Ryacas – an R interface to the yacas computer algebra system

Rob Goedman, Gabor Grothendieck, Søren Højsgaard, Ayal Pinkus

February 5, 2010

Contents

1 Introduction ... 2

2 R expressions, yacas expressions and Sym objects 2
 2.1 R expressions .. 2
 2.2 yacas expressions 2
 2.3 Sym objects ... 2

3 A sample session 3

4 Simple Yacas calculations 6
 4.1 Setting and clearing a variable 6
 4.2 Symbolic and numerical evaluations, precision 7
 4.3 Rational numbers 8
 4.4 Symbolic calculation 8
 4.5 Complex numbers and the imaginary unit 9
 4.6 Recall the most recent line – the % operator 10
 4.7 Printing with PrettyForm, PrettyPrint, TexForm and TeXForm 10
 4.7.1 Standard form 10
 4.7.2 Pretty form 11
 4.7.3 TeX form .. 11

5 Commands .. 12
 5.1 Factorial ... 12
 5.2 Taylor expansions 12
 5.3 Solving equations 13
 5.3.1 Solving equations symbolically 13
 5.3.2 Solving equations numerically 13
 5.4 Expanding polynomials 13
 5.5 Simplifying an expression 13
 5.6 Analytical derivatives 14
 5.7 Integration ... 14
 5.8 Limits ... 15
 5.9 Variable substitution 15
 5.10 Solving ordinary differential equations 15

6 Matrices ... 15
 6.1 Inverse .. 16
 6.2 Determinant 17
Ryacas makes the yacas computer algebra system available from within R. The name yacas is short for “Yet Another Computer Algebra System”. The yacas program is developed by Ayal Pinkhuis (who is also the maintainer) and others, and is available at http://yacas.sourceforge.net for various platforms. There is a comprehensive documentation (300+ pages) of yacas (also available at http://yacas.sourceforge.net) and the documentation contains many examples.

2 R expressions, yacas expressions and Sym objects

The Ryacas package works by sending “commands” to yacas which makes the calculations and returns the result to R. There are various different formats of the return value as well.

2.1 R expressions

A call to yacas may be in the form of an R expression which involves valid R calls, symbols or constants (though not all valid R expressions are valid). For example:

\begin{verbatim}
> exp1 <- yacas(expression(Factor(x^2 - 1)))
[1] "Starting Yacas!"
expression((x + 1) * (x - 1))
\end{verbatim}

The result exp1 is not an expression in the R sense but an object of class "yacas". To evaluate the resulting expression numerically, we can do

\begin{verbatim}
> Eval(exp1, list(x = 4))
[1] 15
\end{verbatim}

2.2 yacas expressions

Some commands are not proper R expressions. For example, typing

\begin{verbatim}
yacas(expression(D(x)Sin(x)))
\end{verbatim}

produces an error. For such cases we can make a specification using the yacas syntax:

\begin{verbatim}
> yacas("D(x)Sin(x)")
expression(cos(x))
\end{verbatim}

2.3 Sym objects

Probably the most elegant way of working with yacas is by using Sym objects. A Sym object is a yacas character string that has the "Sym" class. One can combine Sym objects with other Sym objects as well as to other R objects using +, - and other similar R operators.
The function `Sym(x)` coerces an object `x` to a `Sym` object by first coercing it to character and then changing its class to "Sym":

```r
> x <- Sym("x")
expression(x)
```

Operations on `Sym` objects lead to new `Sym` objects:

```r
> x + 4
expression(x + 4)
```

One can apply `sin`, `cos`, `tan`, `deriv`, `Integrate` and other provided functions to `Sym` objects. For example:

```r
> Integrate(sin(x), x)
expression(-cos(x))
```

In this way the communication with `yacas` is “tacit”.

It is important to note the difference between the R name `x` and the symbol "x" as illustrated below:

```r
> x <- Sym("xs")
expression(xs)
> x
expression(xs)
> x + 4
expression(xs + 4)
> Eval(x + 4, list(xs = 5))
[1] 9
```

The convention in the following is 1) that `Sym` objects match with their names that they end with an 's', e.g.

```r
> xs <- Sym("xs")
```

3 A sample session

Algebraic calculations:

```r
> yacas(expression((10 + 2) * 5 + 7^7))
expression(823603)
> yacas(expression(1/14 + 5/21 * (30 - 1 + 1/2)))
expression(149/21)
```
> Sym("10 * 2") * 5 + Sym(7)^7
expression(823643)
> Sym("1/14 + 5/21 * (30 - 1+1/2)")
expression(149/21)

