Package ‘RSurvey’

February 24, 2017

Title Geographic Information System Application
Version 0.9.1
Description A geographic information system (GIS) graphical user interface (GUI) that provides data viewing, management, and analysis tools.
Depends R (>= 3.1.0)
Imports colorspace, graphics, grDevices, inlmisc, MBA, methods, raster, rgdal, rgeos, sp, stats, tcltk, utils
Suggests dichromat, leaflet, rgl, XML
SystemRequirements Tcl/Tk (>= 8.5), Tktable (>= 2.9, optional)
License CC0
Copyright This software is in the public domain because it contains materials that originally came from the United States Geological Survey (USGS), an agency of the United States Department of Interior. For more information, see the official USGS copyright policy at https://www2.usgs.gov/visual-id/credit_usgs.html
URL https://github.com/USGS-R/RSurvey
Encoding UTF-8
ByteCompile true
RoxygenNote 6.0.1
NeedsCompilation no
Author Jason C. Fisher [aut, cre]
Maintainer Jason C. Fisher <jfisher@usgs.gov>
Repository CRAN
Date/Publication 2017-02-24 08:31:42
Description

A graphical user interface (GUI) for specifying input parameters for the `hist` function.

Usage

```r
BuildHistogram(d, var.names = NULL, var.default = 1L,
    processed.rec = NULL, parent = NULL)
```
Arguments

d list, data.frame, matrix, or numeric. Vector(s) of values for which the histogram is desired.
var.names character. Names corresponding to each vector (column) in argument d.
var.default character or integer. Vector name or index in argument d.
processed.rec integer. Vector of record indexes for processed data.
parent tkwin. GUI parent window

Value

NULL

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

plot.histogram

Examples

Not run:
 BuildHistogram(iris)

End(Not run)

CheckEntry Control Content in Entry Widget

Description

This function enforces content control on entry widgets.

Usage

CheckEntry(obj.class, ent.str = ")

Arguments

obj.class character. Name of object class, either real, integer, or logical
ent.str character. Value from entry widget

Value

Returns a character string that can be easily converted to the desired object class.
ChooseColor

Author(s)
J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples
CheckEntry("numeric", "314ab")
CheckEntry("integer", "3:")

Description
A graphical user interface (GUI) for selecting a color.

Usage
ChooseColor(col, parent = NULL)

Arguments
- col character. Initial color, see ‘Value’ section
- parent tkwin. GUI parent window

Value
Returns a selected color in terms of its RGB components, a string of the form "#RRGGBB" where each of the pairs RR, GG, BB consist of two hexadecimal digits giving a value in the range 00 to FF.

Author(s)
J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also
col2rgb

Examples
Not run:
ChooseColor(col = "#669933")

End(Not run)
ChoosePch

GUI: Plotting Symbol Picker

Description

A graphical user interface (GUI) for selecting a plotting symbol to use.

Usage

ChoosePch(pch = NA, parent = NULL)

Arguments

- **pch** numeric or character. Initial plotting symbol
- **parent** tkwin. GUI parent window

Value

Returns an object of class numeric or integer, specifying the selected plotting symbol.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

points

Examples

```r
## Not run:
ChoosePch(pch = "+")

## End(Not run)
```

Data

Set or Query Data and Parameters

Description

This function is used to set or query parameters and their attributes.

Usage

Data(option, value, which.attr = NULL, clear.proj = FALSE,
 clear.data = FALSE, replace.all = NULL)
Arguments

- option: character. Parameter name, see ‘Parameters’ section.
- value: Parameter value specified for option (optional)
- which.attr: character. A non-empty character string specifying which attribute is to be accessed.
- clear.proj: logical. If true, basic graphical user interface (GUI) preferences will be saved and all other data removed.
- clear.data: logical. If true, only datasets will be removed.
- replace.all: list. A replacement list of parameter values.

Value

If value is given, the object specified by option is returned. A NULL value is returned for objects not yet assigned a value and where no default value is available. Default values are specified internally within this function.

Data

Imported unprocessed data is saved to the data frame data.raw, see ImportText. Processed point data is saved to the data frame data.p, and interpolated surface data is saved to the list data.grd.

Parameters

Parameters undefined elsewhere in the help documentation include:

- ver: package version number
- win.loc: default horizontal and vertical location for GUI placement in pixels.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

```r
# set a parameter
Data("test1", 3.14159265)
Data("test2", list(id = "P1", val = 3.14159265))

# retrieve a parameter value
Data("test1")
Data("test2")
Data(c("test2", "id"))
Data(c("test2", "val"))

# get all parameter values
d <- Data()

# remove all saved parameter values
Data(replace.all = list())
```
DefineGrid

recover saved parameter values
Data(replace.all = d)

DefineGrid

Description

A graphical user interface (GUI) for defining the interpolation grid.

