Package ‘SMC’

February 19, 2015

Type Package
Title Sequential Monte Carlo (SMC) Algorithm
Version 1.1
Date 2011-12-09
Author Gopi Goswami <goswami@stat.harvard.edu>
Maintainer Gopi Goswami <grgoswami@gmail.com>
Depends R (>= 1.9.0)
Description particle filtering, auxiliary particle filtering and sequential Monte Carlo algorithms
License GPL (>= 2)
Repository CRAN
Date/Publication 2011-12-11 10:41:18
NeedsCompilation yes

R topics documented:

auxiliaryParticleFilter ... 1
particleFilter ... 8
print .. 15
sequentialMonteCarlo ... 15
utilsForExamples .. 21

Index

auxiliaryParticleFilter

The auxiliary particle filtering algorithm
Description

Function for doing auxiliary particle filtering given the state equation (via generateNextStreamsFunc), the stream representative generation rule (via generateStreamRepsFunc), and the observation equation density (via logObsDensFunc).

See the sections Details, Required Functions and Optional Functions for explanation on the arguments and the return values of the arguments that are themselves functions.

Usage

auxiliaryParticleFilter(nStreams, nPeriods, dimPerPeriod, generateStreamRepsFunc, generateNextStreamsFunc, logObsDensFunc, resampCriterionFunc = NULL, resampFunc = NULL, summaryFunc = NULL, nMHSteps = 0, MHUpdateFunc = NULL, nStreamsPreResamp = NULL, returnStreams = FALSE, returnLogWeights = FALSE, verboseLevel = 0, ...)
auxiliaryParticleFilter

returnLogWeights
return logical.

verboseLevel integer, a value ≥ 2 produces a lot of output.

... optional arguments to be passed to generateStreamRepsFunc, generateNextStreamsFunc, logObsDensFunc, resampCriterionFunc, resampFunc, summaryFunc and MHHupdateFunc.

Details

We introduce the following terms, which will be used in the sections Required Function and Optional Function below:

stream the state vector also called the particle, the hidden state or the latent variable. Below we will use the terms stream and state vector interchangeably.

dimPerPeriod the dimension of the space, the state vectors live in.

Value

This function returns a list with the following components:

draws a list with the following components: summary, propUniqueStreamIds, streams, logWeights, acceptanceRates. See the section Note for more details.

nStreams the nStreams argument.

nPeriods the nPeriods argument.

dimPerPeriod the dimPerPeriod argument.

nStreamsPreResamp the nStreamsPreResamp argument.

nMHSteps the nMHSteps argument.

filterType type of the filter: “auxiliaryParticleFilter”.

time the time taken by the run.

Required function: generateStreamRepsFunc

Arguments: The following argument(s) require some explanation:

lag1Streams a matrix of dimension nStreams × dimPerPeriod of streams for currentPeriod − 1.

lag1LogWeights a vector of length nStreams of log weights corresponding to the streams in the argument matrix lag1Streams.

streamIndices a vector of length nStreams for which the stream representatives (μ^k_i of Pitt and Shephard, 1999) for currentPeriod are to be generated. See the sub-section Note: below.

Return value: a matrix of dimension nStreamIndices × dimPerPeriod. The rows of this matrix contain the stream representative for period currentPeriod, given the state vectors to be found in the streamIndices rows of the argument lag1Streams matrix. Here nStreamIndices is the length of the argument streamIndices.

Note: The following points are in order:
– this function *should* distinguish the cases \(\text{currentPeriod} == 1 \) and \(\text{currentPeriod} > 1 \) inside of it.

– for details on the stream representatives (i.e., \(\mu\kappa_t \)), see of Pitt and Shephard, 1999. The quantity \(\mu\kappa_t \) could be the mean, the mode, a draw or some other likely value associated with the state density for period \(\text{currentPeriod} \) (i.e., \(f(\alpha_t \mid \alpha_{t-1}) \)).

– this function is called by setting \(\text{streamIndices} \) to \(1 : n\text{Streams} \), i.e., stream representatives for all the streams in the argument \(\text{lag1Streams} \) matrix is generated.

