Package ‘RXshrink’

November 7, 2018

Title Maximum Likelihood Shrinkage via Generalized Ridge or Least Angle Regression

Version 1.1

Date 2018-11-06

Author Bob Obenchain

Maintainer Bob Obenchain <wizbob@att.net>

Depends lars

Description Identify and display TRACEs for a specified shrinkage path and determine the extent of shrinkage most likely, under normal distribution theory, to produce an optimal reduction in MSE Risk in estimates of regression (beta) coefficients. Alternative estimates are also provided when ill-conditioned (nearly multicollinear) models yield OLS estimates with "wrong" numerical signs.

License GPL

NeedsCompilation no

Repository CRAN

Date/Publication 2018-11-07 00:00:10 UTC

R topics documented:

RXshrink-package .. 2
haldport ... 3
longley2 ... 4
mpg ... 5
plot.RXlarlso .. 5
plot.RXridge .. 6
plot.RXtrisk ... 7
plot.RXtsimu .. 8
plot.RXuclars .. 9
RXlarlso ... 10
RXridge ... 12
RXsigns ... 14
Description

The functions in this package augment the basic calculations of Generalized Ridge and Least Angle Regression with important visualization tools. Specifically, they display TRACES of estimates for 5 KEY quantities (fitted coefficients, MSE risks, excess eigenvalues, inferior direction cosines and shrinkage factors) that completely characterize the effects of shrinkage along 2-parameter Paths (Q-shape and M-extent) through likelihood space. Most paths start at the Ordinary Least-Squares estimate \([M = 0]\) and end at the origin, \((0, 0, ..., 0)\) where all coefficient estimates have been shrunk to zero \([M = \text{rank}(X)]\). Three different types of Likelihood of minimal MSE risk (Classical Normal-Theory, Empirical Bayes, and Random Coefficients) are monitored to suggest an optimal M-extent of shrinkage.

Details

<table>
<thead>
<tr>
<th>Package: RXshrink</th>
<th>Type: Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version: 1.1</td>
<td>Date: 2018-11-06</td>
</tr>
<tr>
<td>License: GNU GENERAL PUBLIC LICENSE, Version 2, June 1991</td>
<td></td>
</tr>
</tbody>
</table>

RXridge() calculates and displays TRACES for the Q-shaped shrinkage path, including the M-extent of shrinkage along that path, that are most likely under normal distribution theory to yield optimal reductions in MSE Risk.

When regression parameters have specified, KNOWN numerical values, RXtrisk() calculates and displays the corresponding True MSE Risk profiles and RXtsimu() first simulates Y-outcome data then calculates true Squared Error Losses associated with Q-shape shrinkage.

RXlarlso() calls the Efron/Hastie lars() R-function to perform Least Angle Regression then augments these calculations with Maximum Likelihood TRACE displays like those of RXridge().

RXuclars() applies Least Angle Regression to the uncorrelated components of a possibly ill-conditioned set of X-variables using a closed-form expression for the lars/lasso shrinkage delta factors that exits in this special case.

RXsigns() displays the normal-theory maximum likelihood estimate of the \(B(\neq)\) regression coefficient vector that minimizes MSE Risk in the unknown direction of p-space PARALLEL to the true Beta vector. This estimate corrects "wrong-sign" problems in the sense that its coefficients have the same relative magnitudes and numerical signs as those of the "Correlation Form" of the \(X'y\) vector.
haldport

Author(s)

Bob Obenchain <wizbob@att.net>

References

Examples

```r
demo(longley2)
```

haldport
Portland Cement benchmark of Hald(1952)

Description

Heat evolved during setting of 13 cement mixtures of four basic ingredients. Each ingredient percentage appears to be rounded down to a full integer. The sum of the four mixture percentages varies from a maximum of 99% to a minimum of 95%. If all four regressor X-variables always summed to 100%, the centered X-matrix would then be of rank only 3. Thus, the regression of heat on four X-percentages is ill-conditioned, with an approximate rank deficiency of MCAL = 1.

Usage

```r
data(haldport)
```

Format

A data frame with 13 observations on the following 5 variables.