Numerical evaluations:

> yacas(expression(N(-12/2)))
expression(-6)
> Sym("-12/2")
expression(-6)

Symbolic expressions:

> yacas(expression(Factor(x^2 - 1)))
expression((x + 1) * (x - 1))
> exp1 <- expression(x^2 + 2 * x^2)
> exp2 <- expression(2 * exp0)
> exp3 <- expression(6 * pi * x)
> exp4 <- expression((exp1 * (1 - sin(exp3)))/exp2)
> yacas(exp4)
expression(3 * x^2 * (1 - sin(6 * x * pi))/(2 * exp0))
> Factor(xs^2 - 1)
expression((xs + 1) * (xs - 1))
> exp1 <- xs^2 + 2 * xs^2
> exp0 <- Sym("exp0")
> exp2 <- 2 * Sym(exp0)
> exp3 <- 6 * Pi * xs
> exp4 <- exp1 * (1 - sin(exp3))/exp2
> exp4
expression(3 * xs^2 * (1 - sin(6 * x * pi))/(2 * exp0))

Combining symbolic and numerical expressions:

> yacas(expression(N(Sin(1)^2 + Cos(x)^2)))
expression(cos(x)^2 + 0.7080734182)
> N(sin(1)^2 + cos(xs)^2)
expression(cos(xs)^2 + 0.708073418273571)

Differentiation:

> yacas("D(x)Sin(x)")
expression(cos(x))
> deriv(sin(xs), xs)
expression(cos(xs))

Integration:

> yacas("Integrate(x,a,b)Sin(x)")
expression(cos(a) - cos(b))

> as <- Sym("as")
> bs <- Sym("bs")
> Integrate(sin(xs), xs, as, bs)
expression(cos(as) - cos(bs))

Expanding polynomials:

> yacas("Expand((1+x)^3)"
expression(x^3 + 3 * x^2 + 3 * x + 1)

> Expand((1 + xs)^3)
expression(xs^3 + 3 * xs^2 + 3 * xs + 1)

Taylor expansion:

> yacas("texp := Taylor(x,0,3) Exp(x)"
expression(x + x^2/2 + x^3/6 + 1)

> texp <- Taylor(exp(xs), xs, 0, 3)
expression(xs + xs^2/2 + xs^3/6 + 1)

Printing the result in nice forms:

> yacas("PrettyForm(texp)"
\begin{align*}
&2 & 3 \\
&x & x \\
&x + \frac{\text{---}}{2} + \frac{\text{---}}{6} + 1 \\
\end{align*}
>$x + \frac{x ^{2}}{2} + \frac{x ^{3}}{6} + 1$

> yacas("TeXForm(texp)", retclass = "unquote")
\begin{align*}
&x + \frac{x ^{2}}{2} + \frac{x ^{3}}{6} + 1 \\
\end{align*}

> PrettyForm(texp)
\begin{align*}
&2 & 3 \\
&xs & xs \\
&xs + \frac{\text{---}}{2} + \frac{\text{---}}{6} + 1 \\
\end{align*}

> TeXForm(texp)
expression("$xs + \frac{xs ^{2}}{2} + \frac{xs ^{3}}{6} + 1$"

4 Simple Yacas calculations

4.1 Setting and clearing a variable

The function \texttt{Set()} and the operator \texttt{:=} can both be used to assign values to global variables.

\begin{verbatim}
> yacas("n := (10 + 2) * 5")
expression(60)
> yacas("n := n+n")
expression(120)
\end{verbatim}

The same can be achieved with Sym objects: Consider:

\begin{verbatim}
> Set(ns, (10 + 2) * 5)
expression(60)
\end{verbatim}

Now \texttt{ns} exists as a variable in \texttt{Yacas} (and we can make computations on this variable as above). However we have no handle on this variable in \texttt{R}. Such a handle is obtained with

\begin{verbatim}
> ns <- Sym("ns")
\end{verbatim}

Now the \texttt{R} variable \texttt{ns} refers to the \texttt{Yacas} variable \texttt{ns} and we can make calculations directly from \texttt{R}, e.g:

\begin{verbatim}
> Set(ns, 123)
expression(123)
> ns
expression(123)
> ns^2
expression(15129)
\end{verbatim}

