Package ‘RobustAFT’

December 8, 2015

Type Package
Title Truncated Maximum Likelihood Fit and Robust Accelerated Failure Time Regression for Gaussian and Log-Weibull Case
LazyLoad yes
Version 1.4-1
Date 2015-12-04
Depends R (>= 2.9.2), robustbase, stats, graphics, survival
Author Alfio Marazzi <Alfio.Marazzi@chuv.ch>, Jean-Luc Muralti
Maintainer A. Randriamiharisoa <Alex.Randriamiharisoa@chuv.ch>
Description R functions for the computation of the truncated maximum likelihood and the robust accelerated failure time regression for gaussian and log-Weibull case.
License GPL (>= 2)
NeedsCompilation yes
Repository CRAN
Date/Publication 2015-12-08 13:02:37

R topics documented:

RobustAFT-package .. 2
D243 ... 6
fits.compare ... 7
MCI ... 8
plot.fits.compare .. 9
plot.TML .. 10
predict.TML ... 11
summary.TML .. 12
TML.censored ... 14
TML.censored.control.ref 17
TML.censored.control.S 19
TML.censored.control.tml 20
TML.noncensored .. 21
Description

This package computes the truncated maximum likelihood regression estimates described in Marazzi and Yohai (2004) and Locatelli et al. (2010). The error distribution is assumed to follow approximately a Gaussian or a log-Weibull distribution. The cut-off values for outlier rejection are fixed or adaptive. The main functions of this package are `TML.noncensored` and `TML.censored`.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>RobustAFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.0</td>
</tr>
<tr>
<td>Date</td>
<td>2011-05-01</td>
</tr>
<tr>
<td>License</td>
<td>GPL version 2 or later</td>
</tr>
</tbody>
</table>

This package depends on the libraries robustbase, survival, splines.

Author(s)

Alfio Marazzi <Alfio.Marazzi@chuv.ch>, Jean-Luc Muralti
Maintainer: A. Randriamiharisoa <Alex.Randriamiharisoa@chuv.ch>

References

Examples

```r
# Example 1. This is the example described in Marazzi and Yohai (2004).
# --------
```
The two following auxiliary functions, not included in the library, # must be loaded.
--- Auxiliary functions -------------------------------

sdmux <- function(x,theta,sigma,COV){
 # Standard deviation of the conditional mean estimate: log-Weibull case
 np <- length(theta); nc <- ncol(COV); nr <- nrow(COV)
 if (np!=length(x)) cat("length(x) must be the same as length(theta)")
 if (nc!=nr) cat("COV is not a square matrix")
 if (nc!=(np+1)) cat("ncol(COV) must be the same as ncol(theta)+1")
 log.mu.x <- t(x)%*%theta+lgamma(1+sigma) # log of conditional mean estimate
 mu.x <- exp(log.mu.x) # conditional mean estimate
 dg <- digamma(1+sigma)
 COV.TT <- COV[1:np,1:np]
 Var.S <- COV[np+1,(np+1)]
 COV.TS <- COV[1:np,(np+1)]
 V.mu.x <- t(x)%*%COV.TT%*%x + dg*2*Var.S + 2*dg*(t(x)%*%COV.TS)
 SD.mu.x <- as.numeric(sqrt(V.mu.x))
 SD.mu.x
}

plt <- function(LOS, Cost, Adm, theta.fr, sigma.fr, sd0.fr, sd1.fr, theta.ml, sigma.ml, sd0.ml, sd1.ml){
 # Plot of the conditional mean and confidence intervals: log-Weibull case
 par(mfrow=c(1,2),oma=c(0,0,0,0))
 plot(LOS, Cost, type="n")
 points(LOS[Adm==0], Cost[Adm==0], pch=1)
 points(LOS[Adm==1], Cost[Adm==1], pch=16, col=2)
 x0t <- x0%*%theta.fr; xlt <- xlt <- x1%*%theta.fr
 lines(l0, exp(x0t)*gamma(1+sigma.fr))
 lines(l0, exp(xlt)*gamma(1+sigma.fr), col=2)
 z0min <- exp(x0t)*gamma(1+sigma.fr)-2.576*sd0.fr
 z0max <- exp(x0t)*gamma(1+sigma.fr)+2.576*sd0.fr
 z1min <- exp(xlt)*gamma(1+sigma.fr)-2.576*sd1.fr
 z1max <- exp(xlt)*gamma(1+sigma.fr)+2.576*sd1.fr
 lines(l0, z0min, lty=2, col=1)
 lines(l0, z0max, lty=2, col=1)
 lines(l0, z1min, lty=2, col=1)
 lines(l0, z1max, lty=2, col=1)
 polygon(c(l0, rev(l0)), c(z0min, rev(z0max)), border=FALSE, density=10, angle=90)
 polygon(c(l0, rev(l0)), c(z1min, rev(z1max)), border=FALSE, density=12, angle=90, col=2)
 plot(LOS, Cost, type="n")
 points(LOS[Adm==0], Cost[Adm==0], pch=1)
 points(LOS[Adm==1], Cost[Adm==1], pch=16, col=2)
 x0t <- x0%*%theta.ml; xlt <- xlt <- x1%*%theta.ml
 lines(l0, exp(x0t)*gamma(1+sigma.ml))
 lines(l0, exp(xlt)*gamma(1+sigma.ml), col=2)
 z0min <- exp(x0t)*gamma(1+sigma.ml)-2.576*sd0.ml
 z0max <- exp(x0t)*gamma(1+sigma.ml)+2.576*sd0.ml
 z1min <- exp(xlt)*gamma(1+sigma.ml)-2.576*sd1.ml
 z1max <- exp(xlt)*gamma(1+sigma.ml)+2.576*sd1.ml
 lines(l0, z0min, lty=2, col=1)
 lines(l0, z0max, lty=2, col=1)
 lines(l0, z1min, lty=2, col=1)
 lines(l0, z1max, lty=2, col=1)
RobustAFT-package

```r
lines(10,z1max,1ty=2,col=1)
polygon(c(10,rev(10)), c(z0min,rev(z0max)), border=FALSE, density=10, angle=90)
polygon(c(10,rev(10)), c(zmin,rev(zmax)), border=FALSE, density=12, angle=90,col=2))

#----- End of auxiliary functions ----------------------------------

library(RobustAFT)

data(D243)
Cost <- D243$Cost # Cost (Swiss francs)
LOS <- D243$LOS # Length of stay (days)
Adm <- D243$Typadm; Adm <- (Adm="Urg")*1 # Type of admission
# (0=on notification, 1=Emergency)
Ass <- D243$Typass; Ass <- (Ass="P")*1 # Type of insurance (0=usual, 1=private)
Age <- D243$age # Age (years)
Dst <- D243$dest; Dst <- (Dst="DOMI")*1 # Destination (1=Home, 0=another hospital)
Sex <- D243$Sexe; Sex <- (Sex="M")*1 # Sex (1=Male, 0=Female)

# Plot data
par(mfrow=c(1,2))
plot(LOS,Cost); plot(log(LOS),log(Cost))
# Not run:
# log-Weibull fits
# ------------------
# Full robust model
zwff <- TML.noncensored(log(Cost)-log(LOS)+Adm+Ass+Age+Sex+Dst,
                 errors="logWeibull")
summary(zwff)

# Reduced model
zwfr <- update(zwff,log(Cost)-log(LOS)+Adm)
summary(zwfr)

# Residual plots
par(mfrow=c(1,2))
plot(zwfr,which=c(1,3))

# Plot robust predictions on log-log scale
par(mfrow=c(1,1))
l0 <- seq(from=2,to=60,by=0.5)
x0 <- as.matrix(cbind(1,log(l0),0))
x1 <- as.matrix(cbind(1,log(l0),1))
plot(log(LOS),log(Cost),type="n")
points(log(LOS[Adm==1]),log(Cost[Adm==1]),pch=16,col=2)
points(log(LOS[Adm==0]),log(Cost[Adm==0]),pch=1)
lines(log(l0),predict(zwfr,x0))
lines(log(l0),predict(zwfr,x1),col=2)

# Maximum likelihood: full model
zmlf <- TML.noncensored(log(Cost)-log(LOS)+Adm+Ass+Age+Sex+Dst,
                 errors="logWeibull",cu=100)
summary(zmlf)
```
RobustAFT-package

