Package ‘SIMMS’

Version 1.1.0

Type Package

Title Subnetwork Integration for Multi-Modal Signatures

Date 2017-09-06

Author Syed Haider, Michal Grzadkowski, Paul C. Boutros

Maintainer Syed Haider <Syed.Haider@oicr.on.ca>

Depends R (>= 2.15.0), survival (>= 2.36-2), MASS (>= 7.3-12), glmnet (>= 1.9-8)

Description Algorithms to create prognostic biomarkers using biological networks.

License GPL-2

LazyLoad yes

Suggests knitr (>= 1.4), rmarkdown (>= 0.9.5)

VignetteBuilder knitr

Imports xtable (>= 1.7-4)

NeedsCompilation no

Repository CRAN

Date/Publication 2017-09-06 11:22:05 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMMS-package</td>
<td>2</td>
</tr>
<tr>
<td>calculate.meta.survival</td>
<td>4</td>
</tr>
<tr>
<td>calculate.network.coefficients</td>
<td>5</td>
</tr>
<tr>
<td>calculate.sensitivity.stats</td>
<td>6</td>
</tr>
<tr>
<td>create.classifier.multivariate</td>
<td>7</td>
</tr>
<tr>
<td>create.classifier.univariate</td>
<td>8</td>
</tr>
<tr>
<td>create.KM.plot</td>
<td>9</td>
</tr>
<tr>
<td>create.sensitivity.plot</td>
<td>10</td>
</tr>
<tr>
<td>create.survivalplots</td>
<td>11</td>
</tr>
<tr>
<td>create.survobj</td>
<td>12</td>
</tr>
<tr>
<td>derive.network.features</td>
<td>14</td>
</tr>
</tbody>
</table>
SIMMS-package

SIMMS - Subnetwork Integration for Multi-Modal Signatures

Description

Algorithms to create prognostic biomarkers using biological networks

Details

- **Package:** SIMMS
- **Type:** Package
- **License:** GPL-2
- **LazyLoad:** yes

Author(s)

Syed Haider, Michal Grzadkowski & Paul C. Boutros

Examples

```r
options("warn" = -1);

# get data directory
data.directory <- get.program.defaults(networks.database = "test")[['test.data.dir']] ;

# initialise params
output.directory <- ".";
data.types <- c("mRNA");
feature.selection.datasets <- c("Breastdata1");
training.datasets <- c("Breastdata1");
```
validation.datasets <- c("Breastdata2");
feature.selection.p.thresholds <- c(0.5);
feature.selection.p.threshold <- 0.5;
learning.algorithms <- c("backward", "forward", "glm");
top.n.features <- 5;

compute network HRs for all the subnet features
derive.network.features(
 data.directory = data.directory,
 output.directory = output.directory,
 data.types = data.types,
 feature.selection.datasets = feature.selection.datasets,
 feature.selection.p.thresholds = feature.selection.p.thresholds,
 networks.database = "test"
);

preparing training and validation datasets.
Normalisation & patientwise subnet feature scores
prepare.training.validation.datasets(
 data.directory = data.directory,
 output.directory = output.directory,
 data.types = data.types,
 feature.selection.datasets = feature.selection.datasets,
 datasets = unique(c(training.datasets, validation.datasets)),
 networks.database = "test"
);

create classifier assessing univariate prognostic power of subnetwork modules (Train and Validate)
create.classifier.univariate(
 data.directory = data.directory,
 output.directory = output.directory,
 feature.selection.datasets = feature.selection.datasets,
 feature.selection.p.threshold = feature.selection.p.threshold,
 training.datasets = training.datasets,
 validation.datasets = validation.datasets,
 top.n.features = top.n.features
);

create a multivariate classifier (Train and Validate)
create.classifier.multivariate(
 data.directory = data.directory,
 output.directory = output.directory,
 feature.selection.datasets = feature.selection.datasets,
 feature.selection.p.threshold = feature.selection.p.threshold,
 training.datasets = training.datasets,
 validation.datasets = validation.datasets,
 learning.algorithms = learning.algorithms,
 top.n.features = top.n.features
);

(optional) plot Kaplan-Meier survival curves and perform senstivity analysis
if (FALSE){
 create.survivalplots(
calculate.meta.survival

Fit a meta-analytic Cox proportional hazards model to a single feature

Description

Takes a meta-analysis data object and fits a Cox proportional hazards model (possibly with adjustment for some specific covariates) by median-dichotomizing patients within each individual dataset.