Optional function: generateNextStreamsFunc

Arguments: The following argument(s) require some explanation:

- \(\text{lag1Streams} \) a matrix of dimension \(n\text{Streams} \times \text{dimPerPeriod} \) of streams for \(\text{currentPeriod} - 1 \).
- \(\text{lag1LogWeights} \) a vector of length \(n\text{Streams} \) of log weights corresponding to the streams in the argument matrix \(\text{lag1Streams} \).
- \(\text{streamIndices} \) a vector of length \(\geq n\text{Streams} \) which are to be updated from \(\text{currentPeriod} - 1 \) to \(\text{currentPeriod} \).
- \(\text{streamReps} \) a matrix of dimension \(n\text{Streams} \times \text{dimPerPeriod} \) of the stream representatives for \(\text{currentPeriod} \).
- \(\text{startingStreams} \) a matrix of dimension \(n\text{Streams} \times \text{dimPerPeriod} \) to be used for \(\text{currentPeriod} = 1 \). If this is NULL, then the function should provide a way to generate streams for \(\text{currentPeriod} = 1 \).

Return value: a matrix of dimension \(n\text{StreamIndices} \times \text{dimPerPeriod} \). The rows of this matrix contain the state vectors for period \(\text{currentPeriod} \), given the state vectors to be found in the \(\text{streamIndices} \) rows of the argument \(\text{lag1Streams} \) matrix. Here \(n\text{StreamIndices} \) is the length of the argument \(\text{streamIndices} \).

Note: The following points are in order:

– this function *should* distinguish the cases \(\text{currentPeriod} == 1 \) and \(\text{currentPeriod} > 1 \) inside of it.

– this function is called by setting \(\text{streamIndices} \) such that \(n\text{StreamIndices} \) takes either of the two values \(n\text{Streams} \) or \(n\text{StreamsPreResamp} \) in different occasions.

Optional function: logObsDensFunc

Arguments: The following argument(s) require some explanation:

- \(\text{currentStreams} \) a matrix with \(\text{dimPerPeriod} \) columns, the rows containing the streams for \(\text{currentPeriod} \).

Return value: a vector of length \(n\text{CurrentStreams} \), where \(n\text{CurrentStreams} \) refers to the number of rows of the \(\text{currentStreams} \) matrix argument. This vector contains the observation equation density values for \(\text{currentPeriod} \) in the log scale, evaluated at the rows of \(\text{currentStreams} \).

Note: \(n\text{CurrentStreams} \) might be \(\geq n\text{Streams} \).
Optional function: resampCriterionFunc

Arguments: The following argument(s) require some explanation:

- `currentStreams` a matrix with `dimPerPeriod` columns, the rows containing the updated streams for `currentPeriod`.
- `currentLogWeights` a vector of log weights corresponding to the streams in the argument matrix `currentStreams`.

Return value: TRUE or FALSE reflecting the decision of the resampling scheme implemented by this function.

Note: The following points are in order:
- resampling schemes mainly depend on `currentLogWeights`, the other two arguments might come in handy for implementing period or stream specific resampling schemes.
- if `nStreamsPreResamp > nStreams`, then this function should always return TRUE.

Optional function: resampFunc

Arguments: see the sub-section `Arguments:` for section Optional function: resampCriterionFunc.

Return value: a named list with the following components:

- `currentStreams` a matrix of dimension `nStreams × dimPerPeriod`. The rows of this matrix contain the streams for period `currentPeriod + 1` that were resampled from those of the argument `currentStreams` matrix, which may contain \(\geq nStreams \) rows.
- `currentLogWeights` The log weights vector of length `nStreams`, associated with the streams that were resampled in the returned `currentStreams` matrix. Note, after the resampling step, usually all the log weights are set to 0.

Note: the components of the list returned by this function and the arguments to this function have two common names, namely, `currentStreams` and `currentLogWeights`. These entities have different meanings, as explained above. For example, the argument matrix `currentStreams` could possibly have \(\geq nStreams \) rows, whereas the returned `currentStreams` has exactly `nStreams` number of (resampled) streams in its rows.