Usage

DefineGrid(grid = NULL, parent = NULL)

Arguments

- **grid**
 - list. Interpolation grid object, see ‘Value’ section.

- **parent**
 - tkwin. GUI parent window

Value

Returns an object of class list with the following components:

- **opt**
 - an integer indicating the option that will be used to define the interpolation grid. Where opt = 1 indicates grid boundaries based on the extent of point data and a resolution of 100 rows and 100 columns; opt = 2 indicates grid boundaries based on the extent of point data and a cell resolution defined by the res component; opt = 3 indicates that the grid geometry is explicitly defined by the geo component.

- **res**
 - numeric vector of length 2 with components x and y giving the grid spacing along the x- and y-axis, respectively.

- **geo**
 - numeric vector of length 6 with components nrows and ncols giving the number of rows and columns, and xmin, xmax, ymin, and ymax giving the limits of the grid boundary along the x- and y-axis.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

```r
## Not run:
DefineGrid()

## End(Not run)
```
EditData

GUI: Data Editor

Description

A graphical user interface (GUI) for viewing and editing table formatted data.

Usage

```
EditData(d, col.names = names(d), row.names = NULL, colformats = NULL,
read.only = FALSE, changelog = NULL, win.title = "Data",
parent = NULL)
```

Arguments

- **d**: list, matrix, or data.frame. Data used to populate the data table.
- **col.names**: character. Vector of column names
- **row.names**: character. Vector of row names
- **colformats**: character. Vector of format conversion specification strings, see `sprintf` and `strftime`.
- **read.only**: logical. Specifies whether the data table is in read only mode.
- **changelog**: data.frame. History of all data table edits, see ‘Value’ section.
- **win.title**: character. String to display as the title of the dialog box.
- **parent**: tkwin. GUI parent window

Details

Row titles are taken from the row names attribute of argument d. Pattern searches are performed using `grep`. Edits are reflected in the changelog.

Value

Returns NULL if no edits were made; otherwise, new values of d and changelog are returned as components in a list. The changelog data table contains the following variables:

- **timestamp**: a date-time value that identifies when the edit event occurred.
- **record**: row name
- **variable**: column name
- **old**: value before editing
- **new**: value after editing

Note

Requires the Tcl package `Tktable`.
Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

BuildHistogram

Examples

Not run:
tcltk::tclRequire("Tktable", warn = TRUE)

n <- 1000L
V1 <- sample(c(1:9, NA), n, replace = TRUE)
V2 <- sample(LETTERS, n, replace = TRUE)
V3 <- as.POSIXct(rnorm(n, mean = 0, sd = 1e6), origin = "2010-01-01")
V4 <- sample(V1 * pi, n)
d <- data.frame(V1, V2, V3, V4)
col.names <- c("Integers", "Letters", "DateTime", "Numeric")
col.formats <- c("%d", "%s", "%m/%d/%Y %H:%M", ")
obj <- EditData(d, col.names, col.formats)
str(obj)

rownames(d) <- paste0(sample(LETTERS, n, replace = TRUE), seq_len(n))
EditData(d, read.only = TRUE)

colnames(d) <- NULL
rownames(d) <- NULL
EditData(d, read.only = TRUE)

End(Not run)

EditFunction

GUI: Function Editor

Description

A graphical user interface (GUI) for defining functions in the R language.

Usage

EditFunction(cols, index = NULL, fun = NULL, value.length = NULL, value.class = NULL, win.title = "Edit Function", parent = NULL)
Arguments

cols list. y
index integer. An element index number in cols.
fun character. Existing function, only used if index = NULL
value.length integer. Required length for the evaluated function.
value.class character. Required class for the evaluated function.
win.title character. String to display as the title of the dialog box.
parent tkwin. GUI parent window

Details

This GUI is appropriate for deriving new variables in a pre-existing data frame or query building.

Value

Returns an object of class list with the following components:

fun user defined function (when evaluated, this string must be parseable).
class object class for the evaluated function.
summary default summary for the evaluated function.
sample first non-missing value for the evaluated function.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

EvalFunction

Examples

```r
## Not run:
d <- list(x = 1:10, y = 10:1)
Data("data.raw", d)
cols <- list()
cols[[1]] <- list(id = "X", index = 1, fun = "\"X\""")
cols[[2]] <- list(id = "Y", index = 2, fun = "\"Y\""")
cols[[3]] <- list(id = "New Variable", fun = "\"X\" + \"Y\"")
EditFunction(cols, index = 3)

## End(Not run)
```
Description

A graphical user interface (GUI) for viewing and editing text.