Maximum likelihood : reduced model
zmlr <- update(zmlf, log(Cost) ~ log(LOS) + Adm)
summary(zmlr)

Plot conditional means and confidence intervals
l0 <- seq(from = 2, to = 62, by = 0.5)
x0 <- as.matrix(cbind(l0, log(l0), 0))
x1 <- as.matrix(cbind(l0, log(l0), 1))
theta.fr <- coef(zwfr)
sigma.fr <- zwfr$se
cov.fr <- vcov(zwfr)
sd0.fr <- apply(x0, 1, SDmux.lw, theta.fr, sigma.fr, COV.fr)
sd1.fr <- apply(x1, 1, SDmux.lw, theta.fr, sigma.fr, COV.fr)
theta.ml <- coef(zmlr)
sigma.ml <- zmlr$se
cov.ml <- zmlr$COV
sd0.ml <- apply(x0, 1, SDmux.lw, theta.ml, sigma.ml, COV.ml)
sd1.ml <- apply(x1, 1, SDmux.lw, theta.ml, sigma.ml, COV.ml)
plt(LOS, Cost, Adm, theta.fr, sigma.fr, sd0.fr, sd1.fr, theta.ml, sigma.ml, sd0.ml, sd1.ml)

Gaussian fits (for comparison)
--
Reduced model
zgfr <- TML.noncensored(log(Cost) ~ log(LOS) + Adm, errors = "Gaussian")
summary(zgfr)

Residual plots
par(mfrow = c(1, 2))
plot(zgfr, which = c(1, 3))

Classical Gaussian fit
lr <- lm(log(Cost) ~ log(LOS) + Adm)
summary(lr)

Compare several fits

comp <- fits.compare(TML.logWeibull = zwfr, ML.logWeibull = zmlr, least.squares = lr)
plot(comp, leg.position = c("topleft", "topleft", "bottomleft")) # click on graphics

End(Not run)
#
Example 2. This is the example described in Locatelli Marazzi and Yohai (2010).
This is the example described in Locatelli et al. (2010).
The estimates are slightly different due to changes in the algorithm for the
final estimate.
Not run:
Remove data of Example 1
rm(Cost, LOS, Adm, Ass, Age, Dst, Sex)
data(MCI)
attach(MCI)

Exploratory Analysis

par(mfrow=c(1,1))

plot(Age, log(LOS), type = "n", cex=0.7)

(1) filled square : regular, complete
(2) empty square : regular, censored
(3) filled triangle : emergency, complete
(4) empty triangle : emergency, censored

points(Age[Dest==1 & TypAdm==0], log(LOS)[Dest==1 & TypAdm==0], pch=15, cex=0.7) # (1)
points(Age[Dest==0 & TypAdm==0], log(LOS)[Dest==0 & TypAdm==0], pch=0, cex=0.7) # (2)
points(Age[Dest==1 & TypAdm==1], log(LOS)[Dest==1 & TypAdm==1], pch=17, cex=0.7) # (3)
points(Age[Dest==0 & TypAdm==1], log(LOS)[Dest==0 & TypAdm==1], pch=2, cex=0.7) # (4)

Maximum Likelihood
ML <- survreg(Surv(log(LOS), Dest) ~ TypAdm*Age, dist="gaussian")
summary(ML)
B.ML <- ML$coeff; S.ML <- ML$scale
abline(c(B.ML[1],B.ML[3]),lwd=1,col="grey",lty=1)

Robust Accelerated Failure Time Regression with Gaussian errors
ctrl.S <- list(N=150, q=5, sigma0=1, MAXIT=100, TOL=0.001, seed=123)

ctrl.ref <- list(maxit.sigma=2, tol.sigma=0.0001, maxit.Beta=2, tol.Beta=0.0001,
Maxit.S=50, tol.S.sigma=0.001, tol.S.Beta=0.001, alg.sigma=1, nitmon=FALSE)

ctrl.qml <- list(maxit.sigma=50, tol.sigma=0.0001, maxit.Beta=50, tol.Beta=0.0001,
Maxit.TML=50, tol.TML.sigma=0.001, tol.TML.Beta=0.001, alg.sigma=1, nitmon=FALSE)

WML <- TML.censored(log(LOS)-TypAdm*Age, data=MCI, delta=Dest, otp="adaptive",
control.S=ctrl.S, control.ref=ctrl.ref, control.qml=ctrl.qml)

summary(WML)

B.WML <- coef(WML)
abline(c(B.WML[1],B.WML[3]),lty=1, col="red")

detach(MCI)

End(Not run)
Description
Sample of 100 patients hospitalized for medical back problems in Switzerland

Usage
data(D243)

Format
A data frame with 100 observations on the following 11 variables.