- p3ca Integer percentage of 3CaO.Al2O3 in the mixture.
- p3cs Integer percentage of 3CaO.SiO2 in the mixture.
- p4caf Integer percentage of 4CaO.Al2O3.Fe2O3 in the mixture.
- p2cs Integer percentage of 2CaO.SiO2 in the mixture.
- heat Heat (cals/gm) evolved in setting, recorded to nearest tenth.

Details

The (RXshrink) haldport data are identical to the (MASS) cement data except for variable names.
Source

References

Hald A. Statistical Theory with Engineering Applications. 1952 (page 647.) New York; Wiley.

longley2

Art Hoerl’s update of the infamous Longley(1967) benchmark dataset

Description

Data from the "Employment and Training Report of the President, 1976" compiled by Art Hoerl, University of Delaware. Some slightly different numerical values than those used by Longley(1967) ...plus the added years of 1963-1975. Longley(1967) used only data from the 16 years of 1947 through 1962.

Usage

data(longley2)

Format

A data frame of 7 variables collected for 29 consecutive years; no NAs.

GNP.deflator GNP price deflation index.
Unemployed Unemployment percentage.
Armed.Forces Size of the Armed Forces.
Population Total U.S. Population.
Year 1947 to 1975.
Employed employment.
GNP Gross National Product.

References

Hocking(1976) Miles Per Gallon benchmark dataset

Description
Performance data on 32 autos from Motor Trends magazine.

Usage
data(mpg)

Format
A data frame of 11 variables collected for 32 automobiles; no NAs.
- cylnds number of cylinders.
- cubins cubic inches of engine displacement.
- hpower engine horsepower.
- weight total auto weight in pounds.
- mpg miles per gallon.
- shape engine shape (1=Straight, 0=V).
- transm transmission type.
- speeds number of forward speeds.
- carbs number of carburetors.
- fratio final drive ratio.
- qmilt quarter mile time.

References

plot.RXlarlso
Plot method for RXlarlso objects

Description
Plot trace displays for RXlarlso regression coefficients. The default is to display all five traces on one page with no legends.

Usage
S3 method for class 'RXlarlso'
plot(x, trace = "all", trkey = FALSE, ...)

plotNralso
Plot method for RXlarlso objects
Arguments

- **x**: Output list object of class RXlarlso.
- **trace**: One of seven possible options: "all" to display 5 traces in one graph, "seq" to display 5 full-sized traces in sequence in response to user prompts, "coef" to display only the estimated beta coefficient trace, "rmse" to display only the estimated relative MSE risk trace, "exev" to display only the estimated excess MSE eigenvalue (OLS minus larlso), "infd" to display only the estimated inferior direction cosine trace, or "spat" to display only the delta-factor pattern trace.
- **trkey**: If TRUE, display a crude legend at the bottom of each trace plot.
- **...**: Optional argument(s) passed on to plot().

Value

NULL

Author(s)

Bob Obenchian <wizbob@att.net>

Examples

```r
data(longleyR)
form <- gnp ~ gnpNdeflator + Unemployed + Armed.Forces + Population + Year + Employed
rxlobj <- RXlarlso(form, data=longleyR)
plot(rxlobj)
```

Description

Plot trace displays for RXridge shrinkage regression coefficients. The default is to display all five traces on one page with no legends.

Usage

```r
## S3 method for class 'RXridge'
plot(x, trace = "all", trkey = FALSE, ...)
```

Arguments

- **x**: Output list object of class RXridge.
- **trace**: One of seven possible options: "all" to display 5 traces in one graph, "seq" to display 5 full-sized traces in sequence in response to user prompts, "coef" to display only the estimated beta coefficient trace, "rmse" to display only the estimated relative MSE risk trace, "exev" to display only the estimated excess MSE eigenvalue (OLS minus larlso), "infd" to display only the estimated inferior direction cosine trace, or "spat" to display only the delta-factor pattern trace.
plot.RXtrisk

trkey

... If TRUE, display a crude legend at the bottom of each trace plot.

Optional argument(s) passed on to plot().

Value NULL

Author(s)

Bob Obenchain <wizbob@att.net>

Examples

data(longley2)
form <- GNP ~ GNP.deflator + Unemployed + Armed.Forces + Population + Year + Employed
rxrobj <- RXridge(form, data = longley2)
plot(rxrobj)

plot.RXtrisk Plot method for RXtrisk objects

Description

Plot trace displays for RXtrisk true regression coefficients. The default is to display all five traces on one page with no legends.