Usage

```r
EditText(txt, read.only = FALSE, win.title = "View Text",
         is.fixed.width.font = FALSE, parent = NULL)
```

Arguments

- `txt` character. Text used to populate the window.
- `read.only` logical. Specifies whether the text is read only.
- `win.title` character. Title of the dialog box.
- `is.fixed.width.font` logical. Specifies whether a fixed-width font be used.
- `parent` tkwin. GUI parent window

Value

Returns an object of class character with edited text.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

```r
## Not run:
txt <- c("Hills cherish the ambition",
         " to turn into partial",
         " differential equations"
         ",
         "
         "
         " -Donald Hall")
new.txt <- EditText(txt, is.fixed.width.font = TRUE)

EditText(txt, read.only = TRUE)

## End(Not run)
```
EvalFunction

Parse and Evaluate an RSurvey Expression

Description

This function parses and evaluates a character string representation of an RSurvey expression.

Usage

```r
EvalFunction(txt, cols)
```

Arguments

- **txt** character. A string representation of an R function.
- **cols** list. See `ManageVariables`

Value

Returns the result of evaluating the text expression.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

`parse`, `eval`

Examples

```r
d <- list(x = 1:10, y = 10:1)
Data("data.raw", d)
cols <- list()
cols[[1]] <- list(id = "X", index = 1, fun = "\"X\"")
cols[[2]] <- list(id = "Y", index = 2, fun = "\"Y\"")
EvalFunction("\"X\"", cols)
EvalFunction("\"X\" + \"Y\"", cols)
EvalFunction("rnorm(12)", cols)
```
Description

A graphical user interface (GUI) for exporting data to text files, shapefiles, or R data files.

Usage

ExportData(file.type = "txt", parent = NULL)

Arguments

file.type character. Output file type: either txt for text files, rda for R-data files, or shp for shapefiles.
parent tkwin. GUI parent window

Value

Saves the GUI options in the export component of Data. List components of export include:

processed indicates whether exported data are limited to processed records.
fmts indicates whether a header line of conversion specification format strings is written (text only).
cols indicates whether a header line of column names is written (text only).
rows indicates whether the row names are written (text only).
comment indicates whether to write comments using the comment character, com (text only).
sep field separator character (text only).
dec string used for decimal points (text only).
nas string interpreted as NA value (text only).
com comment character (text only).
qmethod a string specifying how to deal with embedded double quote characters when quoting strings (text only).
quote if true, any character or factor columns will be surrounded by double quotes (text only).
encoding declares the encoding to be used on the file (text only).
eol the character to print at the end of each line (text only).
zip indicate whether the file should be compressed using gzip, bzip2, or xz (text only).
changelog indicate if a separate text file should be written with the change log (text only).
ascci if true, an ASCII representation of the data is written (R data only).
Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

writeNtable, save, writeOGR

Examples

```r
## Not run:
Data(replace.all = obj)
ExportData(file.type = "txt")

## End(Not run)
```

Description

A graphical user interface (GUI) for the system sprintf C-library function.

Usage

```r
Format(sample = pi, fmt = ",", parent = NULL)
```

Arguments

- `sample`: logical, integer, numeric, character, or factor. Sample value
- `fmt`: character. Conversion specification format, see `sprintf`
- `parent`: tkwin. GUI parent window

Value

Returns a character string.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

format
FormatDateTime

Examples

Not run:
```
Format(sample = pi, fmt = "%3.8f")
Format(sample = 3L)
Format(sample = TRUE)
Format(sample = "string")
```
End(Not run)

FormatDateTime | GUI: Build Date-Time String Formats

Description

A graphical user interface (GUI) for converting between character representations and objects of class POSIXt or Date.

Usage

```
FormatDateTime(sample = as.POSIXct("1991-08-25 20:57:08"), fmt = ",
parent = NULL)
```

Arguments

- **sample**: POSIXt or Date. Sample date-time
- **fmt**: character. Conversion specification format
- **parent**: tkwin. GUI parent window

Value

Returns a character string representing the formatted date-time value.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

`strptime`, `format`

Examples

Not run:
```
new.fmt <- FormatDateTime(fmt = "%A %B %d %I:%M %p")
FormatDateTime(Sys.Date())
```
End(Not run)
GetBitmapImage

Create Icon Bitmap Image

Description
Create a small TK bitmap image.

Usage
GetBitmapImage(type)

Arguments

| type | character. Icon image type, see ‘Details’ |

Details
Icon image types include: left, right, up, down, top, bottom, upleft, upright, downleft, downright, next, previous, copy, paste, find, delete, view, info, plus, minus, print, and histogram. A recommended editor for bitmap design is Paul Obermeier’s poBitmap tool; specify a square icon 11 pixels on each side.

Value
An image of class tclObj.