Sexe Gender: M=Male, F=Female
age Age in years
dest Destination: DOMI=Home else=another hospital
Typadm Type of admission: Urg=Emergency else=on notification
Typass Type of insurance: P=Private else=usual
LOS Length of stay (days)
APDRG DRG code: Always 243
Cost Cost (Swiss francs)
CSansInv Intermediate cost
BBdaggr a numeric vector
BBd a numeric vector

Examples
data(D243)

fits.compare Numerical comparison of several fits

Description
Creates a class "fits.compare" object allowing the user to display model summary statistics in a form allowing easy comparison of models.

Usage
fits.compare(...)

Arguments
... one or more class "lm", class "lm.robust" or class "TML" objects. Names given to objects in the list are used as labeling information in the printed output.
Details

The `fits.compare` function processes its arguments one at a time to create a named list of objects. The object returned is a member of class "fits.compare". Because of differences in the computed summary statistics, the list of input objects is currently limited to class "lm", class "lm.robust" and class "TML" objects. The `print.fits.compare` function displays a textual comparison of the input models, and the `plot.fits.compare` function provides comparative plots.

Value

An object of class "fits.compare" containing the list of input models to be compared.

See Also

TML.noncensored, plot.fits.compare

Examples

```r
## Not run:
data(D243)
Cost <- D243$Cost # Cost (Swiss francs)
LOS <- D243$LOS   # Length of stay (days)
Adm <- D243$Typadm; Adm <- (Adm=="Urg")*1 # Type of admission
         # (0=on notification, 1=Emergency)

lwrob <- TML.noncensored(log(Cost)-log(LOS)+Adm, errors="logWeibull")
grob  <- TML.noncensored(log(Cost)-log(LOS)+Adm)
reg   <- lm(log(Cost)-log(LOS)+Adm)

fits.compare(least.squares=reg, TML.logWeibull=lwrob, TML.Gaussian=grob)
## End(Not run)
```
Format

A data frame with 75 observations on the following 6 variables.

- **Sex**: Gender: 1=Female, 2=Male
- **Age**: Age in years
- **LOS**: Length of stay (days)
- **TypAdm**: Type of admission: 1=Emergency 0=on notification
- **Dest**: Destination: 1=Home 0=another hospital
- **Cost**: Cost (Swiss francs)

Examples

data(MCI)

plot.fits.compare
Plot Method for "fits.compare" objects

Description

Comparative plots for objects of class "fits.compare".

Usage

```r
## S3 method for class 'fits.compare'
plot(x, xplots = FALSE, ask = TRUE, which = 1:4,
     leg.position = c("topleft", "topleft", "topleft"), ...)
```

Arguments

- **x**: An object of class "fits.compare", usually, a result of a call to `fits.compare`
- **xplots**: If xplots=TRUE, plots of the independent variables versus the residuals are produced.
- **ask**: If ask=TRUE, plot.fits.compare() operates in interactive mode.
- **which**: If a subset of the plots is required, specify a subset of the numbers 1:4.
- **leg.position**: A vector of character string specifying the legend position of the second, third and fourth plots.
- **...**: Optional arguments for `par`.

Details

For clarity reasons, at most three models should be compared. Four default plots (selectable by which) are produced: histograms of the residuals of each model, a residual Q-Q plot, response against fitted values and residuals against fitted values. Additional plots are produced if xplots=TRUE.
plot.TML

Plot Method for "TML" objects

Description

Diagnostic plots for elements of class "TML". Three plots (selectable by which) are currently available: a residual Q-Q plot, a plot of response against fitted values and a plot of standardized residuals against fitted values.

Usage

S3 method for class 'TML'
plot(x, which = 1:3, caption = c("Residual QQ-plot", "Response vs. Fitted Values", "Standardized Residuals vs. Fitted Values"), panel = points, sub.caption = deparse(x$call$formula), main = "", ask = prod(par("mfcol")) < length(which) && dev.interactive(), ...)

Arguments

x An object of class "TML", usually, a result of a call to TML.noncensored or TML.censored.
which If a subset of the plots is required, specify a subset of the numbers 1:3.
caption Caption for the different plots.
panel Panel.
sub.caption Sub titles.
main Main title.
ask If ask=TRUE, plot.TML() operates in interactive mode.
... Optional arguments for par.
Details

The residual Q-Q plot is built with respect to the `errors` argument of the object. This means that the expected order statistics are calculated either for a Gaussian or a log-Weibull distribution. The two horizontal dotted lines on the first and the third plots represent the upper and lower cut-off values for outlier rejection. Observations that were not retained for the estimation (outliers) are identified on the third plot.

See Also

`TML.noncensored`, `TML.censored`, `plot.default`

Examples

```r
## Not run:
data(D243)
Cost <- D243$Cost # Cost (Swiss francs)
LOS <- D243$LOS  # Length of stay (days)
Adm <- D243$Typadm; Adm <- (Adm=="Urg")*1 # Type of admission
    # (0=on notification, 1=Emergency)

# Truncated maximum likelihood regression with log-Weibull errors
w <- TML.noncensored(log(Cost)+log(LOS)+Adm, errors="logWeibull",
                      otp="adaptive", control=list(fastS=TRUE))
plot(w)
plot(w, which = 1)
plot(w, which = 2)
plot(w, which = 3)

## End(Not run)
```

predict.TML

Predict method for "TML" objects

Description

Obtains predictions from a fitted Truncated Maximum Likelihood (TML) object.