Usage

```r
calculate.meta.survival(
  feature.name, expression.data,
  survival.data, rounding = 3, other.data = NULL,
  data.type.ordinal = FALSE
)
```

Arguments

- `feature.name`: Character indicating what feature (gene/probe/etc.) should be extracted for analysis
- `expression.data`: A list where each component is an expression matrix (patients = columns, genes = rows) for a different dataset
- `survival.data`: A list where each component is an object of class `Surv`
- `rounding`: How many digits after the decimal place to include
- `other.data`: A list of other covariates to be passed to the Cox model (all elements in this list are used)
- `data.type.ordinal`: Logical indicating whether to treat this datatype as ordinal. Defaults to FALSE

Value

Returns a vector containing the HR, p-value, n, and 95% confidence limits of the HR (see `fit.coxmodel()` for details)
calculate.network.coefficients

Author(s)

Paul C. Boutros

Examples

data.directory <- get.program.defaults()["test.data.dir"];
data.types <- c("mRNA");
x1 <- load.cancer.datasets(
datasets.to.load = c("Breastdata"),
data.types = data.types,
data.directory = data.directory
);
x2 <- calculate.meta.survival(
feature.name = "1000_at",
expression.data = x1$data[[data.types[1]]],
survival.data = x1$survobj
);

Arguments

data.directory Path to the directory containing datasets as specified by training.datasets
output.directory Path to the output folder where intermediate and results files will be saved
training.datasets A vector containing names of training datasets
data.types A vector of molecular datatypes to load. Defaults to c('mRNA')
data.types.ordinal A vector of molecular datatypes to be treated as ordinal. Defaults to c('cnv')
`calculate.sensitivity.stats` computes sensitivity measures: TP, FP, TN, FN, Sensitivity, Specificity, Accuracy. The function accepts a data matrix containing predicted and real risk groups.

Description

Computes sensitivity measures: TP, FP, TN, FN, Sensitivity, Specificity, Accuracy

Usage

```r
calculate.sensitivity.stats(all.data = NULL);
```

Arguments

- **all.data**: A data matrix containing predicted and real risk groups
create.classifier.multivariate

Value

A vector containing TP, FP, TN, FN, Sensitivity, Specificity, Accuracy

Author(s)

Syed Haider

create.classifier.multivariate

Trains and tests a multivariate survival model

Description

Trains a model on training datasets. Predicts the risk score for all the training & datasets, independently. This function also predicts the risk score for combined training datasets cohort and validation datasets cohort. The risk score estimation is done by multivariate models fit by fit.survivalmodel. The function also predicts risk scores for each of the top.n.features independently.

Usage

create.classifier.multivariate(
 data.directory = ".", output.directory = ".",
 feature.selection.datasets = NULL, feature.selection.p.threshold = 0.05,
 training.datasets = NULL, validation.datasets = NULL,
 top.n.features = 25, models = c("1", "2", "3"),
 learning.algorithms = c("backward", "forward"),
 alpha.glm = 1, k.fold.glm = 10, seed.cv.glm = 51214
);

Arguments

data.directory Path to the directory containing datasets as specified by feature.selection.datasets, training.datasets, validation.datasets

output.directory Path to the output folder where intermediate and results files will be saved

feature.selection.datasets A vector containing names of datasets used for feature selection in function derive.network.features()

feature.selection.p.threshold One of the P values that were used for feature selection in function derive.network.features(). This function does not support vector of P values as used in derive.network.features() for performance reasons

training.datasets A vector containing names of training datasets

validation.datasets A vector containing names of validation datasets
top.n.features A numeric value specifying how many top ranked features will be used for univariate survival modelling
models A character vector specifying which of the models ('1' = N+E, '2' = N, '3' = E) to run
learning.algorithms A character vector specifying which learning algorithm to be used for model fitting and feature selection. Defaults to c('backward', 'forward'). Available options are: c('backward', 'forward', 'glm')
alPHA.Nglm A numeric value specifying elastic-net mixing parameter alpha, with range alpha ranging from [0,1]. 1 for LASSO (default) and 0 for ridge
k.fold(glm) A numeric value specifying k-fold cross validation if glm was chosen in learning.algorithms
seed.cv(glm) A numeric value specifying seed for k-fold cross validation if glm was chosen in learning.algorithms