Author(s)
J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

- tkimage.create

Examples
```r
## Not run:
types <- c("left", "right", "up", "down", "top", "bottom", "upleft", "upright", "downleft", "downright", "next", "previous", "copy", "paste", "find", "delete", "view", "info", "plus", "minus", "print", "histogram")
Fun <- function(k) print(types[k])
for (k in seq_along(types)) {
  img <- paste("img", k, sep = ".")
  but <- paste("but", k, sep = ".")
  assign(img, GetBitmapImage(types[k]))
  assign(but, GetBitmapImage(types[k]))
}
```
GetFile

GUI: Select File to Open or Save As

Description

A graphical user interface (GUI) for selecting files to open or save.

Usage

GetFile(cmd = c("Open", "Save As"), file = NULL, exts = NULL,
 initialdir = NULL, initialfile = NULL, defaultextension = NULL,
 win.title = cmd, multi = FALSE, parent = NULL)

Arguments

cmd character. Specifies whether an "Open" or "Save As" file management pop up
dialog box is implemented.

file character. File name that the data are to be read from. Alternatively, file can
be a readable text-mode connection.

exts character. Vector of default file extensions.

initialdir character. Files in this directory will be displayed in the dialog box.

initialfile character. File name to display in the dialog box.

defaultextension character. String appended to the file name if the user enters a file name without
an extension.

win.title character. String to display as the title of the dialog box.

multi logical. If true, multiple files may be selected.

parent tkwin. GUI parent window

Value

If multi is false, returns the file path as a character object with the following attributes:

directory directory containing the file
name file name
extension file extension
type file type

Otherwise, a list is returned containing a object of class character for each file.
Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

```r
## Not run:
GetFile()

## End(Not run)
```

ImportDataset
GUI: Import Data from Package Dataset

Description

A graphical user interface (GUI) for importing data from selected R package datasets.

Usage

```r
ImportDataset(classes = NULL, parent = NULL)
```

Arguments

- `classes` character. The object classes of data sets that can be loaded. Set to `NULL` to enable loading for all object classes.
- `parent` `tkwin`. GUI parent window

Value

Returns an object of list class with the following components:

- `d` table data
- `src` vector of length 3 that includes the dataset name, package name, and access date.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

data
ImportSpreadsheet

Examples

Not run:
obj <- ImportDataset(c("data.frame", "matrix"))

End(Not run)

ImportSpreadsheet

GUI: Import Data from XML Spreadsheet File

Description

A graphical user interface (GUI) for loading selected data sets from an Open XML Spreadsheet file (`xlsx`).

Usage

ImportSpreadsheet(parent = NULL)

Arguments

parent
tkwin. GUI parent window

Value

Returns an object of list class with the following components:

d
table data

src
vector of length 2 that includes the pathname of the spreadsheet file and access date.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

References

The code in this function was derived with permission from Schaun Wheeler’s `xlsxToR` function, accessed on 2014-01-01.

Examples

Not run:
obj <- ImportSpreadsheet()

End(Not run)
ImportText

GUI: Import Data from Text File

Description

A graphical user interface (GUI) for reading table formatted data from a text file.

Usage

ImportText(parent = NULL)

Arguments

parent tkwin. GUI parent window

Details

This GUI is a wrapper for the `read.table` function. Data connections are defined as the path to the file to be opened, a complete URL (e.g., `http://`, `https://`, `ftp://` or `file://`), or windows clipboard. Files are limited to text format (e.g., `tsv`, `csv`, or `txt`); however, they can be compressed by `gzip`, `bzip2`, or `xz` with additional extension `.gz`, `.bz2`, or `.xz`, respectively.

Conversion specification formats are the character representation of object types used to: identify column classes prior to reading in data, and format values for printing. Conversion specifications are based on C-style string formatting commands for numeric, integer, and character object classes, see `sprintf`; for example, a format string of " Calendar date and time objects of class `POSIXct` are defined by the ISO C99 / POSIX standard, see `strftime`; for example, "02/26/2010 02:05:39 PM" is represented using "

Comments located above data records and header lines are preserved; all other comments are ignored. Requires the specification of a comment character.

Performance issues associated with reading in large files can be alleviated by specifying formats in a header line, and giving the maximum number of rows to read in.

Value

Sets the following components in **Data**:

- `data.raw` imported data table.
- `cols` a list with length equal to the current number of data variables. Each component in `cols` is linked to a specific variable, see `ManageVariables`.
- `comment` vector of comment strings
- `import` a list of saved GUI options

Components of the `import` list include:

- `source` a vector of length 2 that includes the pathname of the text file and access date.
LaunchGui

fmts indicates whether the file contains the conversion specification format strings of the variables.
cols indicates whether the file contains the names of the variables.
skip Number of lines skipped before data is read.
sep Field separator string
dec Used in the file for decimal points.
na String interpreted as NA values.
quote Set of quoting characters
comment Comment character
encoding Encoding that was assumed for input strings, seeEncoding.
str.as.fact If true, character variables are converted to factors.