Usage

```r
## S3 method for class 'TML'
predict(object, newdata = NULL, ...)
```

Arguments

- `object` An object of class "TML", usually, a result of a call to `TML.noncensored` or `TML.censored`.
newdata

Optionally, a vector, a matrix or a data frame containing the variables with which to predict. If omitted, the fitted values of object are returned.

Additional arguments affecting the predictions produced.

Details
	newdata must have the same number of variables (that is of columns) as the model. If object is a model with an intercept, newdata must have a first column of 1.

Value

Returns a vector of predictions.

See Also

tmlNnoncensored, tmlNcensored, predict

Examples

```r
## Not run:
data(D243)
Cost <- D243$Cost
LOS <- D243$LOS
Adm <- D243$Typadm; Adm <- (Adm=="Urg")*1

# Fitting the model
z <- tmlNnoncensored(log(Cost)~log(LOS)+Adm, errors="logWeibull")

# With a vector of data
vec <- c(1, 2.4, 1)
predict(object = z, newdata = vec)
# With a matrix of data
mat <- matrix(c(1,1,2.4,2.7,1,0), ncol=3)
predict(z, mat)
# With a data frame
dat <- as.data.frame(cbind(Intercept=c(1,1,1), "log(LOS)"=c(2.4,2.7,2.2), 
"Adm"=c(1,0,1)))
predict(z, dat)
```

End(Not run)

summary.TML

Summarizing Truncated Maximum Likelihood regression

Description

Summary and print methods for object of class "TML" and print method for the summary object. Further, methods fitted(), residuals(), weights() or update() work (via the default methods), and coef(), vcov() have explicitly defined TML methods.
Usage

S3 method for class 'TML'
summary(object, ...)
S3 method for class 'TML'
print(x, digits = max(3,getOption("digits") - 3), ...)
S3 method for class 'TML'
coef(object, ...)
S3 method for class 'TML'
vcov(object, ...)

S3 method for class 'summary.TML'
print(x, digits = max(3,getOption("digits") - 3),
 signif.stars = getOption("show.signif.stars"), ...)

Arguments

object An object of class "TML", usually, a result of a call to TML.nocensored or TML.censored.
... Potentially more arguments passed to methods.
digits Number of digits for printing, see digits in options.
x An object of class "TML" or "summary.TML".
signif.stars Logical indicating if the P-values should be visualized by so called "significance stars".

Details

summary.TML returns an object of class "summary.TML".
print.TML returns a printed summary of object of class "TML".
print.summary.TML tries to be smart about formatting the coefficients, standard errors, etc, and gives "significance stars" if signif.stars is TRUE (as per default when options where not changed).
coef.TML returns the final coefficient estimates (value th1 of a "TML" object), and vcov.TML returns the covariance matrix of the final estimates (value CV1 of a "TML" object).

Value

An object of class "summary.TML" is a list with the following components:
call The component from object.
terms The component from object.
residuals The component from object.
fitted.values The component from object.
tn The component from object.
coefficients The matrix of coefficients, standard errors, t-values and p-values. Aliased coefficients are omitted.
aliased Named logical vector showing if the original coefficients are aliased.
df Degrees of freedom, a 3-vector (p, n-p, p*), the last being the number of non-
aliased coefficients.
sigma The final scale estimate from object.
cutoff.values A vector of the final lower and upper cut-off values from object.

See Also

TML.noncensored, TML.censored, summary, print

Examples

```r
## Not run:
data(D243)
Cost <- D243$Cost  # Cost (Swiss francs)
LOS <- D243$LOS     # Length of stay (days)
Adm <- D243$Typadm; Adm <- (Adm=="Urg")*1  # Type of admission
               # (0=on notification, 1=Emergency)
Ass <- D243$Typass; Ass <- (Ass=="P")*1     # Type of insurance
               # (0=usual, 1=private)
Age <- D243$age    # Age (years)
Dst <- D243$dest;  Dst <- (Dst=="DOMI")*1  # Destination
               # (1=Home, 0=another hospital)
Sex <- D243$Sexe;  Sex <- (Sex=="M")*1     # Sex (1=Male, 0=Female)

# Truncated maximum likelihood regression with Gaussian errors
z <- TML.noncensored(log(Cost)-log(LOS)+Adm+Ass+Age+Dst+Sex, otp="adaptive",
cov="nonparametric", control=list(fastS=TRUE))

z          # -> print.TML(....)
sumz <- summary(z) # -> summary.TML(....)
sumz       # -> print.summary.TML(....)
coef(z)     # -> coef.TML(....)
v cov(z)     # -> vcov.TML(....)

## End(Not run)
```

TML.censored Truncated Maximum Likelihood Regression With Censored Observations

Description

This function computes the truncated maximum likelihood estimates of accelerated failure time
regression described in Locatelli et al. (2010). The error distribution is assumed to follow approxi-
mately a Gaussian or a log-Weibull distribution. The cut-off values for outlier rejection are fixed or
adaptive.
Arguments

formula A formula, i.e., a symbolic description of the model to be adjusted (cf. glm or lm).
data An optional data frame containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which robaft is called.
delta Vector of 0 and 1.
 • 0: censored observation.
 • 1: complete observation.
errors
 • "Gaussian": the error distribution is assumed to be Gaussian.
 • "logWeibull": the error distribution is assumed to be log-Weibull.
initial
 • "S": initial S-estimate.
 • "input": the initial estimate is given on input.
input A list(theta=c(...),sigma=...): initial input estimates where theta is a vector of p coefficients and sigma a scalar scale. Required when initial="input".
otp
 • "adaptive": adaptive cut-off.
 • "fixed": non adaptive cut-off.
cov If TRUE the covariance matrix is computed.
cc Preliminary minimal upper cut-off. The default is 2.5 in the Gaussian case and 1.855356 in the log-Weibull case.
control.S A list of control parameters for the computation of the initial S estimates. See the function TML.censored.control.S for the default values.
control.ref A list of control parameters for the refinement algorithm of the initial S estimates. See the function TML.censored.control.ref for the default values.
control.tml A list of control parameters for the computation of the final estimates. See the function TML.censored.control.tml for the default values.