Optional function: summaryFunc

Arguments: The following argument(s) require some explanation:

- `currentStreams` a matrix of dimension `nStreams × dimPerPeriod` of streams for `currentPeriod`.
- `currentLogWeights` a vector of log weights corresponding to the streams in the argument matrix `currentStreams`.

Return value: a vector of length of `dimSummPerPeriod` of summaries for `currentPeriod` given the `currentStreams` and the `currentLogWeights`.

Optional function: MHUpdateFunc

Arguments: The following argument(s) require some explanation:

- `nmhsteps` the number of Metropolis Hastings (MH) steps (iterations) to be performed.
- `currentStreams` a matrix of dimension `nStreams` x `dimPerPeriod` of streams for `currentPeriod`.
- `lag1Streams` a matrix of dimension `nStreams` x `dimPerPeriod` of streams for `currentPeriod - 1`.
- `lag1LogWeights` a vector of length `nStreams` of log weights corresponding to the streams in the argument matrix `lag1Streams`.

Return value: a named list with the following components:

- `currentStreams` a matrix of dimension `nStreams` x `dimPerPeriod`. The rows of this matrix contain the streams for period `currentPeriod` that are (possibly) MH-updated versions of the rows of the argument `currentStreams` matrix.
- `acceptanceRates` a vector of length `nStreams`, representing the acceptance rates of the `nmhsteps` MH steps for each of the streams in the rows of the argument `currentStreams` matrix.

Note: a positive value of `nmhsteps` performs as many MH steps on the rows of the argument `currentStreams` matrix. This is done to reduce the possible degeneracy after the resampling.

Warning

Using very small values (≤ 1e3) for `nStreams` might not give reliable results.

Note

The effect of leaving the default value NULL for some of the arguments above are as follows:

- `resampCriterionFunc` the builtin resampling criterion, namely, resample when square of the coefficient of variation of the weights ≥ 1, is used.
- `resampFunc` the builtin resampling function, which resamples streams with probability proportional to their weights, is used.
- `summaryFunc` the builtin summary function, which returns the weighted average of each of the `dimPerPeriod` dimensions, is used.

`MHUpdateFunc` unlike `particleFilter`, there is no builtin Metropolis Hastings updating function, which generates proposals for `currentPeriod` streams using those of `currentPeriod - 1`. The user needs to implement this function if `nmhsteps > 0`.

`nStreamsPreResamp` is set to `nStreams`.

Also, the following point is worth noting:

- `resampCriterionFunc`, `resampFunc`, `summaryFunc` are only necessary when user wants to try out new resampling schemes or enhanced summary generation procedures, as part of their research. The default builtins take care of the typical problems.

This function returns a list with component called `draw`. The detailed description of this component, as promised in section `Value`, is as follows. It is a list itself with the following components:
auxiliaryParticleFilter

summary a matrix of dimension nPeriods × dimSummPerPeriod.
propUniqueStreamIds a vector of length nPeriods. The values are either proportions of unique
streams accepted (at each period) if resampling was done or NA.
streams an array of dimension nStreams × dimPerPeriod × nPeriods. This is returned if
returnStreams = TRUE.
logWeights a matrix of dimension nStreams × nPeriods. This is returned if returnLogWeights = TRUE.
acceptanceRates a matrix of dimension nStreams × nPeriods. This is returned if nMHSteps > 0.

Author(s)
Gopi Goswami <goswami@stat.harvard.edu>

References

See Also

particleFilter

Examples

MSObj <- MarkovSwitchingFuncGenerator(-2468)
smcObj <-
 with(MSObj,
 {
 auxiliaryParticleFilter(nStreams = 5000,
 nPeriods = nrow(yy),
 dimPerPeriod = ncol(yy),
 generateStreamRepsFunc = generateStreamRepsFunc,
 generateNextStreamsFunc = generateNextStreamsFunc,
 logObsDensFunc = logObsDensFunc,
 returnStreams = TRUE,
 returnLogWeights = TRUE,
 verboseLevel = 1)
 })
print(smcObj)
print(names(smcObj))
with(c(smcObj, MSObj),
 {
 par(mfcol = c(2, 1))
 plot(as.ts(yy),
 main = expression('The data and the underlying regimes'),
 cex.main = 0.8,
 xlab = 'period',
 ylab = 'data and the regime means',
 cex.lab = 0.8)
 lines(as.ts(mu), col = 2, lty = 2)
 plot(as.ts(draws$summary[, 1]),
particleFilter