Note

Requires the Tcl package Tktable.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

read.table

Examples

Not run:
ImportText()

End(Not run)

LaunchGui GUI: Main Graphical User Interface

Description

Launches the main graphical user interface (GUI) for the RSurvey package. May be used to specify coordinate variables, render plots, and access all other package functionality.

Usage

LaunchGui()
ManagePackages

Value
Quaries and sets the vars list component of Data. The components of vars include:

\[x, y, z \]

index number for the corresponding coordinate-dimension variable in cols, see ManageVariables function for details.

Author(s)
J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

```r
## Not run:
LaunchGui()

## End(Not run)
```

Description
This function installs \(R \) packages suggested by RSurvey. If a suggested package is unavailable on the local computer, an attempt is made to acquire the package from CRAN using an existing network connection.

Usage
ManagePackages()

Value
NULL

Author(s)
J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also
install.packages, requireNamespace

Examples

```r
## Not run:
ManagePackages()

## End(Not run)
```
ManagePolygons

GUI: Polygon Manager

Description
A graphical user interface (GUI) for managing and manipulating polygons that is based on the rgeos package.

Usage
managepolygons(dpolys = NULL, poly.data = NULL, poly.crop = NULL,
crs = sp::CRS(as.character(NA)), parent = NULL)

Arguments
polys list. A list of polygons, components are objects of class gpc.poly.
poly.data character. Name of the polygon that defines the data boundary limits.
poly.crop character. Name of the polygon that defines the crop region for interpolated data.
crs CRS. Default coordinate reference system
parent tkwin. GUI parent window

details
The text file representation of a polygon is of the following format:

<number of contours>
<number of points in first contour>
<hole flag>
x1 y1
x2 y2
...
<number of points in second contour>
<hole flag>
x1 y1
x2 y2
...

The hole flag is either 1 to indicate a hole, or 0 for a regular contour. See the read.polyfile function for details.

Value
Returns an object of class list with components polys, poly.data, poly.crop, and crs (see ‘Arguments’ section).
Author(s)
J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also
polyfile, gUnion, SetPolygons

Examples
Not run:
ManagePolygons()

End(Not run)

ManageVariables GUI: Variable Manager

Description
A graphical user interface (GUI) for managing variables in the data table.

Usage
ManageVariables(cols, vars, query, changelog, parent = NULL)

Arguments
cols list. See ‘Value’ section
vars list. See ‘Value’ section
query character. See ‘Value’ section
changelog data.frame. See ‘Value’ section
parent tkwin. GUI parent window

Details
This GUI lets you: (1) specify the names and format of variables; (2) add new variables based on user defined functions, see EditFunction; (3) display data in a spreadsheet, see EditData; and (4) remove and (or) reorder variables in the data table.
Plot3d

Value

Returns an object of class list with components `cols` and `vars`. The `cols` object is a list whose length is equal to the current number of data variables. Each component in `cols` is linked to a specific variable, and contains the following components:

- **name**: variable name
- **format**: conversion specification format (optional)
- **id**: unique identifier that is created from `name`
- **fun**: expression evaluated when computing the variables vector of values.
- **index**: variable's component index number in the `data.raw` data table, see `ImportText`. Only required for variables directly linked to data columns in `data.raw`.
- **class**: data class of the vector object.
- **summary**: summary of the variable's descriptive statistics (see `summary`).
- **comments**: user comments

The `vars` object is a list with components:

- **x**, **y**, **z**, **sort.on**: the index number of the corresponding state variable in `cols`. These indexes are updated to reflect the removal and (or) reordering of variables in `cols`.
- **query**: if required, variable names are updated.
- **changelog**: if required, names in the variable component are updated.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

```r
## Not run:
Data(replace.all = obj)
ManageVariables(obj$cols, obj$vars, obj$query, obj$changelog)

## End(Not run)
```

Plot3d

Plot Points and Surface in 3D

Description

This function renders raster and point data in three-dimensional (3D) space.
Usage

\texttt{Plot3d(r = \text{NULL}, p = \text{NULL}, xlim = \text{NULL}, ylim = \text{NULL}, zlim = \text{NULL}, vasp = \text{NULL}, hasp = \text{NULL}, cex.pts = 1, n = \text{NULL}, color.palette = \text{grDevices::terrain.colors}, maxpixels = 5e+05)}