Value

TML.censored returns an object of class "TML". The function summary can be used to obtain or print a summary of the results. The generic extractor functions fitted, residuals and weights can be used to extract various elements of the object returned by TML.censored. The function update can be used to update the model.

An object of class "TML" is a list with at least the following components:

th0 Initial coefficient estimates.
v0 Initial scale estimate.
Reached number of iteration in the refinement step for the initial estimates.

Final coefficient estimates.

Final scale estimate.

Number of iterations reached in IRLS algorithm for the final estimates.

Final cut-off values.

Estimated proportion of retained observations.

Number of retained observations.

Vector of weights (0 for rejected observations, 1 for retained observations).

Covariance matrix of the final estimates (th1[1],...,th1[p],,v1) (where p=ncol(X)).

Residuals of noncensored observations are calculated as response minus fitted values. For censored observations, the the expected residuals given that the response is larger than the recorded censored value are provided.

The fitted mean values.

The matched call.

The formula supplied.

The terms object used.

The data argument.

References

See Also

TML.censored.control.ref, TML.censored.control.tml, TML.censored.control.S, TML.noncensored

Examples

This is the example described in Locatelli et al. (2010).
The estimates are slightly different than those of the paper due to changes
in the algorithm for the final estimate.
#
Not run:
data(MCI)
attach(MCI)

Exploratory Analysis
plot(Age,log(LOS),type= "n",cex=0.7)

(1) filled square : regular, complete
(2) empty square : regular, censored
(3) filled triangle : emergency, complete
(4) empty triangle : emergency, censored

points(Age[Dest==1 & TypAdm==0], log(LOS)[Dest==1 & TypAdm==0], pch=15,cex=0.7) # (1)
points(Age[Dest==0 & TypAdm==0], log(LOS)[Dest==0 & TypAdm==0], pch=0, cex=0.7) # (2)
points(Age[Dest==1 & TypAdm==1], log(LOS)[Dest==1 & TypAdm==1], pch=17, cex=0.7) # (3)
points(Age[Dest==0 & TypAdm==1], log(LOS)[Dest==0 & TypAdm==1], pch=2, cex=0.7) # (4)

Maximum Likelihood
ML <- survreg(Surv(log(LOS), Dest) ~ TypAdm*Age, dist="gaussian")
summary(ML)
B.ML <- ML$coef
S.ML <- ML$scale

abline(c(B.ML[1], B.ML[3]), lwd=1, col="grey", lty=1)

Robust Accelerated Failure Time Regression with Gaussian errors
ctrol.S <- list(N=150, q=5, sigma0=1, MAXIT=100, TOL=0.001, seed=123)
ctrol.ref <- list(maxit.sigma=2, tol.sigma=0.0001, maxit.Beta=2, tol.Beta=0.0001, Maxit.S=50, tol.S.sigma=0.001, tol.S.Beta=0.001, alg.sigma=1, nitmon=FALSE)
ctrol.qml <- list(maxit.sigma=50, tol.sigma=0.0001, maxit.Beta=50, tol.Beta=0.0001, Maxit.TML=50, tol.TML.sigma=0.001, tol.TML.Beta=0.001, alg.sigma=1, nitmon=FALSE)
WML <- TML.censored(los=typAdm*age, data=MCI, delta=Dest, opt="adaptive", control.S=ctrol.S, control.ref=ctrol.ref, control.qml=ctrol.qml)

summary(WML)
B.WML <- coef(WML)
abline(c(B.WML[1], B.WML[3]), lty=1, col="red")

End (Not run)

TML.censored.control.ref

Control parameters for the refinement IRLS algorithm of the TML.censored initial S-estimates

Description

Auxiliary function for `TML.censored`. Typically only used internally by `TML.censored`, but may be used to provide a control argument. This function provides default values.

Usage

`TML.censored.control.ref(maxit.sigma=2, tol.sigma=0.0001, maxit.Beta=2, tol.Beta=0.0001, Maxit.S=50, tol.S.sigma=0.001, tol.S.Beta=0.001, alg.sigma=1, nitmon = FALSE)`
Arguments

- `maxit.sigma` Maximum number of iterations in scale step.
- `tol.sigma` Tolerance for sigma in scale step.
- `maxit.Beta` Maximum number of iterations in coefficient step.
- `Maxit.S` Maximum number of iterations in global cycle.
- `tol.S.sigma` Tolerance for sigma in global cycle.
- `tol.S.Beta` Tolerance for coefficients in global cycle.
- `alg.sigma` Type of algorithm in scale step:
 - 1: fixed point algorithm.
 - 2: regula falsi.
- `nitmon` Set to TRUE if iteration monitoring is desired. Default=FALSE.

Value

A list with components named as the arguments.

See Also

- `TML.censored`, `TML.censored.control.S`, `TML.censored.control.tml`

Examples

```r
### In the example(TML.censored), the control argument for the refinement
### algorithm can be built using this function:
## Not run:
data(MCI)
attach(MCI)

# Robust Accelerated Failure Time Regression with Gaussian errors
ctrl.ref <- TML.censored.control.ref(maxit.sigma=2,tol.sigma=0.0001,
maxit.Beta=2,tol.Beta=0.0001, Maxit.S=50, tol.S.sigma=0.0001,
tol.S.Beta=0.0001,alg.sigma=1,nitmon=FALSE)
ctrl.tml <- list(maxit.sigma=50,tol.sigma=0.0001,maxit.Beta=50,
tol.Beta=0.0001, Maxit.TML=50, tol.TML.sigma=0.001,
tol.TML.Beta=0.001, alg.sigma=1,nitmon=FALSE)

WML<-TML.censored(log(LOS)-TypAdm*Age,data=MCI,delta=Dest,otp="adaptive",
control.ref=ctrl.ref,control.tml=ctrl.tml)

summary(WML)

## End(Not run)
```
TML.censored.control.S

Control parameters for the computation of the initial S estimates in TML.censored

Description

Auxiliary function for TML.censored. Typically only used internally by TML.censored, but may be used to provide a control argument. This function provides default values.