Value
The output files are stored under output.directory/output/

Author(s)
Syed Haider

Examples
see package's main documentation

create.classifier.univariate

Trains and tests a univariate (per subnetwork module) survival model

Description
Trains a model on training datasets. Predicts the risk score for all the training & datasets, independently. This function also predicts the risk score for combined training datasets cohort and validation datasets cohort. The risk score estimation is done by multivariate models fit by fit.survivalmodel. The function also predicts risk scores for each of the top.n.features independently.

Usage
create.classifier.univariate(
 data.directory = ".", output.directory = ".",
 feature.selection.datasets = NULL, feature.selection.p.threshold = 0.05,
 training.datasets = NULL, validation.datasets = NULL,
 top.n.features = 25, models = c("1", "2", "3")
);
create.KM.plot

Arguments

 data.directory Path to the directory containing datasets as specified by feature.selection.datasets, training.datasets, validation.datasets
 output.directory Path to the output folder where intermediate and results files will be saved
 feature.selection.datasets
 A vector containing names of datasets used for feature selection in function derive.network.features()
 feature.selection.p.threshold
 One of the P values that were used for feature selection in function derive.network.features().
 This function does not support vector of P values as used in derive.network.features() for performance reasons
 training.datasets
 A vector containing names of training datasets
 validation.datasets
 A vector containing names of validation datasets
 top.n.features A numeric value specifying how many top ranked features will be used for univariate survival modelling
 models
 A character vector specifying which of the models (‘1’ = N+E, ‘2’ = N, ‘3’ = E) to run

Value

The output files are stored under output.directory/output/

Author(s)

 Syed Haider

Examples

 # see package's main documentation

```
create.KM.plot
```

Plots Kaplan-meier survival curve for a given risk grouping & survival params

Description

A generic method to plot KM curves

Usage

 create.KM.plot(riskgroup = NULL, survtime = NULL, survstat = NULL, file.name = NULL, main.title = "", resolution = 100);
Arguments

- **riskgroup**: A vector containing dichotomized risk groups
- **survtime**: A vector containing survival time of the samples
- **survstat**: A vector containing survival status of the samples
- **file.name**: A string containing full qualified path of the output tiff file
- **main.title**: A string specifying main title of the image
- **resolution**: A numeric value specifying resolution of the tiff image of KM survival curves. Defaults to 100

Value

The KM survival curves are stored under `output.dir/graphs/`

Author(s)

Syed Haider

create.sensitivity.plot

Plots sensitivity analysis for class label dichotomization at supplied survtime cutoffs

Description

A method to computer sensitivity, specificity and accuracy at all the survtime cutoff steps provided

Usage

```r
create.sensitivity.plot(  
  riskscore = NULL, riskgroup = NULL, survtime = NULL, survstat = NULL,  
  survtime.cutoffs = c(seq(5,10,1)), output.directory = ",", file.stem = NULL,  
  main.title = "", resolution = 100  
);
```

Arguments

- **riskscore**: A vector containing predicted risk scores
- **riskgroup**: A vector containing dichotomized risk groups
- **survtime**: A vector containing survival time of the samples
- **survstat**: A vector containing survival status of the samples
- **survtime.cutoffs**: A vector containing cutoff time points used to dichotomize patients into low- and high-risk groups
create.survivalplots

output.directory
Path to the output folder where intermediate and results files will be saved

file.stem
A string containing base name for image and text files produced by this method

main.title
A string specifying main title of the image

resolution
A numeric value specifying resolution of the tiff image of KM survival curves. Defaults to 100

Value
The sensitivity analysis plots are stored under output.directory/graphs/. The sensitivity analysis results are stored under output.directory/output/

Author(s)
Syed Haider

create.survivalplots Plots Kaplan-meier survival curves

Description
Plots Kaplan-meier survival curves for all the training & datasets, independently as well as combined training datasets cohort and validation datasets cohort. The function also plots KM survival curves for each of the top.n.features independently.