Arguments

- \texttt{r} RasterLayer. Gridded surface data
- \texttt{p} SpatialPointsDataFrame. Spatial point data
- \texttt{xlim} numeric. Vector of length 2 giving the minimum and maximum values for the \texttt{x}-axis.
- \texttt{ylim} numeric. Vector of length 2 giving the minimum and maximum values for the \texttt{y}-axis.
- \texttt{zlim} numeric. Vector of length 2 giving the minimum and maximum values for the \texttt{z}-axis.
- \texttt{vasp} numeric. The \texttt{z}/\texttt{x} aspect ratio for spatial axes.
- \texttt{hasp} numeric. The \texttt{y}/\texttt{x} aspect ratio for spatial axes. Defaults to 1 (one unit on the \texttt{x}-axis equals one unit on the \texttt{y}-axis) when \texttt{r} is projected.
- \texttt{cex.pts} numeric. Amount by which point symbols should be magnified relative to the default.
- \texttt{n} integer. Number of contour levels desired.
- \texttt{color.palette} function. Color \texttt{palette} to be used to assign colors in the plot.
- \texttt{maxpixels} integer. Maximum number of cells to use for the plot.

Details

The interpolated surface is rendered using \texttt{rgl}, a 3D visualization device system for \texttt{R} based on \texttt{OpenGL}. The mouse is used for interactive viewpoint navigation where the left, right, and center mouse buttons rotate the scene, rotate the scene around the \texttt{x}-axis, and zooms the display, respectively.

Value

Used for the side-effect of a new plot generated.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

\texttt{matplot, boxplot}
Examples

Not run:
```r
Plot3d()
rgl::rgl.quit()
```

End(Not run)

Description

A progress bar that shows the status of long-running operations.

Usage

```r
ProgressBar(win.title = "Progress Bar", label = ",", maximum = 100,
  nsteps = NULL, min.nsteps = 10L, parent = NULL)

SetProgressBar(pb, value, label = NULL, step = NULL)
```

Arguments

- `win.title` character. String to display as the title of the dialog box.
- `label` character. String to display in the dialog box.
- `maximum` numeric. Maximum value for the progress bar. The minimum value is zero.
- `nsteps` numeric. Total number of increments the progress bar will make.
- `min.nsteps` numeric. Minimum number of increments. If greater than `nsteps`, the dialog box is not opened.
- `parent` tkwin. Graphical user interface parent window.
- `pb` ProgressBar. Object returned from `ProgressBar`, see ‘Value’ section.
- `value` numeric. Value for the progress bar, between zero and `maximum`.
- `step` numeric. Number of progress bar increments. If equal to `nsteps`, the dialog box will close.

Value

For `ProgressBar` an object of class "ProgressBar" and mode list is returned. Components of the list object include:

- `GetValue` function that returns the value of the progress bar.
- `MoveProgressBar` function that moves progress bar, passes a numeric argument.
- `SetLabel` function that sets label in the dialog box, passes a character argument.
rename

DestroyWindow function that closes the dialog box.
GetWindowState function that returns false if the dialog box has been closed, otherwise true.
nsteps see ‘Arguments’ section

For SetProgressBar, the previous value of the progress bar. An error is returned if the progress has terminated prematurely.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

References

The code in this function was derived from the tkProgressBar function, version v3.0.2.

Examples

```r
## Not run:
maximum <- 10
label <- "Estimated time to completion is being calculated\u2026"
pb <- ProgressBar(label = label, maximum = maximum, nsteps = maximum)

for (i in seq_len(maximum)) {
  est.time <- system.time(Sys.sleep(1))[["elapsed"]]* (maximum - i)
  label <- paste("Estimated time to completion is", round(est.time, "secs")
  ans <- try(SetProgressBar(pb, value = i, label = label, step = i))
  if (inherits(ans, "try-error")) break
}
```

End(Not run)

Rename

GUI: Rename Values in Character Vector

Description

A graphical user interface (GUI) for renaming values in a vector of character strings.

Usage

`Rename(names = NULL, cur.name = NULL, win.title = NULL, parent = NULL)`

Arguments

- `names` character. Vector of character strings
- `cur.name` character. Sets the combo box value, name must be included in `names`.
- `win.title` character. String to display as the title of the dialog box.
- `parent` tkwin. GUI parent window
Value

Returns a character vector with updated values of names.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

```r
## Not run:
Rename(names = c("Name1", "Name2", "Name3"), cur.name = "Name2")

## End(Not run)
```

Description

A graphical user interface (GUI) for establishing find and replace arguments in a data table.