Usage

TML.censored.control.S(N=100, q=6, sigma0=1, MAXIT=100, TOL=0.01, seed=153)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Number of subsamples.</td>
</tr>
<tr>
<td>q</td>
<td>Subsample size.</td>
</tr>
<tr>
<td>sigma0</td>
<td>Initial value of scale.</td>
</tr>
<tr>
<td>MAXIT</td>
<td>Maximum number of iterations for solving the equation for scale.</td>
</tr>
<tr>
<td>TOL</td>
<td>Relative tolerance for scale.</td>
</tr>
<tr>
<td>seed</td>
<td>Seed for the random number generator.</td>
</tr>
</tbody>
</table>

Value

A list with components named as the arguments.

See Also

TML.censored, TML.censored.control.ref, TML.censored.control.qml

Examples

```r
### In the example(TML.censored), the control argument for the refinement
### algorithm can be built using this function:

## Not run:
data(MCI)
attach(MCI)

# Robust Accelerated Failure Time Regression with Gaussian errors
ccontrol.S <- list(N=150, q=5, sigma0=1, MAXIT=100, TOL=0.001, seed=123)

ccontrol.ref <- TML.censored.control.ref(maxit.sigma=2, tol.sigma=0.0001, maxit.Beta=2, tol.Beta=0.0001, Maxit.S=50, tol.S.sigma=0.001, tol.S.Beta=0.001, alg.sigma=1, nitmon=FALSE)
```
Control parameters for the IRLS algorithm of the final TML.censored estimates

Description

Auxiliary function for TML.censored. Typically only used internally by TML.censored, but may be used to provide a control argument. This function provides default values.

Usage

TML.censored.control.tml(maxit.sigma=20, tol.sigma=0.0001, maxit.Beta=20,
tol.Beta=0.0001, Maxit.TML=50, tol.TML.sigma=0.001, tol.TML.Beta=0.001,
alg.sigma=1, nitmon=FALSE)

Arguments

maxit.sigma Maximum number of iterations in scale step.
tol.sigma Tolerance for sigma in scale step.
maxit.Beta Maximum number of iterations in coefficient step.
tol.Beta Tolerance for coefficients in coefficient step.
Maxit.TML Maximum number of iterations for global cycle.
tol.TML.sigma Tolerance for sigma in global cycle.
tol.TML.Beta Tolerance for coefficients in global cycle.
alg.sigma Type of algorithm in scale step:
 • 1: fixed point algorithm.
 • 2: regula falsi.
nitmon Set to TRUE if iteration monitoring is desired. Default=FALSE.

Value

A list with components named as the arguments.
See Also

TML.censored, TML.censored.control.S, TML.censored.control.ref

Examples

In the example(TML.censored), the control argument for the final estimates can be built using this function:

```r
# Not run:
data(MCI)
attach(MCI)

# Robust Accelerated Failure Time Regression with Gaussian errors
ctrl.ref <- list(maxit.sigma=2, tol.sigma=0.0001, maxit.Beta=2, tol.Beta=0.0001,
                  Maxit.S=50, tol.S.sigma=0.001, tol.S.Beta=0.001, alg.sigma=1, nitmon=FALSE)

ctrl.tml <- TML.censored.control.tml(maxit.sigma=50, tol.sigma=0.0001,
                                       maxit.Beta=50, tol.Beta=0.0001, Maxit.TML=50,
                                       tol.TML.sigma=0.001, tol.TML.Beta=0.001, alg.sigma=1, nitmon=FALSE)

WML <- TML.censored(log(LOS)~TypAdm*Age, data=MCI, delta=Dest, otp="adaptive",
                    control.ref=ctrl.ref, control.tml=ctrl.tml)

summary(WML)

# End(Not run)
```

Description

This function computes the truncated maximum likelihood regression estimate described in Marazzi and Yohai (2004). The error distribution is assumed to follow approximately a Gaussian or a log-Weibull distribution. The cut-off values for outlier rejection are fixed or adaptive.

Usage

```r
TML.noncensored(formula, data, errors = "Gaussian", cu = NULL,
                 initial = "S", otp = "fixed", cov = "parametric",
                 input = NULL, control = list(), ...)
```

Arguments

- **formula**: A formula, i.e., a symbolic description of the model to be fit (cf. `glm` or `lm`).
- **data**: An optional data frame containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`, typically the environment from which `TML.noncensored` is called.
errors
- "Gaussian": the error distribution is assumed to be Gaussian.
- "logWeibull": the error distribution is assumed to be log-Weibull.

\(cu\)
Preliminary minimal upper cut-off. The default is 2.5 in the Gaussian case and 1.855356 in the log-Weibull case.

\(initial\)
- "S": initial S-estimate.
- "input": the initial estimate is given on input.

\(otp\)
- "adaptive": adaptive cut-off.
- "fixed": non adaptive cut-off.

\(cov\)
- "no": no estimate of the covariance matrix of the coefficients is provided on output.
- "parametric": a parametric estimate of the covariance matrix of the coefficients is provided (to be used when \(n\) is small).
- "nonparametric": a nonparametric estimate of the covariance matrix of the coefficients is provided.

\(input\)
Initial input estimates of location and scale.
Required when \(initial=\"input\"\).
- "Gaussian case": list(theta=...,sigma=...) initial input estimates. theta: location; sigma: scale.
- "logWeibull case": list(tau=...,v=...) initial input estimates of location (tau) and scale (v).

\(control\)
Control parameters. For the default values, see the function \(TML\).noncensored.control.

\(\ldots\)
If fastS=TRUE, parameters for \(lmrob\).S. See the function \(lmrob\).control (from the robustbase package) for the default values.

Value
\(TML\).noncensored returns an object of class "TML". The function \(summary\) can be used to obtain or print a summary of the results. The generic extractor functions \(fitted\), \(residuals\) and \(weights\) can be used to extract various elements of the value returned by \(TML\).noncensored. The function \(update\) can be used to update the model.

An object of class "TML" is a list with the following components:

\(th0\)
Initial coefficient estimates (S or input).

\(v0\)
Initial scale (S or input).

\(nit0\)
Reached number of iteration in \(lmrob\).S (available only if fastS is TRUE).

\(th1\)
Final coefficient estimates.

\(vl\)
Final scale (S or input).