Usage

S3 method for class 'RXtrisk'
plot(x, trace = "all", trkey = FALSE, ...)

Arguments

x Output list object of class RXtrisk.
trace One of seven possible options: "all" to display 5 traces in one graph, "seq" to display 5 full-sized traces in sequence in response to user prompts, "coef" to display only the estimated beta coefficient trace, "rmse" to display only the estimated relative MSE risk trace, "exev" to display only the estimated excess MSE eigenvalue (OLS minus larlso), "infd" to display only the estimated inferior direction cosine trace, or "spat" to display only the shrinkage (delta) factor pattern trace.
trkey If TRUE, display a crude legend at the bottom of each trace plot.
... Optional argument(s) passed on to plot().

Value NULL
Author(s)

Bob Obenchain <wizbob@att.net>

Examples

```r
data(longley2)
form <- GNP~GNP.deflator+Unemployed+Armed.Forces+Population+Year+Employed
# set true regression parameter values not unlike their OLS estimates from RXridge().
trugam <- matrix(c(0L,0.1,2L,2L,-0.1,0.2),6,1)
trusig <- 0.04
rxtobj <- RXtrisk(form, data=longley2, trugam, trusig, Q=-1.5)
plot(rxtobj)
```

Description

Plot trace displays for RXtsimu simulated regression coefficients. The default is to display all three traces on one page with no legends.

Usage

```r
## S3 method for class 'RXtsimu'
plot(x, trace = "all", trkey = FALSE, ...)
```

Arguments

- `x` Output list object of class RXtsimu.
- `trace` One of five possible options: "all" to display 3 traces in one graph, "seq" to display 3 full-sized traces in sequence in response to user prompts, "coef" to display only the estimated shrunken beta coefficient trace, "rsel" to display only the relative squared error loss trace, or "spat" to display only the shrinkage (delta) factor pattern.
- `trkey` If TRUE, display a crude legend at the bottom of each trace plot.
- `...` Optional argument(s) passed on to plot().

Value

NULL

Author(s)

Bob Obenchain <wizbob@att.net>
Examples

data(longley2)
form <- GNP~GNP.deflator+Unemployed+Armed.Forces+Population+Year+Employed
set true regression parameter values not unlike their OLS estimates from RXridge().
trugam <- matrix(c(0,1,.5,-.1,1,.2,-.2,.2,2,.2,-.2,-.2),6,1)
trusig <- 0.04
rxuobj <- RXuclars(form, data=longley2, trugam, trusig, Q=-1.5)
plot(rxuobj)

plot.RXuclars

Plot method for RXuclars objects

Description

Plot trace displays for RXuclars regression coefficients. The default is to display all five traces on one page with no legends.

Usage

S3 method for class 'RXuclars'
plot(x, trace = "all", trkey = FALSE, ...)

Arguments

x
Output list object of class RXuclars.

trace
One of seven possible options: "all" to display 5 traces in one graph, "seq" to display 5 full-sized traces in sequence in response to user prompts, "coef" to display only the estimated shrunken beta coefficient trace, "rmse" to display only the estimated relative MSE risk trace, "exev" to display only the estimated excess MSE eigenvalue (OLS minus ridge) trace, "infd" to display only the estimated inferior direction cosine trace, or "spat" to display only the shrinkage (delta) factor pattern trace.

trkey
If TRUE, display a crude legend at the bottom of each trace plot.

...
Optional argument(s) passed on to plot().

Value

NULL

Author(s)

Bob Obenchain <wizbob@att.net>

Examples

data(longley2)
form <- GNP~GNP.deflator+Unemployed+Armed.Forces+Population+Year+Employed
rxuobj <- RXuclars(form, data=longley2)
plot(rxuobj)
Maximum Likelihood Estimation of Effects in Least Angle Regression

Description

Identify whether least angle regression estimates are generalized ridge shrinkage estimates and generate TRACE displays for estimates that do correspond to ridge shrinkage factors between 0.00 and 0.99.

