Package ‘SASmixed’

February 19, 2015

Title Data sets from "SAS System for Mixed Models"
Version 1.0-4
Date 2014-03-11
Maintainer Steven Walker <steve.walker@utoronto.ca>
Contact LME4 Authors <lme4-authors@lists.r-forge.r-project.org>
Author Original by Littell, Milliken, Stroup, and Wolfinger,
modifications by Douglas Bates <bates@stat.wisc.edu>, Martin Maechler,
Ben Bolker and Steven Walker
Description Data sets and sample lmer analyses corresponding
 to the examples in Littell, Milliken, Stroup and Wolfinger
Depends R (>= 2.14.0),
Suggests lme4, lattice
LazyData yes
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2014-03-11 16:41:14

R topics documented:

Animal .. 2
AvgDailyGain .. 3
BIB ... 4
Bond .. 5
Cultivation ... 5
Demand ... 6
Genetics .. 7
HR ... 8
IncBlk .. 9
Mississippi ... 10
Description

The `Animal` data frame has 20 rows and 3 columns giving the average daily weight gains for animals with different genetic backgrounds.

Format

This data frame contains the following columns:

- **Sire**: a factor denoting the sire. (5 levels)
- **Dam**: a factor denoting the dam. (2 levels)
- **AvgDailyGain**: a numeric vector of average daily weight gains

Details

This appears to be a constructed data set.

Source

Examples

```r
str(Animal)
```
Description

The `AvgDailyGain` data frame has 32 rows and 6 columns.

Format

This data frame contains the following columns:

- **Id**: the animal number
- **Block**: an ordered factor indicating the barn in which the steer was housed.
- **Treatment**: an ordered factor with levels $0 < 10 < 20 < 30$ indicating the amount of medicated feed additive added to the base ration.
- **adg**: a numeric vector of average daily weight gains over a period of 160 days.
- **InitWt**: a numeric vector giving the initial weight of the animal
- **Trt**: the treatment as a numeric variable

Source

Examples

```r
str(AvgDailyGain)
if (require("lattice", quietly = TRUE, character = TRUE)) {
  # plot of adg versus Treatment by Block
  xyplot(adg ~ Treatment | Block, AvgDailyGain, type = c("g", "p", "r"),
         xlab = "Treatment (amount of feed additive)",
         ylab = "Average daily weight gain (lb.)", aspect = "xy",
         index.cond = function(x, y) coef(lm(y ~ x))[1])
}
if (require("lme4", quietly = TRUE, character = TRUE)) {
  options(contrasts = c(unordered = "contr.SAS", ordered = "contr.poly"))
  # compare with output 5.1, p. 178
  print(fmlinAdg <- lmer(adg ~ InitWt * Treatment - 1 + (1 | Block),
                         AvgDailyGain))
  print(anova(fmlinAdg))  # checking significance of terms
  print(fm2Adg <- lmer(adg ~ InitWt + Treatment + (1 | Block),
                       AvgDailyGain))
  print(anova(fm2Adg))
  print(lmer(adg ~ InitWt + Treatment - 1 + (1 | Block), AvgDailyGain))
}
```
BIB
Data from a balanced incomplete block design

Description

The BIB data frame has 24 rows and 5 columns.

Format

This data frame contains the following columns:

Block an ordered factor with levels 1 < 2 < 3 < 8 < 5 < 4 < 6 < 7

Treatment a treatment factor with levels 1 to 4.

y a numeric vector representing the response

x a numeric vector representing the covariate

Grp a factor with levels 13 and 24

Details

These appear to be constructed data.

Source

Examples

```r
str(BIB)
if (require("lattice", quietly = TRUE, character = TRUE)) {
  xyplot(y ~ x | Block, BIB, groups = Treatment, type = c("g", "p"),
          aspect = "xy", auto.key = list(points = TRUE, space = "right",
          lines = FALSE))
}
if (require("lme4", quietly = TRUE, character = TRUE)) {
  options(contrasts = c(unordered = "contr.SAS", ordered = "contr.poly"))
  # compare with Output 5.7, p. 188
  print(fm1BIB <- lmer(y ~ Treatment * x + (1 | Block), BIB))
  print(anova(fm1BIB))  # strong evidence of different slopes
  # compare with Output 5.9, p. 193
  print(fm2BIB <- lmer(y ~ Treatment + x : Grp + (1 | Block), BIB))
  print(anova(fm2BIB))
}
```
Bond

Description
The Bond data frame has 21 rows and 3 columns of data on the strength required to break metal bonds according to the metal and the ingot.