The particle filtering algorithm

Description

Function for doing particle filtering given the state equation (via `generateNextStreamFunc`), and the observation equation density (via `logObsDensFunc`).
See the sections Details, Required Functions and Optional Functions for explanation on the arguments and the return values of the arguments that are themselves functions.

Usage

particleFilter(nStreams,
 nPeriods,
 dimPerPeriod,
 generateNextStreamsFunc,
 logObsDensFunc,
 resampCriterionFunc = NULL,
 resampFunc = NULL,
 summaryFunc = NULL,
 nMHSteps = 0,
 MH_updateFunc = NULL,
 nStreamsPreResamp = NULL,
 returnStreams = FALSE,
 returnLogWeights = FALSE,
 verboseLevel = 0,
 ...)

Arguments

nStreams integer > 0.
nPeriods integer > 0.
dimPerPeriod integer > 0.
generateNextStreamsFunc

 function of six arguments (currentPeriod, lag1Streams, lag1LogWeights, streamIndices, ...).

logObsDensFunc

 function of three arguments (currentPeriod, currentStreams, ...).

resampCriterionFunc

 function of four arguments (currentPeriod, currentStreams, currentLogWeights, ...).

resampFunc

 function of four arguments (currentPeriod, currentStreams, currentLogWeights, ...).

summaryFunc

 function of four arguments (currentPeriod, currentStreams, currentLogWeights, ...).
nMHSteps integer ≥ 0.

MH_updateFunc

 function of six arguments (currentPeriod, nMHSteps, currentStreams, lag1Streams, lag1LogWeights, ...).
nStreamsPreResamp integer > 0.

returnStreams logical.

returnLogWeights logical.

verboseLevel integer, a value ≥ 2 produces a lot of output.

... optional arguments to be passed to generateNextStreamsFunc, logObsDensFunc, resampCriterionFunc, resampFunc, summaryFunc and MH_updateFunc.
Details

We introduce the following terms, which will be used in the sections *Required Function* and *Optional Function* below:

stream the state vector also called the particle, the hidden state or the latent variable. Below we will use the terms stream and state vector interchangeably.

dimPerPeriod the dimension of the space, the state vectors live in.

Value

This function returns a list with the following components:

- **draws** a list with the following components: summary, propUniqueStreamIds, streams, logWeights, acceptanceRates. See the section *Note* for more details.
- **nStreams** the nStreams argument.
- **nPeriods** the nPeriods argument.
- **dimPerPeriod** the dimPerPeriod argument.
- **nStreamsPreResamp** the nStreamsPreResamp argument.
- **nMHSteps** the nMHSteps argument.
- **filterType** type of the filter: “particleFilter”.
- **time** the time taken by the run.

Optional function: generateNextStreamsFunc

Arguments: The following argument(s) require some explanation:

- **lag1Streams** a matrix of dimension nStreams × dimPerPeriod of streams for currentPeriod - 1.
- **lag1LogWeights** a vector of length nStreams of log weights corresponding to the streams in the argument matrix lag1Streams.
- **streamIndices** a vector of length ≥ nStreams which are to be updated from currentPeriod - 1 to currentPeriod.
- **startingStreams** a matrix of dimension nStreams × dimPerPeriod to be used for currentPeriod = 1. If this is NULL, then the function should provide a way to generate streams for currentPeriod = 1.

Return value: a matrix of dimension nStreamIndices × dimPerPeriod. The rows of this matrix contain the state vectors for period currentPeriod given the state vectors to be found in the streamIndices rows of the argument lag1Streams matrix. Here nStreamIndices is the length of the argument streamIndices.

Note: this function should distinguish the cases currentPeriod == 1 and currentPeriod > 1 inside of it.
Optional function: logObsDensFunc

Arguments: The following argument(s) require some explanation:

- `currentStreams` a matrix with `dimPerPeriod` columns, the rows containing the streams for `currentPeriod`.