Usage

```r
Search(is.replace = FALSE, defaults = NULL, parent = NULL)
```

Arguments

- `is.replace` logical. If true, the replace component is included.
- `defaults` list. See ‘Value’ section
- `parent` tkwin. GUI parent window

Value

Returns an object of list class with the following components:

- `find.what` string to search for
- `replace.with` replacement string
- `is.match.word` indicates whether matches be restricted to whole words only.
- `is.match.case` indicates whether the search is case sensitive.
- `is.reg.exp` if true, the search is made using regular expression; that is, a pattern that describes a set of strings.
- `is.search.col` indicates whether the search is limited to a single column.
- `is.perl` indicates whether Perl style regular expressions should be used.
- `is.replace.first` indicates whether to replace for only the first instance.
- `is.search.sel` indicates whether the search limited to selected cells.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

```r
## Not run:
Search()

## End(Not run)
```

SetAxesLimits
GUI: Axes Limits

Description

A graphical user interface (GUI) for specifying axes limits.

Usage

```r
SetAxesLimits(lim = NULL, parent = NULL)
```

Arguments

- **lim** list. Contains the current plotting limits, see ‘Value’ section.
- **parent** tkwin. GUI parent window

Value

Returns an object of class list containing the following components:

- **x1, x2** minimum and maximum x value.
- **y1, y2** minimum and maximum y value.
- **z1, z2** minimum and maximum z value.
- **x1.chk, x2.chk** if true, a default value is used for the minimum and maximum x value.
- **y1.chk, y2.chk** if true, a default value is used for the minimum and maximum y value.
- **z1.chk, z2.chk** if true, a default value is used for the minimum and maximum z value.
- **x** vector of x limits (x1, x2), default is (NA, NA).
- **y** vector of y limits (y1, y2), default is (NA, NA).
- **z** vector of z limits (z1, z2), default is (NA, NA).

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center
Examples

```r
## Not run:
SetAxesLimits()

## End(Not run)
```

SetConfiguration

GUI: Window and Plotting Parameters

Description

A graphical user interface (GUI) for specifying universal plotting parameters.

Usage

```r
SetConfiguration(parent = NULL)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>tkwin. GUI parent window</td>
</tr>
</tbody>
</table>

Value

Queries and sets the following components of Data:

- `cex.pts`: amount by which point symbols should be magnified relative to the default value, 1.0. For example, `cex.pts = 0.5` reduces the point symbol to half of its default size.
- `nlevels`: approximate number of contour levels desired.
- `asp.yx`, `asp.zx`: the y/x and z/x aspect ratios, respectively.
- `legend.loc`: position of the points legend in the main plot region: `bottomleft`, `topleft`, `topright`, or `bottomright` to denote legend location.
- `scale.loc`: position of the scale bar in the main plot region: `bottomleft`, `topleft`, `topright`, or `bottomright` to denote scale location.
- `arrow.loc`: Position of the north arrow in the main plot region: `bottomleft`, `topleft`, `topright`, or `bottomright` to denote arrow location.
- `useRaster`: if true, a bitmap raster is used to plot the gridded data instead of using polygons.
- `draw.key`: if true, a color key should be drawn for the gridded data.
- `dms.tick`: if true and the gridded data is projected, the axes tickmarks are specified in degrees, minutes, and decimal seconds (DMS).
- `contour.lines`: if true, contour lines will be plotted on the 2D interpolated surface.
- `make.intervals`: if true, represent point values within intervals. See `findInterval` function for details. Unused if `quantile.breaks` is true.
SetCrs

proportional indicates whether proportional circle symbols should be used to represent the point data.
quantile.breaks if true, breaks in the point data are set to the sample quantiles.
bg.lines if true, grids and graticules are drawn.

Note
Re-importing data does not affect values specified in this GUI.

Author(s)
J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

```R
## Not run:
SetConfiguration()

## End(Not run)
```

Description

A graphical user interface (GUI) for specifying PROJ.4 arguments associated with a coordinate reference system (CRS). The arguments must be entered exactly as in the PROJ.4 documentation, in particular there cannot be any white space in +<arg>=<value> strings, and successive such strings can only be separated by blanks.

Usage

```R
SetCrs(crs = sp::CRS(as.character(NA)), parent = NULL)
```

Arguments

- `crs` CRS. Coordinate reference system described using PROJ.4 arguments.
- `parent` tkwin. GUI parent window

Value

Returns an updated value of the `crs` argument.

Author(s)
J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center
SetPlotAnnotation

See Also

CRS, checkCRSArgs

Examples

Not run:
SetCrs("+init=epsg:4326")

End(Not run)

SetPlotAnnotation GUI: Plot Annotation

Description

A graphical user interface (GUI) for specifying labels to add to a plot.

Usage

SetPlotAnnotation(parent = NULL)

Arguments

parent tkwin. GUI parent window

Value

Queries and sets the following components of Data:

credit mapping credit note
explanation explanation of gridded-data values.
legend.title title to be placed at the top of the points legend.
legend.subtitle subtitle to be placed at the top of the points legend.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

Not run:
SetPlotAnnotation()

End(Not run)
SetPolygonLimits

GUI: Polygon Limits

Description

A graphical user interface (GUI) for specifying polygon limits.

Usage