Format
This data frame contains the following columns:

- **pressure**: a numeric vector of pressures required to break the bond
- **Metal**: a factor with levels c, i and n indicating the metal involved (copper, iron or nickel).
- **Ingot**: an ordered factor indicating the ingot of the composition material.

Source

Examples

```r
str(Bond)
options(contrasts = c(unordered = "contr.SAS", ordered = "contr.poly"))
if (require("lme4", quietly = TRUE, character = TRUE)) {
  ## compare with output 1.1 on p. 6
  print(fm1Bond <- lmer(pressure ~ Metal + (1|Ingot), Bond))
  print(anova(fm1Bond))
}
```

Cultivation

Description
The Cultivation data frame has 24 rows and 4 columns of data from an experiment on the effect on dry weight yield of three bacterial inoculation treatments applied to two grass cultivars.
Demand

Format

This data frame contains the following columns:

- **Block**: a factor with levels 1 to 4
- **Cult**: the cultivar factor with levels a and b
- **Inoc**: the innoculant factor with levels con, dea and liv
- **drywt**: a numeric vector of dry weight yields

Source

Examples

```r
str(Cultivation)
xtabs(~Block+Cult, Cultivation)
if (require("lme4", quietly = TRUE, character = TRUE)) {
  options(contrasts = c(unordered = "contr.SAS", ordered = "contr.poly"))
  ## compare with Output 2.10, page 58
  print(fm1Cult <- lmer(drywt ~ Inoc * Cult + (1|Block) + (1|Cult),
                        Cultivation))
  print(anova(fm1Cult))
  print(fm2Cult <- lmer(drywt ~ Inoc + Cult + (1|Block) + (1|Cult),
                        Cultivation))
  print(anova(fm2Cult))
  print(fm3Cult <- lmer(drywt ~ Inoc + (1|Block) + (1|Cult), Cultivation))
  print(anova(fm3Cult))
}
```

Per-capita demand deposits by state and year

Description

The Demand data frame has 77 rows and 8 columns of data on per-capita demand deposits by state and year.

Format

This data frame contains the following columns:

- **State**: an ordered factor with levels WA < FL < CA < TX < IL < DC < NY
- **Year**: an ordered factor with levels 1949 < ... < 1959
- **d**: a numeric vector of per-capita demand deposits
y a numeric vector of permanent per-capita personal income
rd a numeric vector of service charges on demand deposits
rt a numeric vector of interest rates on time deposits
rs a numeric vector of interest rates on savings and loan association shares.

Source

Examples

```r
str(Demand)
if (require("lme4", quietly = TRUE, character = TRUE)) {
  ## compare to output 3.13, p. 132
  summary(fmDemand <-
    lmer(log(d) ~ log(y) + log(rd) + log(rt) + log(rs) + (1|State) + (1|Year),
         Demand))
}
```

Genetics Heritability data

Description

The Genetics data frame has 60 rows and 4 columns.

Format

This data frame contains the following columns:

- **Location** a factor with levels 1 to 4
- **Block** a factor with levels 1 to 3
- **Family** a factor with levels 1 to 5
- **Yield** a numeric vector of crop yields

Source

Examples

```r
str(Genetics)
if (require("lme4", quietly = TRUE, character = TRUE)) {
  options(contrasts = c(unordered = "contr.SAS", ordered = "contr.poly"))
  summary(fm1Gen <- lmer(Yield ~ Family + (1|Location/Block), Genetics))
}
```

HR
Heart rates of patients on different drug treatments

Description

The HR data frame has 120 rows and 5 columns of the heart rates of patients under one of three possible drug treatments.