Usage

```
RXlarlso(form, data, rscale = 1, type = "lar", trace = FALSE, 
eps = .Machine$double.eps, omdmin = 9.9e-13, ...)
```

Arguments

- **form**: A regression formula \([y \sim x1 + x2 + \ldots]\) suitable for use with `lm()`.
- **data**: Data frame containing observations on all variables in the formula.
- **rscale**: One of three possible choices (0, 1 or 2) for rescaling of variables as they are being "centered" to remove non-essential ill-conditioning: 0 implies no rescaling; 1 implies divide each variable by its standard error; 2 implies rescale as in option 1 but re-express answers as in option 0.
- **type**: One of "lasso", "lar" or "forward.stagewise" for function `lars()`. Names can be abbreviated to any unique substring. Default in `RXlarlso()` is "lar".
- **trace**: If TRUE, `lars()` function prints out its progress.
- **eps**: The effective zero for `lars()`.
- **omdmin**: Strictly positive minimum allowed value for one-minus-delta (default = 9.9e-013.)
- **...**: Optional argument(s) passed on to the `lars()` function from the `lars` R-package.

Details

`RXlarlso()` calls the Efron/Hastie `lars()` function to perform Least Angle Regression on X-variables that have been centered and possibly rescaled but which may be (highly) correlated. Maximum likelihood TRACE displays paralleling those of `RXridge` are also computed and (optionally) plotted.

Value

An output list object of class `RXlarlso`:

- **form**: The regression formula specified as the first argument.
- **data**: Name of the data.frame object specified as the second argument.
- **p**: Number of regression predictor variables.
- **n**: Number of complete observations after removal of all missing values.
RXlarlso

- **r2** Numerical value of R-square goodness-of-fit statistic.
- **s2** Numerical value of the residual mean square estimate of error.
- **prinstat** Listing of principal statistics.
- **gmat** Orthogonal matrix of direction cosines for regressor principal axes.
- **lars** An object of class lars.
- **coef** Matrix of shrinkage-ridge regression coefficient estimates.
- **risk** Matrix of MSE risk estimates for fitted coefficients.
- **exev** Matrix of excess MSE eigenvalues (ordinary least squares minus ridge.)
- **infd** Matrix of direction cosines for the estimated inferior direction, if any.
- **spat** Matrix of shrinkage pattern multiplicative delta factors.
- **mlik** Listing of criteria for maximum likelihood selection of M-extent-of-shrinkage.
- **sext** Listing of summary statistics for all M-extents-of-shrinkage.

Author(s)

Bob Obenchain <wizbob@att.net>

References

See Also

RXuclars.

Examples

```r
data(longley2)
form <- GNP~GNP.deflator+Unemployed+Armed.Forces+Population+Year+Employed
rxlobj <- RXlarlso(form, data=longley2)
rxlobj
plot(rxlobj)
str(rxlobj)
```
RXridge

Maximum Likelihood Shrinkage in Regression

Description

Identify and display TRACEs for the Q-shaped shrinkage path, including the M-extent of shrinkage along that path, that are most likely under normal distribution theory to yield optimal reductions in MSE Risk.

Usage

RXridge(formL dataL rscale = 1, Q = "qmse", steps = 8, nq = 21, qmax = 5, qmin = -5, omdmin = 9.9e-13)

Arguments

- **form** A regression formula [y~x1+x2+] suitable for use with lm().
- **data** Data frame containing observations on all variables in the formula.
- **rscale** One of three possible choices (0, 1 or 2) for rescaling of variables as they are being "centered" to remove non-essential ill-conditioning: 0 implies no rescaling; 1 implies divide each variable by its standard error; 2 implies rescale as in option 1 but re-express answers as in option 0.
- **Q** Shape parameter that controls the curvature of the shrinkage path through regression-coefficient likelihood space (default = "qmse" implies use the value found most likely to be optimal.) Use Q = 0 to specify Hoerl-Kennard "ordinary" ridge regression.
- **steps** Number of equally spaced values per unit change along the horizontal M-extent-of-shrinkage axis for estimates to be calculated and displayed in TRACES (default = 8.)
- **nq** Number of equally spaced values on the lattice of all possible values for shrinkage Q-shape between the "qmin" and "qmax" parameter settings (default = 21.)
- **qmax** Maximum allowed Q-shape (default = +5.)
- **qmin** Minimum allowed Q-shape (default = -5.)
- **omdmin** Strictly positive minimum allowed value for one-minus-delta (default = 9.9e-013.)