Usage
create.survivalplots(
 data.directory = ".", output.directory = ".", training.datasets = NULL,
 validation.datasets = NULL, top.n.features = 25,
 learning.algorithms = c("backward", "forward"),
 truncate.survival = 100, survt ime.cutoffs = c(seq(5,10,1)),
 main.title = FALSE, KM.plotting.fun = "create.KM.plot",
 plot.univariate.data = FALSE, plot.multivariate.data = TRUE,
 resolution = 100
);

Arguments
data.directory Path to the directory containing datasets as specified by training.datasets, validation.datasets
output.directory Path to the output folder where intermediate and results files were saved
training.datasets A vector containing names of training datasets
validation.datasets A vector containing names of validation datasets
top.n.features A numeric value specifying how many top ranked features will be used for univariate survival modelling

learning.algorithms A character vector specifying which learning algorithm to be used for model fitting and feature selection. Defaults to c('backward', 'forward'). Available options are: c('backward', 'forward', 'glm')

truncate.survival A numeric value specifying survival truncation in years. Defaults to 100 years which effectively means no truncation

survtime.cutoffs A vector containing survival cutoff time points to be used for dichotomization of patients into risk groups for sensitivity analysis

main.title A logical to specify plot’s main title. Defaults to FALSE

KM.plotting.fun A string containing the name of the method to use for plotting KM curves.Defaults to create.KM.plot

plot.univariate.data Logical to indicate whether to plot univariate results for all subnetworks. Default to FALSE

plot.multivariate.data Logical to indicate whether to plot multivariate results for all subnetworks. Defaults to TRUE

resolution A numeric value specifying resolution of the png images of KM survival curves. Defaults to 100

Value

The KM survival curves are stored under output.directory/graphs/

Author(s)

Syed Haider

Examples

 # see package's main documentation

create.survobj Utility function for loading meta-analysis lists

Description

Create Surv objects from an annotation-matrix with handling for different time units.
create.survobj

Usage

create.survobj(
 annotation = NULL, truncate.survival = 100
);

Arguments

 annotation A patient annotation matrix (patients = rows) with (at least) columns for surv-
time, survstat, and survtime.unit

 truncate.survival A numeric value specifying survival truncation in years. Defaults to 100 years
which effectively means no truncation

Value

Returns an object of class Surv

Author(s)

Paul C. Boutros

Examples

annotation.file <- paste(
 get.program.defaults()[["test.data.dir"]],
 "/Breastdata2/patient_annotation.txt", sep = ""n"
);
annotation <- read.table(
 annotation.file,
 header = TRUE,
 row.names = 1,
 sep = "\t"
);

select the appropriate survtime and survstat variable for this dataset
annotation$survstat <- annotation[, 'e.dfs'];
annotation$survtime <- annotation[, 't.dfs'];
annotation$survtime.unit <- annotation[, 't.dfs.unit'];

only keep samples with survival data
annotation <- annotation[!is.na(annotation$survstat) & !is.na(annotation$survstat),];

call.surv.obj <- create.survobj(annnotation = annotation);
derive.network.features

Derive univariate features from pathway-derived networks

Description

This function fits Cox model to features as well as interaction between features. The coefficients of features are subsequently used to compute impact score of each of the pathway-derived networks.

Usage

```r
derive.network.features(
  data.directory = ".", output.directory = ".",
  data.types = c("mRNA"), data.types.ordinal = c("cnv"),
  feature.selection.fun = "calculate.network.coefficients",
  feature.selection.datasets = NULL,
  feature.selection.p.thresholds = c(0.05), truncate.survival = 100,
  networks.database = "default", subset = NULL, ...
)
```

Arguments

data.directory Path to the directory containing datasets as specified by feature.selection.datasets
output.directory Path to the output folder where intermediate and results files will be saved
data.types A vector of molecular datatypes to load. Defaults to c('mRNA')
data.types.ordinal A vector of molecular datatypes to be treated as ordinal. Defaults to c('cnv')
feature.selection.fun Name of the function to be used to estimate network coefficients. Defaults to 'calculate.network.coefficients'
feature.selection.datasets A vector containing names of training datasets to be used to compute cox statistics
feature.selection.p.thresholds A vector containing P values to be used as threshold for including features into overall impact score of a network
truncate.survival A numeric value specifying survival truncation in years. Defaults to 100 years which effectively means no truncation
networks.database Name of the pathway networks database. Default to NCI PID/Reactome/Biocarta i-e "default"
subset A list with a Field and Entry component specifying a subset of patients to be selected from each dataset whose annotation Field matches Entry
... other params to be passed on to user-defined method for estimating coefficients of network features
dichotomize.dataset