Format

This data frame contains the following columns:

- **Patient** an ordered factor indicating the patient.
- **Drug** the drug treatment - a factor with levels a, b and p where p represents the placebo.
- **baseHR** the patient's base heart rate
- **HR** the observed heart rate at different times in the experiment
- **Time** the time of the observation

Source

Examples

```r
str(HR)
if (require("lattice", quietly = TRUE, character = TRUE)) {
  xyplot(HR ~ Time | Patient, HR, type = c("g", "p", "r"), aspect = "xy",
         index.cond = function(x, y) {coef(lm(y ~ x))[1]},
         ylab = "Heart rate (beats/min)"
  )
}
if (require("lme4", quietly = TRUE, character = TRUE)) {
  options(contrasts = c(unordered = "contr.SAS", ordered = "contr.poly"))
  ## linear trend in time
  print(fm1HR <- lmer(HR ~ Time * Drug + baseHR + (Time|Patient), HR))
  print(anova(fm1HR))
  ## Not run:
  fm2HR <- update(fm1HR, weights = varPower(0.5))  # use power-of-mean variance
  summary(fm2HR)
  intervals(fm2HR)  # variance function does not seem significant
  anova(fm1HR, fm2HR)  # confirm with likelihood ratio
```
IncBlk

An unbalanced incomplete block experiment

Description

The IncBlk data frame has 24 rows and 4 columns.

Format

This data frame contains the following columns:

- **Block** an ordered factor giving the block
- **Treatment** a factor with levels 1 to 4
 - **y** a numeric vector
 - **x** a numeric vector

Details

These data are probably constructed data.

Source

Examples

```r
str(IncBlk)
```
Nitrogen concentrations in the Mississippi River

Description

The Mississippi data frame has 37 rows and 3 columns.

Format

This data frame contains the following columns:

- **influent**: an ordered factor with levels 3 < 5 < 2 < 1 < 4 < 6
- **y**: a numeric vector
- **Type**: a factor with levels 1 2 3

Source

Examples

```r
str(Mississippi)
if (require("lattice", quietly = TRUE, character = TRUE)) {
  dotplot(drop(influent:Type) ~ y, groups = Type, Mississippi)
}
if (require("lme4", quietly = TRUE, character = TRUE)) {
  options(contrasts = c(unordered = "contr.SAS", ordered = "contr.poly"))
  ## compare with output 4.1, p. 142
  print(fm1Miss <- lmer(y ~ 1 + (1|influent), Mississippi))
  ## compare with output 4.2, p. 143
  print(fm1MLMiss <- update(fm1Miss, REML=FALSE))
  ## BLUP's of random effects on p. 142
  ranef(fm1Miss)
  ## BLUP's of random effects on p. 144
  print(ranef(fm1MLMiss))
  #intervals(fm1Miss)  # interval estimates of variance components
  ## compare to output 4.8 and 4.9, pp. 150-152
  print(fm2Miss <- lmer(y ~ Type+(1|influent), Mississippi, REML=TRUE))
  print(anova(fm2Miss))
}
```
A multilocation trial

Description

The Multilocation data frame has 108 rows and 7 columns.

Format

This data frame contains the following columns:

- **obs**: a numeric vector
- **Location**: an ordered factor with levels B < D < E < I < G < A < C < F < H
- **Block**: a factor with levels 1 to 3
- **Trt**: a factor with levels 1 to 4
- **Adj**: a numeric vector
- **Fe**: a numeric vector
- **Grp**: an ordered factor with levels B/O1 < B/OR < B/OS < D/O1 < D/OR < D/OS < E/O1 < E/OR < E/OS < I/O1 < I/OR < I/OS < G/O1 < G/OR < G/OS < A/O1 < A/OR < A/OS < C/O1 < C/OR < C/OS < F/O1 < F/OR < F/OS < H/O1 < H/2 < H/3