Likewise:

\begin{verbatim}
> as <- Sym("as")
> zs <- Sym("zs")
> Set(zs, cos(as))
expression(cos(as))
> zs + zs
expression(2 * cos(as))
\end{verbatim}

o clear a variable binding execute \texttt{Clear()}:

\begin{verbatim}
> yacas(expression(n))
expression(120)
> yacas("Clear(n")
expression(TRUE)
> yacas(expression(n))
expression(n)
\end{verbatim}
4.2 Symbolic and numerical evaluations, precision

Evaluations are generally exact:

```yacas
> yacas("Exp(0)")
expression(1)
> yacas("Exp(1)")
expression(exp(1))
> yacas("Sin(Pi/4)")
expression(root(1/2, 2))
> yacas("355/113")
expression(355/113)
```

```yacas
> exp(Sym(0))
expression(1)
> exp(Sym(1))
expression(exp(1))
> sin(Pi/4)
expression(root(1/2, 2))
> Sym("355/113")
expression(355/113)
```

To obtain a numerical evaluation (approximation), the N() function can be used:

```yacas
> yacas("N(Exp(1))")
expression(2.7182818284)
> yacas("N(Sin(Pi/4))")
expression(0.70710678118)
> yacas("N(355/113)")
expression(3.1415929203)
```
> N(exp(1))
expression(2.71828182845905)
> N(sin(Pi/4))
expression(0.70710678118)
> N(355/113)
expression(3.14159292035398)

The N() function has an optional second argument, the required precision:

> yacas("N(355/133,20)")
expression(2.66917293233083)

> N("355/113", 20)
exression(3.14159292035398)

The command Precision(n) can be used to specify that all floating point numbers should have a fixed precision of n digits:

> yacas("Precision(5)")
expression(TRUE)
> yacas("N(355/113)")
exression(3.14159)

> Precision(5)
exression(TRUE)
> N("355/113")
exression(3.14159)

4.3 Rational numbers

Rational numbers will stay rational as long as the numerator and denominator are integers:

> yacas(expression(55/10))
exression(11/2)

> Sym("55 / 10")
exression(11/2)

4.4 Symbolic calculation

Some exact manipulations:

4.5 Complex numbers and the imaginary unit

The imaginary unit i is denoted I and complex numbers can be entered as either expressions involving I or explicitly Complex(a,b) for $a+ib$.

```plaintext
> yacas("I^2")
expression(-1)
> yacas("7+3*I")
expression(complex_cartesian(7, 3))
> yacas("Conjugate(%)")
expression(complex_cartesian(7, -3))
> yacas("Exp(3*I")
expression(complex_cartesian(cos(3), sin(3)))```
4.6 Recall the most recent line – the % operator

The operator % automatically recalls the result from the previous line.

```
> yacas("(1+x)^3")
expression((x + 1)^3)
> yacas("%")
expression((x + 1)^3)
> yacas("z:= %")
expression((x + 1)^3)
```

```
> (1 + x)^3
expression((xs + 1)^3)
> zs <- Sym("%")
> zs
expression((xs + 1)^3)
```

4.7 Printing with PrettyForm, PrettyPrint, TexForm and TeX-Form

There are different ways of displaying the output.

4.7.1 Standard form

The (standard) yacas form is:

```
> yacas("A:=(a,b),(c,d)")
expression(list(list(a, b), list(c, d)))
> yacas("B:=(1+x)^2+k^3")
expression((x + 1)^2 + k^3)
> yacas("A")
expression(list(list(a, b), list(c, d)))
> yacas("B")
expression((x + 1)^2 + k^3)
```
> as <- Sym("as")
> bs <- Sym("bs")
> cs <- Sym("cs")
> ds <- Sym("ds")
> A <- List(List(as, bs), List(cs, ds))
> ks <- Sym("ks")
> B <- (1 + xs)^2 + ks^3
> A
expression(list(list(as, bs), list(cs, ds)))
> B
expression((xs + 1)^2 + ks^3)

4.7.2 Pretty form

The Pretty form is:

```r
> yacas("PrettyForm(A)"
/ \
| (a) (b) |
| |
| (c) (d) |
\ /
> yacas("PrettyForm(B)"
 2 3
(x + 1) + k
```

```r
> PrettyForm(A)
/ \
| (as) (bs) |
| |
| (cs) (ds) |
\ /
> PrettyForm(B)
 2 3
(xs + 1) + ks
```

4.7.3 TeX form

The output can be displayed in TeX form:

```r
> yacas("TeXForm(B)"
expression("$\left(x + 1\right)^{2} + k^{3}$")
```

```r
> TeXForm(B)
expression("$\left(xs + 1\right)^{2} + ks^{3}$")
```
5 Commands

5.1 Factorial

> yacas("40!")
expression(8.15915283247898e+47)

> Factorial(40)
expression(Factorial(40))

5.2 Taylor expansions

Expand exp(x) in three terms around 0 and a:

> yacas("Taylor(x,0,3) Exp(x)"")
exression(x + x^2/2 + x^3/6 + 1)
> yacas("Taylor(x,a,3) Exp(x)"")
exression(exp(a) + exp(a) * (x - a) + (x - a)^2 * exp(a)/2 +
(x - a)^3 * exp(a)/6)

> xs <- Sym("xs")
> Taylor(exp(xs), xs, 0, 3)
exression(xs + xs^2/2 + xs^3/6 + 1)
> as <- Sym("as")
> Taylor(exp(x), x, as, 3)
exression(exp(as) + exp(as) * (xs - as) + (xs - as)^2 * exp(as)/2 +
(x - as)^3 * exp(as)/6)

The InverseTaylor() function builds the Taylor series expansion of the inverse of an expression. For example, the Taylor expansion in two terms of the inverse of exp(x) around x = 0 (which is the Taylor expansion of Ln(y) around y = 1):

> yacas("InverseTaylor(x,0,2)Exp(x)"")
exression(x - 1 - (x - 1)^2/2)
> yacas("Taylor(y,1,2)Ln(y)"")
exression(y - 1 - (y - 1)^2/2)

> InverseTaylor(exp(xs), xs, 0, 2)
exression(xs + xs^2/2 + 1)
> Taylor(log(ys), ys, 1, 2)
exression(ys - 1 - (ys - 1)^2/2)
5.3 Solving equations

5.3.1 Solving equations symbolically

Solve equations symbolically with the Solve() function:

```yacas
> yacas("Solve(x/(1+x) == a, x")
expression(list(x == a/(1 - a)))
> yacas("Solve(x^2+x == 0, x")
expression(list(x == 0, x == -1))
```

(Note the use of the == operator, which does not evaluate to anything, to denote an "equation" object.)

5.3.2 Solving equations numerically

To solve an equation (in one variable) like \( \sin(x) - \exp(x) = 0 \) numerically taking 0.5 as initial guess and an accuracy of 0.0001 do:

```yacas
> yacas("Newton(Sin(x)-Exp(x),x, 0.5, 0.0001")
expression(-3.18306)
> Newton(sin(xs) - exp(xs), xs, 0.5, 1e-04)
expression(-3.18306)
```

5.4 Expanding polynomials

```yacas
> yacas(expression(Expand((1 + x)^3)))
expression(x^3 + 3 * x^2 + 3 * x + 1)
> Expand((x + 1)^3)
expression(xs^3 + 3 * xs^2 + 3 * xs + 1)
```

5.5 Simplifying an expression

The function Simplify() attempts to reduce an expression to a simpler form.
5.6 Analytical derivatives

Analytical derivatives of functions can be evaluated with the \texttt{D()} and \texttt{deriv()} functions:

\begin{verbatim}
> yacas("D(x) Sin(x)")
expression(cos(x))

> deriv(sin(xs), xs)
expression(cos(xs))
\end{verbatim}

These functions also accept an argument specifying how often the derivative has to be taken, e.g:

\begin{verbatim}
> yacas("D(x,4)Sin(x)")
expression(sin(x))

> deriv(sin(xs), xs, 4)
expression(sin(xs))
\end{verbatim}

5.7 Integration

\begin{verbatim}
> yacas("Integrate(x)Sin(a*x)^2*Cos(b*x)"
expression((2 * sin(b * xs)/b - (sin(-2 * xs * a - b * xs)/(-2 * a - b) + sin(-2 * xs * a + b * xs)/(-2 * a + b)))/4)

> a <- Sym("a")
> b <- Sym("b")
> Integrate(sin(a * x)^2 * cos(b * x), x)
expression((2 * sin(b * xs)/b - (sin(-2 * xs * a - b * xs)/(-2 * a - b) + sin(-2 * xs * a + b * xs)/(-2 * a + b)))/4)
\end{verbatim}
5.8 Limits

```plaintext
> yacas("Limit(n,Infinity)(1+(1/n))\^n")
expression(exp(1))
> yacas("Limit(h,0) (Sin(x+h)-Sin(x))/h")
expression(cos(x))