Details

Ill-conditioned and/or nearly multi-collinear regression models are unlikely to produce Ordinary Least Squares (OLS) regression coefficient estimates that are very close, numerically, to their unknown true values. Specifically, OLS estimates can then tend to have "wrong" numerical signs and/or unreasonable relative magnitudes, while shrunk (generalized ridge) estimates chosen to maximize their likelihood of reducing Mean Squared Error (MSE) Risk (expected loss) can be much more stable and reasonable, numerically. On the other hand, because only OLS estimates are guaranteed to be minimax when risk is matrix valued (truly multivariate), no guarantee of an actual reduction in MSE Risk is necessarily associated with shrinkage.
Value

An output list object of class RXridge:

- **form**: The regression formula specified as the first argument.
- **data**: Name of the data.frame object specified as the second argument.
- **p**: Number of regression predictor variables.
- **n**: Number of complete observations after removal of all missing values.
- **r2**: Numerical value of R-square goodness-of-fit statistic.
- **s2**: Numerical value of the residual mean square estimate of error.
- **prinstat**: Listing of principal statistics.
- **crlqstat**: Listing of criteria for maximum likelihood selection of path Q-shape.
- **qmse**: Numerical value of Q-shape most likely to be optimal.
- **qp**: Numerical value of the Q-shape actually used for shrinkage.
- **coef**: Matrix of shrinkage-ridge regression coefficient estimates.
- **risk**: Matrix of MSE risk estimates for fitted coefficients.
- **exev**: Matrix of excess MSE eigenvalues (ordinary least squares minus ridge.)
- **infd**: Matrix of direction cosines for the estimated inferior direction, if any.
- **spat**: Matrix of shrinkage pattern multiplicative delta factors.
- **mlik**: Listing of criteria for maximum likelihood selection of M-extent-of-shrinkage.
- **sext**: Listing of summary statistics for all M-extents-of-shrinkage.

Author(s)

Bob Obenchain <wizbob@att.net>

References

See Also

RXsigns, RXtrisk and RXtsimu.
Examples

```r
data(longleyR)
form <- GNP~GNP.deflator+Unemployed+Armed.Forcees+Population+Year+Employed
rxrobj <- RXridge(form, data=longleyR)
rxrobj
plot(rxrobj)
str(rxrobj)
```

RXsigns

Normal-theory Maximum Likelihood Estimation of Beta Coefficients with "Correct" Signs

Description

RXsigns displays the Beta Coefficient estimate, denoted by \(\beta(\cdot) \), that is most likely to have minimum MSE risk in the one, unknown direction PARALLEL to the true Beta in p-dimensional likelihood space. Shrinkage to ZERO of any components ORTHOGONAL to the true Beta is MSE optimal. Obenchain(1978) shows that \(\beta(\cdot) \) is of the form \(k \times X'y \) where the scalar \(k \) is given by equation (4.2) on page 1118, the optimal shrinkage factors are proportional to known eigenvalues, and the formula for the maximum likelihood estimate of \(k \) given on page 1119 is corrected.

Usage

```r
RXsigns(form, data)
```

Arguments

- `form` A regression formula \([y~x1+x2+...]\) suitable for use with `lm()`.
- `data` Data frame containing observations on all variables in the formula.

Details

Ill-conditioned (nearly multi-collinear) regression models can produce Ordinary Least Squares (OLS) regression coefficient estimates with numerical signs that differ from those of the \(X'y \) vector. This is disturbing because \(X'y \) contains the sample correlations between the X-predictor variables and y-response variable if these variables have first been "centered" by subtracting off their mean values and then rescaled to vectors of length one. Besides displaying the \(\beta(\cdot) \) estimate, the RXsigns() function also displays the OLS vector, the "correlation form" of \(X'y \), the estimated Delta shrinkage-factors and the rescaled coefficients, \(\beta_{fit} = f \times \beta(\cdot) \), where \(f \) is the positive scalar that minimizes the Residual Sum-of-Squares; \(\text{RSS}(\beta_{fit}) \geq \text{RSS}(\text{OLS}) \).