Source

Examples

```r
str(Multilocation)
if (require("lme4", quietly = TRUE, character = TRUE)) {
  options(contrasts = c(unordered = "contr.SAS", ordered = "contr.poly"))
  Multilocation$Grp <- with(Multilocation, Block:Location)
  print(fm1Mult <- lmer(Adj ~ Location * Trt + (1|Grp), Multilocation))
  print(anova(fm1Mult))
  print(fm2Mult <- lmer(Adj ~ Location + Trt + (1|Grp), Multilocation), corr=FALSE)
  print(fm3Mult <- lmer(Adj ~ Location + (1|Grp), Multilocation), corr=FALSE)
  print(fm4Mult <- lmer(Adj ~ Trt + (1|Grp), Multilocation))
  print(fm5Mult <- lmer(Adj ~ 1 + (1|Grp), Multilocation))
  print(anova(fm2Mult))
  print(anova(fm1Mult, fm2Mult, fm3Mult, fm4Mult, fm5Mult))
  Multilocation$TrtR <- with(Multilocation, Location/Trt)
  print(fm1MultR <- lmer(Adj ~ Trt + (1|Location/Trt) + (1|Grp), Multilocation))
  print(anova(fm1MultR))
  print(fm2MultR <- lmer(Adj ~ Trt + (Trt - 1|Location) + (1|Block), Multilocation))
  ## Warning (not error ?!): Convergence failure in 10000 iter %__FIXME__
The PBIB data frame has 60 rows and 3 columns.

This data frame contains the following columns:

- **response**: a numeric vector
- **Treatment**: a factor with levels 1 to 15
- **Block**: an ordered factor with levels 1 to 15


Examples

```R
str(PBIB)
if (require("lme4", quietly = TRUE, character = TRUE)) {
 options(contrasts = c(unordered = "contr.SAS", ordered = "contr.poly"))
 ## compare with output 1.7 pp. 24-25
 print(fm1PBIB <- lmer(response ~ Treatment + (1|Block), PBIB))
 print(anova(fm1PBIB))
}
```
Semi2

Oxide layer thicknesses on semiconductors

Description

The Semi2 data frame has 72 rows and 5 columns.

Format

This data frame contains the following columns:

- **Source**: a factor with levels 1 and 2
- **Lot**: a factor with levels 1 to 8
- **Wafer**: a factor with levels 1 to 3
- **Site**: a factor with levels 1 to 3
- **Thickness**: a numeric vector

Source


Examples

```r
str(Semi2)
xtabs(~Lot + Wafer, Semi2)
if (require("lme4", quietly = TRUE, character = TRUE)) {
 options(contrasts = c(unordered = "contr.SAS", ordered = "contr.poly"))
 ## compare with output 4.13, p. 156
 print(fm1Semi2 <- lmer(Thickness ~ 1 + (1|Lot/Wafer), Semi2))
 ## compare with output 4.15, p. 159
 print(fm2Semi2 <- lmer(Thickness ~ Source + (1|Lot/Wafer), Semi2))
 print(anova(fm2Semi2))
 ## compare with output 4.17, p. 163
 print(fm3Semi2 <- lmer(Thickness ~ Source + (1|Lot/Wafer) + (1|Lot:Source),
 Semi2))
 ## This is not the same as the SAS model.
}
```
**Semiconductor split-plot experiment**

**Description**

The Semiconductor data frame has 48 rows and 5 columns.

**Format**

This data frame contains the following columns:

- **resistance** a numeric vector
- **ET** a factor with levels 1 to 4 representing etch time.
- **Wafer** a factor with levels 1 to 3
- **position** a factor with levels 1 to 4
- **Grp** an ordered factor with levels 1/1 < 1/2 < 1/3 < 2/1 < 2/2 < 2/3 < 3/1 < 3/2 < 3/3 < 4/1 < 4/2 < 4/3

**Source**


**Examples**

```r
str(Semiconductor)
if (require("lme4", quietly = TRUE, character = TRUE)) {
 options(contrasts = c(unordered = "contr.SAS", ordered = "contr.poly"))
 print(fmlSemi <- lmer(resistance ~ ET * position + (1|Grp), Semiconductor))
 print(anova(fmlSemi))
 print(fml2Semi <- lmer(resistance ~ ET + position + (1|Grp), Semiconductor))
 print(anova(fml2Semi))
}
```

**SIMS**

**Second International Mathematics Study data**

**Description**

The SIMS data frame has 3691 rows and 3 columns.
Format

This data frame contains the following columns:

- **Pretot** a numeric vector giving the student’s pre-test total score
- **Gain** a numeric vector giving gains from pre-test to the final test
- **Class** an ordered factor giving the student’s class

Source


Examples