```
SetPolygonLimits(poly.names = NULL, poly.data = NULL, poly.crop = NULL,
                 parent = NULL)
```

Arguments

- `poly.names` character. Vector of polygon names
- `poly.data` character. Name of the polygon that defines the data limits boundary.
- `poly.crop` character. Name of the polygon that defines the crop region for interpolated data.
- `parent` tkwin. GUI parent window

Value

Queries and sets the following components of Data:

- `credit` mapping credit note
- `explanation` explanation of gridded-data values.
- `legend.title` title to be placed at the top of the points legend.
- `legend.subtitle` subtitle to be placed at the top of the points legend.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

```r
## Not run:
SetPolygonLimits(c("Polygon1", "Polygon2", "Polygon3"))

## End(Not run)
```
SetSortOrder

Description

A graphical user interface (GUI) for specifying the variable used to sort the data set.

Usage

SetSortOrder(col.ids, sort.on = NULL, parent = NULL)

Arguments

col.ids character. Vector of variable names
sort.on integer. Index for the variable used to sort the data set.
parent tkwin. GUI parent window

Value

Returns an object of integer class that specifies the index of the variable used to sort the data set. Attributes for this object include: decreasing, a logical value indicating if the sort order is increasing or decreasing; and na.last, a logical value for controlling the treatment of NAs during sorting. If true, missing values in the data are put last; otherwise, they are put first; if NA, they are removed.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

order

Examples

```r
## Not run:
col.ids <- c("Variable1", "Variable2", "Variable3")
sort.on <- 2
attr(sort.on, "decreasing") <- TRUE
attr(sort.on, "na.last") <- FALSE
SetSortOrder(col.ids, sort.on)

## End(Not run)
```
Index

*Topic **IO**
 - ExportData, 13
 - ImportDataset, 18
 - ImportSpreadsheet, 19
 - ImportText, 20

*Topic **file**
 - GetFile, 17

*Topic **hplot**
 - Plot3d, 25

*Topic **manip**
 - CheckEntry, 3

*Topic **misc**
 - BuildHistogram, 2
 - ChooseColor, 4
 - ChoosePch, 5
 - DefineGrid, 7
 - EditData, 8
 - EditFunction, 9
 - EditText, 11
 - Format, 14
 - FormatDateTime, 15
 - GetBitmapImage, 16
 - LaunchGui, 21
 - ManagePackages, 22
 - ManagePolygons, 23
 - ManageVariables, 24
 - ProgressBar, 27
 - Rename, 28
 - Search, 29
 - SetAxesLimits, 30
 - SetConfiguration, 31
 - SetCrs, 32
 - SetPlotAnnotation, 33
 - SetPolygonLimits, 34
 - SetSortOrder, 35

*Topic **sysdata**
 - Data, 5

*Topic **utilities**
 - EvalFunction, 12

boxplot, 26
BuildHistogram, 2, 9
checkCRSArgs, 33
CheckEntry, 3
ChooseColor, 4
ChoosePch, 5
col2rgb, 4
connection, 17
CRS, 33
Data, 5, 13, 20, 22, 31, 33, 34
data, 18
DefineGrid, 7
EditData, 8, 24
EditFunction, 9, 24
EditText, 11
Encoding, 21
eval, 12
EvalFunction, 10, 12
ExportData, 13
findInterval, 31
Format, 14
format, 14, 15
FormatDateTime, 15
GetBitmapImage, 16
GetFile, 17
gpc.poly, 23
grep, 8
gUnion, 24
hist, 2

ImportDataset, 18
ImportSpreadsheet, 19
ImportText, 6, 20, 25
install.packages, 22
INDEX

LaunchGui, 21

ManagePackages, 22
ManagePolygons, 23
ManageVariables, 12, 20, 22, 24
matplot, 26

NA, 13, 21

order, 35

palette, 26
parse, 12
plot.histogram, 3
Plot3d, 25
points, 5
polyfile, 24
ProgressBar, 27

read.polyfile, 23
read.table, 20, 21
regular expression, 29
Rename, 28
requireNamespace, 22

save, 14
Search, 29
SetAxesLimits, 30
SetConfiguration, 31
SetCrs, 32
SetPlotAnnotation, 33
SetPolygonLimits, 34
SetPolygons, 24
SetProgressBar (ProgressBar), 27
SetSortOrder, 35
sprintf, 8, 14, 20
strftime, 8, 20
strptime, 15
summary, 25

tkimage.create, 16
tkProgressbar, 28

write.table, 14
writeOGR, 14