Value

An output list object of class RXsigns:

- `data` Name of the data.frame object specified as the second argument.
- `form` The regression formula specified as the first argument.
RXsigns

p Number of regression predictor variables.
n Number of complete observations after removal of all missing values.
r2 Numerical value of R-square goodness-of-fit statistic.
s2 Numerical value of the residual mean square estimate of error.
prinstat Listing of principal statistics (p by 5) from RXridge().
kpbg Maximum likelihood estimate of k-factor in equation (4.2) of Obenchain(1978).
bmg Rescaling factor for B(=) to minimize the Residual Sum-of-Squares.
signs Listing of five Beta coefficient statistics (p by 5): OLS, X'y, Delta, B(=) and Bfit.
loffg Lack-of-Fit statistics: Residual Sum-of-Squares for OLS, X'y, B(=) and Bfit.
mcor Squared Correlation between the y-vector and its predicted values. The two values displayed are for OLS predictions or for predictions using Bfit, X'y or B(=). These two values are the familiar R^2 goodness-of-fit statistics for OLS and Bfit.

Author(s)

Bob Obenchain <wizbob@att.net>

References

See Also

RXridge, RXtrisk and RXtsimu.

Examples

data(longleyR)
form <- GNP~GNP.deflator+Unemployed+Armed.Forces+Population+Year+Employed
rxsobj <- RXsigns(form, data=longleyR)
rxsobj
str(rxsobj)
Description

By specifying numerical values for regression parameters (uncorrelated components and error sigma) that usually are unknown, these functions can calculate and display True MSE Risk statistics associated with shrinkage along a given Q-shaped path.

Usage

```r
RXtrisk(form, data, trug, trus, Q = 0, rscale = 1, steps = 8, qmax = 5, qmin = -5)
```

Arguments

- `form`: A regression formula [$y \sim x1+x2+...]$ suitable for use with `lm()`.
- `data`: Data frame containing observations on all variables in the formula.
- `trug`: Column vector of numerical values for the true uncorrelated components of the regression coefficient vector.
- `trus`: Numerical value for the shape parameter controlling shrinkage path curvature. Default shape is $Q = 0$ for Hoerl-Kennard "ordinary" ridge regression.
- `rscale`: One of three possible choices (0, 1 or 2) for rescaling of variables as they are being "centered" to remove non-essential ill-conditioning: 0 implies no rescaling; 1 implies divide each variable by its standard error; 2 implies rescale as in option 1 but re-express answers as in option 0.
- `steps`: Number of equally spaced values per unit change along the horizontal M-extent-of-shrinkage axis where estimates are calculated and displayed in TRACES (default = 8.)
- `qmax`: Maximum allowed Q-shape (default = +5.)
- `qmin`: Minimum allowed Q-shape (default = -5.)

Details

The RXridge() functions calculate maximum likelihood estimates (corrected, if necessary, so as to have correct range) for typical statistical inference situations where regression parameters are unknowns. In sharp contrast with this usual situation, the RXtrisk() functions show exactly how expected regression coefficients and true Mean Squared Error Risk actually do change with shrinkage when regression parameters take on specified, KNOWN numerical values.
RXtrisk

Value

An output list object of class RXtrisk:

- **form**: The regression formula specified as the first argument.
- **data**: Name of the data.frame object specified as the second argument.
- **trug**: Vector of numerical values for the true uncorrelated gamma components.
- **trus**: Numerical value for the true error standard deviation, Sigma.
- **qp**: Numerical value of the Q-shape actually used for shrinkage.
- **p**: Number of regression predictor variables.
- **n**: Number of complete observations after removal of all missing values.
- **prinstat**: Listing of principal statistics.
- **coef**: Matrix of expected shrinkage-ridge regression coefficients.
- **rmse**: Matrix of true MSE risk values for shrunken coefficients.
- **exev**: Matrix of true excess eigenvalues (ordinary least squares minus ridge.)
- **infd**: Matrix of direction cosines for the true inferior direction, if any.
- **spat**: Matrix of shrinkage pattern delta factors.
- **sext**: Listing of summary statistics for all M-extents-of-shrinkage.

Author(s)

Bob Obenchain <wizbob@att.net>

See Also

RXridge and RXtsimu.

Examples

data(mpg)
form <- mpg-cylnds+cubins+hpower+weight
rxrobj <- RXridge(form, data=mpg)
define true parameter values.
trugam <- matrix(c(-.5,.1,6,4,1),4,1)
trusig <- 0.4
create true shrinkage MSE risk scenario.
trumse <- RXtrisk(form, data=mpg, trugam, trusig, Q=-1, steps=4)
plot(trumse)
str(trumse)
Description

By specifying numerical values for regression parameters (uncorrelated components and error sigma) that usually are unknown, this function allows the user to simulate response data and display the True Squared Error Loss associated with shrinkage along a given Q-shaped path.