Value

The output files are stored under `data.directory/output/`

Author(s)

Syed Haider

Examples

```r
options("warn" = -1);

# get data directory
data.directory <- get.program.defaults(networks.database = "test")[["test.data.dir"]]

# initialise params
output.directory <- ".";
data.types <- c("mRNA");
feature.selection.datasets <- c("Breastdata1");
feature.selection.p.thresholds <- c(0.05);

# estimate network coefficients for all the subnet features
derive.network.features(
  data.directory = data.directory,
  output.directory = output.directory,
  data.types = data.types,
  feature.selection.fun = "calculate.network.coefficients",
  feature.selection.datasets = feature.selection.datasets,
  feature.selection.p.thresholds = feature.selection.p.thresholds,
  networks.database = "test"
);
```

dichotomize.dataset
Dichotomize a single dataset

Description

Split a dataset into two groups by median-dichotomization

Usage

```r
dichotomize.dataset(x, split.at = NA);
```

Arguments

- `x` A vector of values to be dichotomized
- `split.at` An optional value that can be used to dichotomize instead of median
dichotomize.meta.dataset

Value
A vector of the data dichotomized onto a 0/1 (low/high) scale.

Author(s)
Syed Haider & Paul C. Boutros

Examples
```
tmp <- data.frame(y = rnorm(100));
tmp$x <- dichotomize.meta.dataset(tmp$y);
```

dichotomize.meta.dataset

Dichotomize and unlist a meta-analysis list

Description
Takes a meta-analysis list (and possibly extra data) and median dichotomizes based on a specific gene, then returns the unlisted data to the caller.

Usage
```
dichotomize.meta.dataset(
  feature.name, expression.data,
  survival.data, other.data = NULL,
  data.type.ordinal = FALSE
);
```

Arguments
- **feature.name** Character indicate what feature (gene/probe/etc.) should be extracted for analysis
- **expression.data** A list where each component is an expression matrix (patients = columns, genes = rows) for a different dataset
- **survival.data** A list where each component is an object of class Surv
- **other.data** A list of other covariates to be unlisted in the final output (all elements in this list are used)
- **data.type.ordinal** Logical indicating whether to treat this datatype as ordinal. Defaults to FALSE

Details
NB: other.data handling of missing components (i.e. those present in only some datasets) has not been debugged (but may work regardless).
Value

Returns a list containing components groups (the median dichotomization), survtime (in the units of the input data), and survstat. Additional vectors are unlisted from other.data if that parameter is not NULL.

Author(s)

Paul C. Boutros

Examples

data.directory <- get.program.defaults()["test.data.dir"];
data.types <- c("mRNA");
x1 <- load.cancer.datasets(
 datasets.to.load = c('Breastdata1'),
 data.types = data.types,
 data.directory = data.directory
);
x2 <- dichotomize.meta.dataset(
 feature.name = "1000_at",
 expression.data = x1$all.data[[data.types[1]]],
 survival.data = x1$all.survobj
);

fit.coxmodel

Fit a Cox proportional hazards model

Description

Fit a Cox model (possibly with some linear adjustments) and return key statistics about the fit.

Usage

fit.coxmodel(
 groups, survobj, stages = NA,
 rounding = 3, other.data = NULL,
 data.type.ordinal = FALSE
);

Arguments

groups Grouping of patients (passed directly to coxph, so factors & continuous variables are okay)
survobj An object of class Surv (from the survival package) – patient ordering needs to be identical as for groups
stages DEPRECATED! Use other.data instead.
rounding How many digits of precision should be returned?
other.data A data-frame (or matrix?) of variables to be controlled in the Cox model. If null, no adjustment is done. No interactions are fit.

data.type.ordinal Logical indicating whether to treat this datatype as ordinal. Defaults to FALSE