Return value: a vector of length `nCurrentStreams`, where `nCurrentStreams` refers to the number of rows of the `currentStreams` matrix argument. This vector contains the observation equation density values for `currentPeriod` in the log scale, evaluated at the rows of `currentStreams`.

Note: `nCurrentStreams` might be $\geq nStreams$.

Optional function: resampCriterionFunc

Arguments: The following argument(s) require some explanation:

- `currentStreams` a matrix with `dimPerPeriod` columns, the rows containing the updated streams for `currentPeriod`.
- `currentLogWeights` a vector of log weights corresponding to the streams in the argument matrix `currentStreams`.

Return value: `TRUE` or `FALSE` reflecting the decision of the resampling scheme implemented by this function.

Note: The following points are in order:

- resampling schemes mainly depend on `currentLogWeights`, the other two arguments might come in handy for implementing period or stream specific resampling schemes.
- if `nStreamsPreResamp > nStreams`, then this function should always return `TRUE`.

Optional function: resampFunc

Arguments: see the sub-section **Arguments:** for section **Optional function: resampCriterionFunc**.

Return value: a named list with the following components:

- `currentStreams` a matrix of dimension `nStreams` \times `dimPerPeriod`. The rows of this matrix contain the streams for period `currentPeriod + 1` that were resampled from those of the argument `currentStreams` matrix, which may contain $\geq nStreams$ rows.
- `currentLogWeights` The log weights vector of length `nStreams`, associated with the streams that were resampled in the returned `currentStreams` matrix. Note, after the resampling step, usually all the log weights are set to 0.

Note: the components of the list returned by this function and the arguments to this function have two common names, namely, `currentStreams` and `currentLogWeights`. These entities have different meanings, as explained above. For example, the argument matrix `currentStreams` could possibly have $\geq nStreams$ rows, whereas the returned `currentStreams` has exactly `nStreams` number of (resampled) streams in its rows.
Optional function: summaryFunc

Arguments: The following argument(s) require some explanation:

- currentStreams: a matrix of dimension nStreams × dimPerPeriod of streams for currentPeriod.
- currentLogWeights: a vector of log weights corresponding to the streams in the argument matrix currentStreams.

Return value: a vector of length of dimSummPerPeriod of summaries for currentPeriod given the currentStreams and the currentLogWeights.

Optional function: MHUpdateFunc

Arguments: The following argument(s) require some explanation:

- nmhSteps: the number of Metropolis Hastings (MH) steps (iterations) to be performed.
- currentStreams: a matrix of dimension nStreams × dimPerPeriod of streams for currentPeriod.
- lag1Streams: a matrix of dimension nStreams × dimPerPeriod of streams for currentPeriod - 1.
- lag1LogWeights: a vector of length nStreams of log weights corresponding to the streams in the argument matrix lag1Streams.

Return value: a named list with the following components:

- currentStreams: a matrix of dimension nStreams × dimPerPeriod. The rows of this matrix contain the streams for period currentPeriod that are (possibly) MH-updated versions of the rows of the argument currentStreams matrix.
- acceptanceRates: a vector of length nStreams, representing the acceptance rates of the nmhSteps-many MH steps for each of the streams in the rows of the argument currentStreams matrix.

Note: a positive value of nmhSteps performs as many MH steps on the rows of the argument currentStreams matrix. This is done to reduce the possible degeneracy after the resampling.

Warning

Using very small values (≤ 1e3) for nStreams might not give reliable results.

Note

The effect of leaving the default value NULL for some of the arguments above are as follows:

- resampCriterionFunc: the builtin resampling criterion, namely, resample when square of the coefficient of variation of the weights ≥ 1, is used.
- resampFunc: the builtin resampling function, which resamples streams with probability proportional to their weights, is used.
- summaryFunc: the builtin summary function, which returns the weighted average of each of the dimPerPeriod dimensions, is used.
- MHUpdateFunc: the builtin Metropolis Hastings updating function, which generates proposals for currentPeriod streams using those of currentPeriod - 1, is used.
nStreamsPreResamp it is set to nStreams.