\(nit1\)
Number of iterations reached by the IRLS algorithm for the final estimates.

\(tu,tl\)
Final cut-off values.

\(alpha\)
Estimated proportion of retained observations.

\(tn\)
Number of retained observations.

\(beta\)
Consistency constant for scale.
weights Vector of weights (0 for rejected observations, 1 for retained observations).

cov Covariance matrix of the final estimates (th1[1],...,th1[p],v1) (where p=ncol(X)).

residuals The residuals, that is response minus fitted values.

fitted.values The fitted mean values.

call The matched call.

formula The formula supplied.

terms The terms object used.

data The data argument.

References

See Also

TML.nocensored.control, TML1.nocensored, TML1.nocensored.control, TML.censored

Examples

```r
## Not run:
data(D243)
Cost <- D243$Cost # Cost (Swiss francs)
LOS <- D243$LOS # Length of stay (days)
Adm <- D243$Typadm; Adm <- (Adm=="Urg")*1 # Type of admission
# (0=on notification, 1=Emergency)
Ass <- D243$Typass; Ass <- (Ass=="P")*1 # Type of insurance
# (0=usual, 1=private)
Age <- D243$age # Age (years)
Dst <- D243$dest; Dst <- (Dst=="DOMI")*1 # Destination
# (1=Home, 0=another hospital)
Sex <- D243$sexe; Sex <- (Sex=="M")*1 # Sex (1=Male, 0=Female)

# Truncated maximum likelihood regression with Gaussian errors
z <- TML.nocensored(log(Cost)-log(LOS)+Adm+Ass+Age+Dst+Sex,
                               otp="adaptive",control=list(fastS=TRUE))
summary(z)

# Truncated maximum likelihood regression with log-Weibull errors
w <- TML.nocensored(log(Cost)-log(LOS)+Adm+Ass+Age+Dst+Sex,
                               errors="logWeibull",otp="adaptive",control=list(fastS=TRUE))
summary(w)

## End(Not run)
```
TML.noncensored.control

Control Parameters for Truncated Maximum Likelihood Regression Without Censored Observations

Description

Control parameters for TML.noncensored. Typically only used internally by TML.noncensored, but may be used to construct a control argument. This function provides default values.

Usage

TML.noncensored.control(iv = 1, nrep = 0, gam = 0.1, nitmon = FALSE, maxit = 200, tol = 1e-04, fastS = FALSE, seed = 1313)

Arguments

- **iv**
 - 0: use and do not change the initial estimate of scale.
 - 1: compute a truncated maximum likelihood estimate of scale.

- **nrep**
 - Number of subsamples to be used in the computation of the S-estimate.
 - 0: exhaustive sampling if the observation number is not too large.

- **gam**
 Relaxation factor for the IRLS algorithm of final estimate. Set 0 < gam <= 1.

- **nitmon**
 Set to TRUE if iteration monitoring in IRLS algorithm for the final estimate is desired. Default=FALSE.

- **maxit**
 Maximum number of iterations in IRLS algorithm for the final estimate.

- **tol**
 Relative tolerance in IRLS algorithm.

- **fastS**
 - "TRUE": the initial S-estimate is computed using lmrob.S from the robustbase package. The control parameters are taken from lmrob.control.
 - "FALSE": the initial S-estimate is computed using hysest from the roebeth package.

- **seed**
 Seed for the random number generator in the resampling algorithm for the initial S-estimate.

Value

A list with components named as the arguments.

See Also

TML.noncensored
Examples

In the example(TML.noncensored), the control argument can be built using this function:

```r
Not run:
data(D243)
Cost <- D243$Cost  # Cost (Swiss francs)
LOS <- D243$LOS     # Length of stay (days)
Adm <- D243$Typadm; Adm <- (Adm=="Urg")*1 # Type of admission
  # (0=on notification, 1=Emergency)
Ass <- D243$Typass; Ass <- (Ass=="P")*1 # Type of insurance
  # (0=usual, 1=private)
Age <- D243$age     # Age (years)
Dst <- D243$dest; Dst <- (Dst=="DOMI")*1 # Destination
  # (1=Home, 0=another hospital)
Sex <- D243$Sexe; Sex <- (Sex=="M")*1 # Sex (1=Male, 0=Female)

ctl <- TML.noncensored.control(iv=1, nrep=0, gam=0.2, fasts=TRUE, nitmon=FALSE)
z <- TML.noncensored(log(Cost)-log(LOS)+Adm*Ass+Age+Dst+Sex, otp="adaptive")
summary(z)
```

End(Not run)

TML1.noncensored

Truncated Maximum Likelihood Estimates of Location and Scale

Description

This function computes the truncated maximum likelihood estimates of location and scale described in Marazzi and Yohai (2004). It assumes that the error distribution is approximately Gaussian or log-Weibull. The cut-off values for outlier rejection are fixed or adaptive. This function is a simplified version of `TML.noncensored` for the case without covariates.

Usage

```r
TML1.noncensored(y, errors= c("Gaussian", "logWeibull"), cu = NULL,
  initial = c("S", "input"), otp = c("adaptive", "fixed"),
  cov = c("no", "parametric", "nonparametric"), input = NULL,
  control = list(), ...)
```

Arguments

- **y**: Observation vector
- **errors**:
 - "Gaussian": the error distribution is assumed to be approximately Gaussian.
 - "logWeibull": the error distribution is assumed to be approximately log-Weibull.
Preliminary minimal upper cut-off. The default is 2.5 in the Gaussian case and 1.855356 in the log-Weibull case.

initial
- "S": initial S-estimate.
- "input": the initial estimate is given on input.

otp
- "adaptive": adaptive cut-off.
- "fixed": non adaptive cut-off.

cov
- "no": no estimate of the covariance matrix of the estimates is provided on output.
- "parametric": a parametric estimate of the covariance matrix of the location-scale estimates is provided (to be used when n is small).
- "nonparametric": a nonparametric estimate of the covariance matrix of the location-scale estimates is provided.

input
Initial input estimates of location and scale. Required when initial="input".
- "Gaussian case": list(theta=...,sigma=...) initial input estimates. theta: location; sigma: scale.
- "logWeibull case": list(tau=...,v=...) initial input estimates of location (tau) and scale (v).

control
Control parameters. For the default values, see the function `TML1.n Oncensored.control`
... If initial="S", parameters for the computation of the initial S estimates. See the function `TML1.n Oncensored.control.S` for the default values.