Value

A list containing two elements. cox.stats containing a vector or matrix: HR, lower 95% CI of HR, upper 95% CI of HR, P-value (for groups), number of samples (total with group assignments, although some may not be included in fit for other reasons so this is an upper-limit). cox.obj containing coxph model object

Author(s)

Paul C. Boutros

Examples

```r
survtime <- sample(seq(0.1,10,0.1), 100, replace = TRUE);
survstat <- sample(c(0,1), 100, replace = TRUE);
survobj <- Surv(survtime, survstat);
groups <- sample(c('A','B'), 100, replace = TRUE);
fit.coxmodel(
    groups = as.factor(groups),
    survobj = survobj
);
```

```r
fit.interaction.model Cox model two features separately and together
```

Description

Using a meta-analysis dataset take two features and Cox model them separately and together and extract HRs and p-values.

Usage

```r
fit.interaction.model(
    feature1, feature2,
    expression.data, survival.data,
    data.type.ordinal = FALSE
);
```
Arguments

- **feature1**: String indicating what feature (gene/probe/etc.) should be extracted for analysis.
- **feature2**: String indicating what feature (gene/probe/etc.) should be extracted for analysis.
- **expression.data**: A list where each component is an expression matrix (patients = columns, features = rows) for a different dataset.
- **survival.data**: A list where each component is an object of class Surv.
- **data.type.ordinal**: Logical indicating whether to treat this datatype as ordinal. Defaults to FALSE.

Details

The interaction model compares cases where feature1 and feature2 concord (both high or both low) to those where they do not. That is, the model is \(y = x_1 + x_2 + (x_1 == x_2) \) and not the typical \(y = x_1 + x_2 + x_1:x_2 \).

Value

Returns a vector of six elements containing (HR,P) pairs for feature1, feature2, and the interaction.

Author(s)

Paul C. Boutros

Examples

```r
data.dir <- get.program.defaults()[["test.data.dir"]];
data.types <- c("mRNA");
x1 <- load.cancer.datasets(
    datasets.to.load = c('Breastdata1'),
    data.types = data.types,
    data.directory = data.dir
);
x2 <- fit.interaction.model(
    feature1 = "1000_at",
    feature2 = "2549_at",
    expression.data = x1$all.data[[data.types[1]]],
    survival.data = x1$all.survobj
);
```

Description

Trains a multivariate survival model and conducts feature selection using both backward elimination and forward selection, independently. TO BE DEPRECATED AND HAS BEEN REPLACED BY `create.classifier.multivariate`.

fit.survivalmodel

Trains a multivariate survival model.
Usage

```r
fit.survivalmodel(
  data.directory = ".", output.directory = ".",
  feature.selection.datasets = NULL, feature.selection.p.threshold = 0.05,
  training.datasets = NULL, top.n.features = 25, models = c("1", "2", "3")
)
```

Arguments

- `data.directory`: Path to the directory containing datasets as specified by `feature.selection.datasets`, `training.datasets`.
- `output.directory`: Path to the output folder where intermediate and results files will be saved.
- `feature.selection.datasets`: A vector containing names of datasets used for feature selection in function `derive.network.features()`.
- `feature.selection.p.threshold`: One of the P values that were used for feature selection in function `derive.network.features()`. This function does not support vector of P values as used in `derive.network.features()` for performance reasons.
- `training.datasets`: A vector containing names of training datasets to be used to train multivariate survival model.
- `top.n.features`: A numeric value specifying how many top ranked features will be used to train the multivariate survival model.
- `models`: A character vector specifying which models ('1' = N+E, '2' = N, '3' = E) to run.

Value

The output files are stored under `output.directory/output/`.

Author(s)

Syed Haider

See Also

`create.classifier.multivariate`

Examples

```
# see package's main documentation
```
get.adjacency.matrix A utility function to convert tab delimited networks file into adjacency matrices

Description
A utility function to convert tab-delimited networks file into adjacency matrices

Usage
get.adjacency.matrix(subnets.file = NULL);

Arguments
subnets.file A tab-delimited file containing networks. New networks start with a new line with '#' at the begining of network name and subsequent lines contain a binary interaction per line

Value
A list of adjacency matrices

Author(s)
Syed Haider

Examples
subnets.file <- get.program.defaults()["subnets.file"]; all.adjacency.matrices <- get.adjacency.matrix(subnets.file);

get.chisq.stats Applies survdiff function

Description
Applies survdiff on different prognoses groups and computes Logrank P using chisquare statistics.