> ns <- Sym("ns")
> Limit((1 + (1/ns))\^ns, ns, Infinity)
expression(exp(1))
> hs <- Sym("hs")
> Limit((sin(xs + hs) - sin(xs))/hs, hs, 0)
expression(cos(xs))
```

5.9 Variable substitution

```plaintext
> yacas("Subst(x,Cos(a))x+x")
expression(2 * cos(a))
> Subst(xs + xs, xs, cos(as))
expression(2 * cos(as))
```

5.10 Solving ordinary differential equations

```plaintext
> yacas("OdeSolve(y''==4*y")
expression(C345 * exp(2 * x) + C349 * exp(-2 * x))
> yacas("OdeSolve(y'==8*y")
expression(C379 * exp(8 * x))
```

6 Matrices

```plaintext
> yacas("E4:={ {u1,u1,0},{u1,0,u2},{0,u2,0} }")
expression(list(list(u1, u1, 0), list(u1, 0, u2), list(0, u2, 0)))
> yacas("PrettyForm(E4")
/ \\
| (u1) (u1) (0) |
| (u1) (0) (u2) |
| (0) (u2) (0) |
\ /
> u1 <- Sym("u1")
> u2 <- Sym("u2")
> E4 <- List(List(u1, u1, 0), List(u1, 0, u2), List(0, u2, 0))
> PrettyForm(E4)
/ \\
| (u1) (u1) (0) | \\
| | \\
| (u1) (0) (u2) | \\
| | \\
| (0) (u2) (0) | \\
\ /

6.1 Inverse

> yacas("E4i:=Inverse(E4)")
expression(list(list(u2^2/(u1 * u2^2), 0, -(u1 * u2)/(u1 * u2^2)),
list(0, 0, u1 * u2/(u1 * u2^2)), list(-(u1 * u2)/(u1 * u2^2),
u1 * u2/(u1 * u2^2), u1^2/(u1 * u2^2))))
> yacas("Simplify(E4i)")
expression(list(list(1/u1, 0, -1/u2), list(0, 0, 1/u2), list(-1/u2,
1/u2, u1/u2^2)))
> yacas("PrettyForm(Simplify(E4i))")
/ \\
| / 1 \ (0) / -1 \ | \\
| | -- | | -- | | \\
| \ u1 / \ u2 / | \\
| | \\
| (0) (0) / 1 \ | \\
| | | -- | | \\
| | \ u2 / | \\
| | \\
| / -1 \ / 1 \ / u1 \ | \\
| | -- | | -- | | -- | | \\
| \ u2 / \ u2 / | | 2 | | \\
| | \ u2 / | \\
\ /
> E4i <- Inverse(E4)
> Simplify(E4i)
expression(list(list(1/u1, 0, -1/u2), list(0, 0, 1/u2), list(-1/u2, 1/u2, u1/u2^2)))
> PrettyForm(Simplify(E4i))
```
/ \  \\ 1 \ ( 0 ) / -1 \ \\
\ | -- | | -- | |
\ | u1 / \ u2 / |
\ | ( 0 ) ( 0 ) / 1 \ |
\ | | | | |
\ | \ u2 / |
\ | / -1 \ 1 \ // u1 \\
\ | | | | | |
\ | \ u2 / \ u2 / \ 2 /
\ | \ u2 / \\
\ \
```

6.2 Determinant

> yacas("Determinant(E4)"")
expression(-(u1 * u2^2))
> yacas("Determinant(E4i)"")
expression(-(u1 * u2^3)/(u1 * u2^2)^3)
> yacas("Simplify(E4i)"")
expression(list(list(1/u1, 0, -1/u2), list(0, 0, 1/u2), list(-1/u2, 1/u2, u1/u2^2)))
> yacas("Simplify(Determinant(E4i))"")
exression(-1/(u1 * u2^2))

> determinant(E4)
expression(-(u1 * u2^2))
> determinant(E4i)
expression(-(u1 * u2^3)/(u1 * u2^2)^3)
> Simplify(E4i)
expression(list(list(1/u1, 0, -1/u2), list(0, 0, 1/u2), list(-1/u2, 1/u2, u1/u2^2)))
> Simplify(determinant(E4i))
exression(-1/(u1 * u2^2))

7 Miscellaneous

Note that the value returned by yacas can be of different types:
> yacas(expression(Factor(x^2 - 1)), retclass = "unquote")
"*" ("+" (x 1),"-" (x 1))
> yacas(expression(Factor(x^2 - 1)), retclass = "character")
"*" ("+" (x 1),"-" (x 1))