Value

A list with the following components:

- **th0** Initial location estimate (S or input).
- **v0** Initial scale estimate (S or input).
- **nit0** Reached number of iteration if initial="S"
- **th1** Final location estimate.
- **v1** Final scale estimate.
- **nit1** Reached iteration number in IRLS algorithm for final estimate (only for the log_Weibull case).
- **tu**, **tl** Final cut-off values.
- **alpha** Estimated proportion of retained observations.
- **tn** Number of retained observations.
- **beta** Consistency constant for scale.
- **wi** Vector of weights (0 for rejected observations, 1 for retained observations).
- **CV0** Covariance matrix of the initial estimates (th0,v0).
- **CV1** Covariance matrix of the final estimates (th1,v1).
References

See Also

TML.noncensored, TML1.noncensored.control, TML1.noncensored.control.S

Examples

```r
## Not run:
data(Z243)
Cost <- Z243$CouTot
y <- log(Cost)
ctrl <- TML1.noncensored.control(iv=1, tol=1e-3)
z <- TML1.noncensored(y, errors="logWeibull", initial="S", otp="adaptive",
                       cov="no", control=ctrl)
## End(Not run)
```

TML1.noncensored.control

Control Parameters for Truncated Maximum Likelihood Estimation of Location and Scale

Description

Auxiliary function for TML1.noncensored. Typically only used internally by TML1.noncensored, but may be used to construct a control argument. This function provides default values.

Usage

TML1.noncensored.control(iv = 1, gam = 0.1, maxit = 200, tol = 1e-04)

Arguments

iv

- 0: use and do not change the initial estimate of scale.
- 1: compute a truncated maximum likelihood estimate of scale.

gam

Relaxation factor for the IRLS algorithm for the final estimate. Set 0 < gam <= 1.

maxit

Maximum number of iterations in the IRLS algorithm for the final estimate.

tol

Relative tolerance in the IRLS algorithm for the final estimate.

Value

A list with components named as the arguments.
See Also

TML1.noncensored

TML1.noncensored.control.S

Control parameters for S-estimate of location and scale

Description

Auxiliary function for TML1.noncensored. Typically only used internally by TML1.noncensored, but may be used to construct a control argument. This function provides default values.

Usage

TML1.noncensored.control.S(tlo = 1e-04, mxf = 50, mxs = 50, ntm = 50,
 tls = 1e-06, h = 100)

Arguments

tlo Relative tolerance in the iterative algorithms.
mxf Maximum number of iterations in computing the location estimate.
mxs Maximum number of iterations in computing the scale estimate.
ntm Parameter used in iteration monitoring. When the number of iterations is a multiple of ntm, the current parameter values are printed.
tls Tolerance for denominators. If a scale estimate is less than tls, the scale estimate is set equal to tls.
h The number of subdivisions of the interval (min(yi), max(yi)) used is the computation of the estimate \(\lambda(0) \).

Value

List containing the desired values for each of the control parameters, plus the value Beta0 of \(\beta \).
Sample of 100 hospital stays for medical back problems

Description
Sample of 100 patients hospitalized for medical back problems in Switzerland

Usage
data(Z243)

Format
A data frame with 100 observations on the following 14 variables.

- NoAdm Admission number
- APDRG DRG: Always 243
- Sex Gender: 1=Male, 0=Female
- Age Age in years
- LOS Length of stay (days)
- Coutot Total Cost (Swiss francs)
- CsansInv Cost (Swiss francs)
- Adm Type of admission (0=on notification, 1=Emergency)
- Ass Type of insurance (0=usual, 1=private)
- Death 0=No, 1=Yes
- BBD A numeric vector
- BBDaggr A numeric vector
- Charls A numeric vector
- LOSF Adjusted length of stay

Examples
data(Z243)
Index

*Topic **Accelerated Failure Time**
Robustaft-package, 2
TML.censored, 14
TML.noncensored, 21
TML.1.noncensored, 25

*Topic **Regression**
Robustaft-package, 2
TML.censored, 14
TML.noncensored, 21

*Topic **Robust**
Robustaft-package, 2
TML.censored, 14
TML.noncensored, 21

*Topic **datasets**
D243, 6
MCI, 8
Z243, 29

*Topic **misc**
TML.1.noncensored.control.S, 28

*Topic **regression**
TML.1.noncensored, 25

*Topic **robust**
TML.1.noncensored, 25

*Topic **univar**
TML.1.noncensored, 25

class, 13
coeff, 12
coeff.TML (summary.TML), 12

D243, 6
fits.compare, 7, 9, 10
fitted, 12, 15, 22
formula, 15, 21
glm, 15, 21
lm, 15, 21
lmrob.control, 22
lmrob.S, 24

MCI, 8
methods, 12
options, 13
par, 9, 10
plot.default, 10, 11
plot.fits.compare, 8, 9
plot.TML, 10, 10
predict, 12
predict.TML, 11
print, 12, 14
print.fits.compare(fits.compare), 7
print.summary.TML (summary.TML), 12
print.TML (summary.TML), 12
residuals, 12, 15, 22
Robustaft (Robustaft-package), 2
Robustaft-package, 2
summary, 14, 15, 22
summary.TML, 12
terms, 16, 23
TML.censored, 2, 10–14, 14, 17–21, 23
TML.censored.control.ref, 15, 16, 17, 19, 21
TML.censored.control.S, 15, 16, 18, 19, 21
TML.censored.control.tml, 15, 16, 18, 19, 20
TML.noncensored, 2, 8, 10–14, 16, 21, 24, 25, 27
TML.noncensored.control, 22, 23, 24
TML.1.noncensored, 23, 25, 27, 28
TML.1.noncensored.control, 23, 26, 27, 27
TML.1.noncensored.control.S, 26, 27, 28
update, 12, 15, 22
vcov, 12
vcov.TML (summary.TML), 12

30
INDEX

weights, 12, 15, 22

Z243, 29