Usage
get.chisq.stats(groups, survobj);

Arguments
 groups Grouping of patients (passed directly to survdiff, so factors & continuous variables are okay)
survobj An object of class Surv (from the survival package) – patient ordering needs to be identical as for groups
Value

A vector containing: Chisq, degrees of freedom (DOF) and Logrank P-value.

Author(s)

Syed Haider

Examples

```r
survtimeme <- sample(seq(0.1,10,0.1), 100, replace = TRUE);
survstatme <- sample(c(0,1), 100, replace = TRUE);
survobjme <- Surv(survtimeme, survstatme);
groupsme <- sample(c('A','B'), 100, replace = TRUE);
get.chisq.stats(
    groups = as.factor(groupsme),
    survobj = survobjme
);
```

Description

A utility function to return the inst/ directory of the installed package and other default settings

Usage

```r
get.program.defaults(networks.database = "default");
```

Arguments

- **networks.database**

 Name of the pathway networks database. Default to NCI PID/Reactome/Biocarta i-e "default"

Value

Returns a list of paths to the input directories/files where the contents of this package are installed

Author(s)

Syed Haider

Examples

```r
program.data <- get.program.defaults();
```
load.cancer.datasets

Load all cancer meta-analysis datasets

Description

Returns a list of lists containing all cancer meta-analysis datasets

Usage

load.cancer.datasets(
 tumour.only = TRUE, with.survival.only = TRUE,
 truncate.survival = 100, datasets.to.load = 'all',
 data.types = c('mRNA'), datasets.file = 'datasets.txt',
 data.directory = '.', verbose = FALSE, subset = NULL
);

Arguments

tumour.only Logical indicating if we should only load tumour samples (TRUE, the default)
with.survival.only Logical indicating if we should only load samples with survival data (TRUE, the default)
truncate.survival A numeric value specifying survival truncation in years. Defaults to 100 years which effectively means no truncation
datasets.to.load A vector of datasets to be loaded. If 'all', then all available datasets are loaded
data.types A vector of molecular datatypes to load. Defaults to c('mRNA')
datasets.file A file in data.directory containing a listing of all usable datasets
data.directory A directory containing all data-files to be loaded
verbose Logical indicating whether or not status messages should be given
subset A list with a Field and Entry component specifying a subset of patients to be selected whose annotation Field matches Entry

Value

Returns a meta-analysis list of lists

Author(s)

Paul C. Boutros
make.matrix

Utility function used by get.adjacency.matrix()

Description

Utility function used by get.adjacency.matrix()

Usage

make.matrix(vertices, interactions);

Arguments

vertices | Comma separated list of nodes

interactions | Comma separated list of edges

Value

Returns adjacency matrix

Author(s)

Syed Haider

Examples

x1 <- make.matrix("a,b,c", "a:b,b:c");
pred.survivalmodel

Apply a multivariate survival model to validation datasets

Description

Predicts the risk score for all the training & datasets, independently. This function also predicts the risk score for combined training datasets cohort and validation datasets cohort. The risk score estimation is done by multivariate models fit by fit.survivalmodel. The function also predicts risk scores for each of the top.n.features independently. TO BE DEPRECATED AND HAS BEEN REPLACED BY create.classifier.multivariate

Usage

pred.survivalmodel(
 data.directory = ".", output.directory = ".",
 feature.selection.datasets = NULL, feature.selection.p.threshold = 0.05,
 training.datasets = NULL, validation.datasets = NULL,
 top.n.features = 25, models = c("1", "2", "3"),
 write.risk.data = TRUE
);

Arguments

data.directory Path to the directory containing datasets as specified by feature.selection.datasets, training.datasets, validation.datasets

output.directory Path to the output folder where intermediate and results files will be saved

feature.selection.datasets A vector containing names of datasets used for feature selection in function derive.network.features()

feature.selection.p.threshold One of the P values that were used for feature selection in function derive.network.features(). This function does not support vector of P values as used in derive.network.features() for performance reasons

training.datasets A vector containing names of training datasets

validation.datasets A vector containing names of validation datasets

top.n.features A numeric value specifying how many top ranked features will be used for univariate survival modelling

models A character vector specifying which of the models (‘1’ = N+E, ‘2’ = N, ‘3’ = E) to run

write.risk.data A toggle to control whether risk scores and patient risk groups should be written to file
prepare.training.validation.datasets

