Package ‘SBSA’

February 19, 2015

Type Package
Title Simplified Bayesian Sensitivity Analysis
Version 0.2.3
Date 31 January 2014
Author Davor Cubranic and Paul Gustafson
Maintainer Davor Cubranic <cubranic@stat.ubc.ca>
Description Simplified Bayesian Sensitivity Analysis
URL http://sbsa.r-forge.r-project.org/
License GPL (>= 3)
LazyLoad yes
Depends R (>= 3.0.2)
Imports Rcpp (>= 0.8.6)
Suggests MASS, xtable
LinkingTo Rcpp (>= 0.8.6), RcppArmadillo (>= 0.2.6)
SystemRequirements GNU make
NeedsCompilation yes
Repository CRAN
Date/Publication 2014-01-31 21:47:18

R topics documented:

SBSA-package ... 2
fitSBSA ... 2

Index 6
SBSA-package

Simplified Bayesian Sensitivity Analysis

Description

Simplified Bayesian sensitivity analysis of models with partially observed confounders.

Details

The SBSA package is an implementation of algorithms for simplified Bayesian sensitivity analysis described in Gustafson *et al* (2010). It has one entry function, `fitSBSA`. For more details refer to the relevant help files.

Author(s)

Davor Cubranic <cubranic@stat.ubc.ca> and Paul Gustafson <gustaf@stat.ubc.ca>
Maintainer: Davor Cubranic <cubranic@stat.ubc.ca>

References

See Also

`fitSBSA`

Examples

```r
## see examples for fitSBSA
```

fitSBSA

Fitting Simplified Bayesian Sensitivity Models

Description

Conducts sensitivity analysis over a model involving unobserved and poorly measured covariates.

Usage

```r
fitSBSA(y, x, w, a, b, k2=NULL, e12=NULL, cor.alpha=0, sd.alpha=1e+06, nrep=5000, sampler.jump=c(alpha=.15, beta.z=.1, sigma.sq=.5, tau.sq=.05, beta.u.gamma.x=.3, gamma.z=.15), q.steps=25, family=c("continuous", "binary"))
```
Arguments

\(y \)
- a vector of outcomes

\(x \)
- a (standardized) vector of exposures

\(w \)
- a (standardized) matrix of noisy measurements

\(a \)
- parameter of the prior for magnitude of measurement error on confounder \(Z_j \)

\(b \)
- parameter of the prior for magnitude of measurement error on confounder \(Z_j \)

\(k2 \)
- (optional) magnitude of prior uncertainty about \((U|X, Z) \) regression coefficients

\(e12 \)
- (optional) residual variance for \((U|X, Z) \)

\(\text{cor}.\alpha \)
- (optional) value of the \(\rho \) parameter of the bivariate normal prior for \(\alpha \)

\(\text{sd}.\alpha \)
- (optional) value of the \(\sigma \) parameter of the bivariate normal prior for \(\alpha \)

\(\text{nrep} \)
- number of MCMC steps

\(\text{sampler}.\text{jump} \)
- named vector of standard deviation of
 - \(\text{alpha} \) jump for block reparametrizing \(\alpha \)
 - \(\text{beta}.z \) jump for block reparametrizing \(\beta_z \)
 - \(\text{sigma}.sq \) (continuous case only) jump for block reparametrizing \(\sigma^2 \)
 - \(\text{tau}.sq \) jump for block reparametrizing \(\tau^2 \)
 - \(\text{beta}.u\.gamma.x \) jump for block reparametrizing \(\beta_u \) and \(\gamma_z \)
 - \(\text{gamma}.z \) jump for block reparametrizing \(\gamma_z \)

\(\text{q.steps} \)
- number of steps in numeric integration of likelihood (only used for binary outcome variables)

\(\text{family} \)
- a character string indicating the assumed distribution of the outcome. Valid values are "continuous", the default, or "binary".

Details

The function uses a simplified Bayesian sensitivity analysis algorithm that models the outcome variable \(Y \) in terms of exposure \(X \) and confounders \(Z = (Z_1, \ldots, Z_p) \) and \(U = (U_1, \ldots, U_q) \), where \(U \)s are unobserved, and \(Z \)s are measured imprecisely as \(W \)s. (I.e., the observed data is \((Y, X, W) \).) Parameters of the model are then estimated using MCMC with reparametrizing block-sampling. The estimated parameters are as follows:

\[
\begin{align*}
 \tau & \sim N_p(Z, \text{diag} \tau^2) \\
 \gamma_x, \gamma_z & \sim N(\gamma_x X + \gamma'_z Z) \\
 \alpha, \beta_u, \beta_z, \sigma & \sim N(\alpha_0 + \alpha_x X + \beta_u U + \beta'_z Z, \sigma^2)
\end{align*}
\]

Value

a list with the following elements:

\(\text{acc} \)
- a vector of counts of how many times each block sampler successfully made a jump. Vector elements are named by their block, as in the \(\text{sampler}.\text{jump} \) argument.

\(\text{alpha} \)
- a \(\text{nrep} \times 2 \) matrix of the value of \(\alpha \) parameter at each MCMC step
fitSBSA

beta.z a nrep × p matrix of the value of βz parameter at each MCMC step
gamma.z a nrep × p matrix of the value of γz parameter at each MCMC step
tau.sq a nrep × p matrix of the value of τ2 parameter at each MCMC step
gamma.x a vector of the value of γx parameter at each MCMC step
beta.u a vector of the value of βu parameter at each MCMC step
sigma.sq a vector of the value of σ2 parameter at each MCMC step

References

Examples
simulated data example
n <- 1000

exposure and true confounders equi-correlated with corr=.6
tmp <- sqrt(.6)*matrix(rnorm(n),n,5) +
 sqrt(1-.6)*matrix(rnorm(n*5),n,5)
x <- tmp[,1]
z <- tmp[,2:5]

true outcome relationship
y <- rnorm(n, x + z%*%rep(.4, 4))

first two confounders are poorly measured, ICC=.7, .85
third is correctly measured, fourth is unobserved
w <- z[,1:3]
w[,1] <- w[,1] + rnorm(n, sd=sqrt(1/.7-1))
w[,2] <- w[,2] + rnorm(n, sd=sqrt(1/.85-1))

fitSBSA expects standardized exposure, noisy confounders
x.sdz <- (x-mean(x))/sqrt(var(x))
w.sdz <- apply(w, 2, function(x) {(x-mean(x))/sqrt(var(x))})

prior information: ICC very likely above .6, mode at .8
via Beta(5.21) distribution
fit <- fitSBSA(y, x.sdz, w.sdz, a=5, b=21, nrep=10000,
sampler.jump=c(alpha=.02, beta.z=.03,
sigma.sq=.05, tau.sq=.004,
beta.u.gamma.x=.4, gamma.z=.5))

check MCMC behaviour
print(fit$acc)
plot(fit$alpha[,2], pch=20)

inference on target parameter in original scale
trgt <- fit$alpha[1001:10000,2]/sqrt(var(x))
print(c(mean(trgt), sqrt(var(trgt))))
Index

*Topic **Bayesian inference**
 SBSA-package, 2

*Topic **Measurement error**
 SBSA-package, 2

*Topic **Sensitivity analysis**
 SBSA-package, 2

*Topic **TODO**
 fitSBSA, 2

*Topic **Unobserved confounder**
 SBSA-package, 2

fitSBSA, 2, 2

SBSA (SBSA-package), 2
SBSA-package, 2