Usage

```
RXtsimu(form, data, trug, trus, Q = 0, rscale = 1, steps = 8,
seed = 0123, qmax = 5, qmin = -5)
```

Arguments

- **form**: A regression formula \([y = x_1 + x_2 + \ldots]\) suitable for use with `lm()`.
- **data**: Data frame containing observations on all variables in the formula.
- **trug**: Column vector of numerical values for the true uncorrelated components of the regression coefficient vector.
- **trus**: Numerical value for the true error standard deviation, \(\Sigma\).
- **Q**: Numerical value for the shape parameter controlling the shrinkage path curvature. Default shape is \(Q = 0\) for Hoerl-Kennard "ordinary" ridge regression.
- **rscale**: One of three possible choices (0, 1 or 2) for rescaling of variables as they are being "centered" to remove non-essential ill-conditioning: 0 implies no rescaling; 1 implies divide each variable by its standard error; 2 implies rescale as in option 1 but re-express answers as in option 0.
- **steps**: Number of equally spaced values per unit change along the horizontal M-extent-of-shrinkage axis where estimates are calculated and displayed in TRACEs (default = 8.)
- **seed**: Seed for random number generator. To get two different simulated response vectors and different sets of coefficients and SE losses, invoke the RXtsimu() function twice with different seed values. (default = 0123.)
- **qmax**: Maximum allowed Q-shape (default = +5.)
- **qmin**: Minimum allowed Q-shape (default = -5.)

Details

The RXridge() function calculates maximum likelihood estimates (corrected, if necessary, so as to have correct range) for typical statistical inference situations where regression parameters are unknowns. In sharp contrast with this usual situation, the RXtsimu() function shows exactly how regression coefficient estimates and their true Squared Error Losses change with shrinkage for a simulated response Y-vector generated using given numerical values for regression parameters. In
fact, it is interesting to compare the output from RXtrisk() and RXtsimu() for given regression parameters to the corresponding output from RXridge() on the data.frame in which any original response Y-vector has been replaced by the ydat object from the RXtsimu() output list.

Value

An output list object of class RXtsimu:

- `form` The regression formula specified as the first argument.
- `data` Name of the data.frame object specified as the second argument.
- `trug` Vector of numerical values for the true uncorrelated gamma components.
- `trus` Numerical value for the true error standard deviation, Sigma.
- `qp` Numerical value of the Q-shape actually used for shrinkage.
- `p` Number of regression predictor variables.
- `n` Number of complete observations after removal of all missing values.
- `prinstat` Listing of principal statistics.
- `ydat` Matrix with simulated Y-responses in its first column and the true expected values of those responses in its second column.
- `coef` Matrix of shrinkage-ridge regression coefficient estimates.
- `rsel` Matrix of true relative SE losses in regression coefficient estimates.
- `spat` Matrix of shrinkage pattern multiplicative delta factors.
- `sext` Listing of summary statistics for all M-extents-of-shrinkage.

Author(s)

Bob Obenchain <wizbob@att.net>

See Also

RXridge and RXtrisk.

Examples

```r
data(haldport)
form <- heat-p3ca+p3cs+p4caf+p2cs
rxrobj <- RXridge(form, data=haldport)
plot(rxrobj)
# define true parameter values.
trugam <- matrix(c(8,0,3,5),4,1)
trusig <- 0.2
# create true shrinkage MSE risk scenario.
trumse <- RXtrisk(form, data=haldport, trugam, trusig, Q=-5)
# calculate true shrinkage squared error losses.
trusim <- RXtsimu(form, data=haldport, trugam, trusig, Q=-5)
halpsim <- haldport
halpsim[,5] <- trusim$ydat[,1]
rxsobj <- RXridge(form, data=halpsim) # analysis as if parameters unknown
plot(rxsobj)
```
Description

Apply least angle regression estimation to the uncorrelated components of a possibly ill-conditioned linear regression model and generate normal-theory maximum likelihood TRACE displays.

