes aggregate
scc(ec)

look at source metabolites
(every list entry is a source compound)
getSourceMetabolites(ec)

plot the graph
plot(ec)
Index

*Topic classes
 RSeed-class, 3
 buildGraph (RSeed-class), 3
 combined_nodes (RSeed-class), 3
 combined_nodes<- (RSeed-class), 3
 confidenceLevel (RSeed-class), 3
 confidenceLevel, RSeed-method (RSeed-class), 3
 connectedComponentCutOff (RSeed-class), 3
 connectedComponentCutOff, RSeed-method (RSeed-class), 3
 connectedComponentCutOff<-.RSeed-method (RSeed-class), 3
 currencyMetabolites (RSeed-class), 3
 currencyMetabolites, RSeed-method (RSeed-class), 3
 currencyMetabolites<=.RSeed-method (RSeed-class), 3
 currencyMetabolites<-.RSeed-method (RSeed-class), 3
 findCurrencyMetabolites, 2, 5
 findCurrencyMetabolites, modelorg-method (findCurrencyMetabolites), 2
 getSourceMetabolites (RSeed-class), 3
 getSourceMetabolites, RSeed-method (RSeed-class), 3
 graph_network (RSeed-class), 3
 graph_network, RSeed-method (RSeed-class), 3
 graph_network<= (RSeed-class), 3
 graph_network<-.RSeed-method (RSeed-class), 3
 graph_scc (RSeed-class), 3
 graph_scc, RSeed-method (RSeed-class), 3
 graph_scc<= (RSeed-class), 3
 graph_scc<-.RSeed-method (RSeed-class), 3
 initialize (RSeed-class), 3
 initialize, RSeed-method (RSeed-class), 3
 list_sc (RSeed-class), 3
 list_sc, RSeed-method (RSeed-class), 3
 list_sc<= (RSeed-class), 3
 list_sc<-.RSeed-method (RSeed-class), 3
 makeExperiment (RSeed-class), 3
 makeExperiment, RSeed-method (RSeed-class), 3
 model_changes (RSeed-class), 3
 model_changes, RSeed-method (RSeed-class), 3
 model_changes<= (RSeed-class), 3
 model_changes<-.RSeed-method (RSeed-class), 3
 modelEdited (RSeed-class), 3
 modelEdited, RSeed-method (RSeed-class), 3
 modelEdited<= (RSeed-class), 3
 modelEdited<-.RSeed-method (RSeed-class), 3
 model_original (RSeed-class), 3
 model_original, RSeed-method (RSeed-class), 3
 model_original<= (RSeed-class), 3
 model_original<-.RSeed-method (RSeed-class), 3
 modelorg, 2, 5
 plot, RSeed, missing-method (RSeed-class), 3
 RSeed, 2
 RSeed (RSeed-class), 3
INDEX

RSeed-class, 3

scc (RSeed-class), 3
scc, RSeed-method (RSeed-class), 3
scc <- (RSeed-class), 3
scc <-, RSeed-method (RSeed-class), 3
scc_sizes (RSeed-class), 3
scc_sizes, RSeed-method (RSeed-class), 3
scc_sizes <- (RSeed-class), 3
scc_sizes <-, RSeed-method (RSeed-class), 3

show (RSeed-class), 3
show, RSeed-method (RSeed-class), 3
sourceCompounds (RSeed-class), 3
sourceCompounds, RSeed-method (RSeed-class), 3