Value
The output files are stored under output.directory/output/

Author(s)
Syed Haider

See Also
create.classifier.multivariate

Examples

see package's main documentation

prepare.training.validation.datasets

Prepare training and validation datasets

Description
Computes per-patient pathway-derived network impact scores across all input datasets, independently

Usage

prepare.training.validation.datasets(
 data.directory = ".", output.directory = ".",
 data.types = c("mRNA"), data.types.ordinal = c("cnv"),
 min.ordinal.threshold = c("cnv" = 3), p.threshold = 1,
 feature.selection.datasets = NULL, datasets = NULL,
 truncate.survival = 100, networks.database = "default",
 write.normed.datasets = TRUE, subset = NULL
);

Arguments

data.directory Path to the directory containing datasets as specified by datasets
output.directory Path to the output folder where intermediate and results files will be saved
data.types A vector of molecular datatypes to load. Defaults to c("mRNA")
data.types.ordinal A vector of molecular datatypes to be treated as ordinal. Defaults to c("cnv")
prepare.training.validation.datasets

min. ordinal. threshold

A named vector specifying minimum percent threshold for each ordinal data type to be used prior to estimating coefficients. Coefficient for features not satisfying minimum threshold will not be estimated, and set to 0. Defaults to cvn threshold as 3 percent

p. threshold

P value threshold to be applied for selecting univariate prognostic features. Defaults to 1

feature. selection. datasets

A vector containing names of datasets used for feature selection in function derive.network.features()

datasets

A vector containing names of all the datasets to be later used for training and validation purposes

truncate. survival

A numeric value specifying survival truncation in years. Defaults to 100 years which effectively means no truncation

networks. database

Name of the pathway networks database. Default to NCI PID/Reactome/Biocarta i-e "default"

write. normed. datasets

A toggle to control whether processed mRNA and survival data should be written to file

subset

A list with a Field and Entry component specifying a subset of patients to be selected whose annotation Field matches Entry

Value

The output files are stored under output.directory/output/

Author(s)

Syed Haider

Examples

```r
# get data directory
data.directory <- get.program.defaults()[["test.data.dir"]]

# initialise params
output.directory <- ".";
data.types <- c("mRNA");
feature.selection.datasets <- c("Breastdata1");
training.datasets <- c("Breastdata1");
validation.datasets <- c("Breastdata1", "Breastdata2");

# preparing training and validation datasets.
# Normalisation & patientwise subnet feature scores
prepare.training.validation.datasets(
data.directory = data.directory,
output.directory = output.directory,
```
data.types = data.types,
feature.selection.datasets = feature.selection.datasets,
datasets = unique(c(training.datasets, validation.datasets)),
networks.database = "test"
);
Index

*Topic **FeatureSelection**
- derive.network.features, 14

*Topic **IO**
- get.program.defaults, 22
- load.cancer.datasets, 23
- prepare.training.validation.datasets, 26

*Topic **Networks**
- get.adjacency.matrix, 21
- make.matrix, 24

*Topic **Sensitivity,Specificity**
- calculate.sensitivity.stats, 6

*Topic **package**
- SIMMS-package, 2

*Topic **survival,Kaplan-meier**
- create.KM.plot, 9
- create.survivalplots, 11

*Topic **survival,sensitivity,specificity,accuracy**
- create.sensitivity.plot, 10
- create.survivalplots, 11
- create.survpred, 12
- derive.network.features, 14
- dichotomize.dataset, 15
- dichotomize.meta.dataset, 16
- fit.coxmodel, 17
- fit.interaction.model, 18
- fit.survivalmodel, 19
- get.adjacency.matrix, 21
- get.chisq.stats, 21
- get.program.defaults, 22
- load.cancer.datasets, 23
- make.matrix, 24
- pred.survivalmodel, 25
- prepare.training.validation.datasets, 26

SIMMS (SIMMS-package), 2
SIMMS-package, 2