Usage

```r
RXuclars(form, data, rscale = 1, type = "lar", trace = FALSE, 
eps = .Machine$double.eps, omdmin = 9.9e-13, ...)
```

Arguments

- `form`: A regression formula \([y \sim x1+x2+...]\) suitable for use with `lm()`.
- `data`: Data frame containing observations on all variables in the formula.
- `rscale`: One of three possible choices (0, 1 or 2) for rescaling of variables as they are being "centered" to remove non-essential ill-conditioning: 0 implies no rescaling; 1 implies divide each variable by its standard error; 2 implies rescale as in option 1 but re-express answers as in option 0.
- `type`: One of "lasso", "lar" or "forward.stagewise" for function `lars()`. Names can be abbreviated to any unique substring. Default in `RXlarlso()` is "lar".
- `trace`: If TRUE, `lars()` function prints out its progress.
- `eps`: The effective zero for `lars()`.
- `omdmin`: Strictly positive minimum allowed value for one-minus-delta (default = 9.9e-013.)
- `...`: Optional argument(s) passed to the `lars()` function in the lars R-package.

Details

`RXuclars()` applies Least Angle Regression to the uncorrelated components of a possibly ill-conditioned set of X-variables. A closed-form expression for the lars/lasso shrinkage delta factors exits in this case: \(\text{Delta}(i) = \max(0,1-k/\text{abs}[\text{PC}(i)])\), where \(\text{PC}(i)\) is the principal correlation between \(Y\) and the \(i\)-th principal coordinates of \(X\). Note that the \(k\)-factor in this formulation is limited to a subset of \([0,1]\). MCAL=0 occurs at \(k=0\), while MCAL = \(P\) results when \(k\) is the maximum absolute principal correlation.

Value

An output list object of class `RXuclars`:

- `form`: The regression formula specified as the first argument.
- `data`: Name of the data.frame object specified as the second argument.
RXuclars

- \(p \) Number of regression predictor variables.
- \(n \) Number of complete observations after removal of all missing values.
- \(r^2 \) Numerical value of R-square goodness-of-fit statistic.
- \(s^2 \) Numerical value of the residual mean square estimate of error.
- \(\text{prinstat} \) Listing of principal statistics.
- \(\text{gmat} \) Orthogonal matrix of direction cosines for regressor principal axes.
- \(\text{lars} \) An object of class lars.
- \(\text{coef} \) Matrix of shrinkage-ridge regression coefficient estimates.
- \(\text{risk} \) Matrix of MSE risk estimates for fitted coefficients.
- \(\text{exev} \) Matrix of excess MSE eigenvalues (ordinary least squares minus ridge.)
- \(\text{infd} \) Matrix of direction cosines for the estimated inferior direction, if any.
- \(\text{spat} \) Matrix of shrinkage pattern multiplicative delta factors.
- \(\text{mlik} \) Listing of criteria for maximum likelihood selection of M-extent-of-shrinkage.
- \(\text{sext} \) Listing of summary statistics for all M-extents-of-shrinkage.

Author(s)

Bob Obenchain <wizbob@att.net>

References

See Also

RXlarlso.

Examples

data(longley2)
form <- GNP~GNP.deflator+Unemployed+Armed.Forces+Population+Year+Employed
rxuobj <- RXuclars(form, data=longley2)
rxuobj
plot(rxuobj)
str(rxuobj)
Index

*Topic datasets
 haldport, 3
 longley2, 4
 mpg, 5
*Topic package
 RXshrink-package, 2
*Topic regression
 RXlarlso, 10
 RXridge, 12
 RXsigns, 14
 RXtrisk, 16
 RXtsimu, 18
 RXuclars, 20
*Topic trace
 plot.RXlarlso, 5
 plot.RXridge, 6
 plot.RXtrisk, 7
 plot.RXtsimu, 8
 plot.RXuclars, 9

haldport, 3
longley2, 4
mpg, 5

plot.RXlarlso, 5
plot.RXridge, 6
plot.RXtrisk, 7
plot.RXtsimu, 8
plot.RXuclars, 9

RXlarlso, 10, 21
RXridge, 12, 15, 17, 19
RXshrink-package, 2
RXsigns, 13, 14
RXtrisk, 13, 15, 16, 19
RXtsimu, 13, 15, 17, 18
RXuclars, 11, 20