```r
str(SIMS)
if (require("lme4", quietly = TRUE, character = TRUE)) {
 options(contrasts = c(unordered = "contr.SAS", ordered = "contr.poly"))
 ## compare to output 7.4, p. 262
 print(fm1SIMS <- lmer(Gain ~ Pretot + (Pretot | Class), data = SIMS))
 print(anova(fm1SIMS))
}
```

Description

The TeachingI data frame has 96 rows and 7 columns.

Format

This data frame contains the following columns:

- **Method** a factor with levels 1 to 3
- **Teacher** a factor with levels 1 to 4
- **Gender** a factor with levels f and m
- **Student** a factor with levels 1 to 4
- **score** a numeric vector
- **Experience** a numeric vector
- **uTeacher** an ordered factor with levels

Source

Examples

str(TeachingII)

---

TeachingII  Teaching Methods II

Description

The TeachingII data frame has 96 rows and 6 columns.

Format

This data frame contains the following columns:

- Method  a factor with levels 1 to 3
- Teacher  a factor with levels 1 to 4
- Gender  a factor with levels f and m
- IQ  a numeric vector
- score  a numeric vector
- uTeacher  an ordered factor with levels

Source


Examples

str(TeachingII)

---

WaferTypes  Data on different types of silicon wafers

Description

The WaferTypes data frame has 144 rows and 8 columns.
**Weights**

**Format**

This data frame contains the following columns:

- **Group** a factor with levels 1 to 4
- **Temperature** an ordered factor with levels 900 < 1000 < 1100
- **Type** a factor with levels A and B
- **Wafer** a numeric vector
- **Site** a numeric vector
- **delta** a numeric vector
- **Thick** a numeric vector
- **uWafer** an ordered factor giving a unique code to each group, temperature, type and wafer combination.

**Source**


**Examples**

```r
str(WaferTypes)
```

---

**Weights**

*Data from a weight-lifting program*

**Description**

The *Weights* data frame has 399 rows and 5 columns.

**Format**

This data frame contains the following columns:

- **strength** a numeric vector
- **Subject** a factor with levels 1 to 21
- **Program** a factor with levels CONT (continuous repetitions and weights), RI (repetitions increasing) and WI (weights increasing)
- **Subj** an ordered factor indicating the subject on which the measurement is made
- **Time** a numeric vector indicating the time of the measurement

**Source**

Examples

```r
str(Weights)
if (require("lme4", quietly = TRUE, character = TRUE)) {
 options(contrasts = c(unordered = "contr.SAS", ordered = "contr.poly"))
 ## compare with output 3.1, p. 91
 print(fm1Weight <- lmer(strength ~ Program * Time + (1|Subj), Weights))
 print(anova(fm1Weight))
 print(fm2Weight <- lmer(strength ~ Program * Time + (Time|Subj), Weights))
 print(anova(fm1Weight, fm2Weight))
 ## Not run:
 intervals(fm2Weight)
 fm3Weight <- update(fm2Weight, correlation = corAR1())
 anova(fm2Weight, fm3Weight)
 fm4Weight <- update(fm3Weight, strength ~ Program * (Time + I(Time^2)),
 random = ~Time|Subj)
 summary(fm4Weight)
 anova(fm4Weight)
 intervals(fm4Weight)
 ## End(Not run)
}
```

**WWheat**

Winter wheat

Description

The WWheat data frame has 60 rows and 3 columns.

Format

This data frame contains the following columns:

- **Variety** an ordered factor with 10 levels
- **Yield** a numeric vector of yields
- **Moisture** a numeric vector of soil moisture contents

Source


Examples

```r
str(WWheat)
```
Index

*Topic** datasets
   Animal, 2
   AvgDailyGain, 3
   BIB, 4
   Bond, 5
   Cultivation, 5
   Demand, 6
   Genetics, 7
   HR, 8
   IncBlk, 9
   Mississippi, 10
   Multilocation, 11
   ordered, 11
   PBIB, 12
   Semi2, 13
   Semiconductor, 14
   SIMS, 14
   TeachingI, 15
   TeachingII, 16
   WaferTypes, 16
   Weights, 17
   WWheat, 18

Animal, 2
AvgDailyGain, 3
BIB, 4
Bond, 5
Cultivation, 5
Demand, 6
factor, 11
Genetics, 7
HR, 8
IncBlk, 9
Mississippi, 10