Also, the following point is worth noting:

resampCriterionFunc, resampFunc, summaryFunc and MHUpdateFunc are only necessary when user wants to try out new resampling schemes, enhanced summary generation procedures or more efficient MH updating rules, as part of their research. The default builtins take care of the typical problems.

This function returns a list with component called draw. The detailed description of this component, as promised in section Value, is as follows. It is a list itself with the following components:

summary a matrix of dimension nPeriods \times \dimSummPerPeriod.

propUniqueStreamIds a vector of length nPeriods. The values are either proportions of unique stream ids accpeted (at each period) if resampling was done or NA.

streams an array of dimension nStreams \times \dimPerPeriod \times nPeriods. This is returned if returnStreams = TRUE.

logWeights a matrix of dimension nStreams \times nPeriods. This is returned if returnLogWeights = TRUE.

acceptanceRates a matrix of dimension nStreams \times nPeriods. This is returned if nMHSteps > 0.

Author(s)

Gopi Goswami <goswami@stat.harvard.edu>

References

See Also

auxiliaryParticleFilter

Examples

MSObj <- MarkovSwitchingFuncGenerator(-13579)
smcObj <-
 with(MSObj,
 {
 particleFilter(nStreams = 5000,
 nPeriods = nrow(yy),
 dimPerPeriod = ncol(yy),
 generateNextStreamsFunc = generateNextStreamsFunc,
 logObsDensFunc = logObsDensFunc,
 returnStreams = TRUE,
 returnLogWeights = TRUE,
 verboseLevel = 1)
 })
print(smcObj)
print(names(smcObj))
with(c(smcObj, MSObj),

{
par(mfcol = c(2, 1))
plot(as.ts(yy),
 main = expression('The data and the underlying regimes'),
 cex.main = 0.8,
 xlab = 'period',
 ylab = 'data and the regime means',
 cex.lab = 0.8)
lines(as.ts(mu), col = 2, lty = 2)
plot(as.ts(draws$summary[1,]),
 main = expression('The underlying regimes and their estimates'),
 cex.main = 0.8,
 xlab = 'period',
 ylab = 'regime means',
 cex.lab = 0.8)
lines(as.ts(mu), col = 2, lty = 2)
}

MSObj <- MarkovSwitchingFuncGenerator(-97531)
smcObj <-
with(MSObj,
{
 particleFilter(nStreams = 5000,
 nPeriods = nrow(yy),
 dimPerPeriod = ncol(yy),
 generateNextStreamsFunc = generateNextStreamsFunc,
 logObsDensFunc = logObsDensFunc,
 nMHSteps = 10,
 returnStreams = TRUE,
 returnLogWeights = TRUE,
 verboseLevel = 1)
})
print(smcObj)
print(names(smcObj))
with(c(smcObj, MSObj),
{
 par(mfcol = c(2, 1))
 plot(as.ts(yy),
 main = expression('The data and the underlying regimes'),
 cex.main = 0.8,
 xlab = 'period',
 ylab = 'data and the regime means',
 cex.lab = 0.8)
 lines(as.ts(mu), col = 2, lty = 2)
 plot(as.ts(draws$summary[1,]),
 main = expression('The underlying regimes and their estimates'),
 cex.main = 0.8,
 xlab = 'period',
 ylab = 'regime means',
 cex.lab = 0.8)
 lines(as.ts(mu), col = 2, lty = 2)
})
The printing family of functions

Description

The printing family of functions for this package.

Usage

```
## S3 method for class 'SMC'
print(x, ...)
```

Arguments

- `x`: an object inheriting from class SMC (generated by functions `particleFilter`, `auxiliaryParticleFilter` and `sequentialMonteCarlo`).
- `...`: optional arguments passed to `print.default`; see its documentation.

Author(s)

Gopi Goswami <goswami@stat.harvard.edu>

See Also

`particleFilter`, `auxiliaryParticleFilter`, `sequentialMonteCarlo`

The sequential Monte Carlo (SMC) algorithm

Description

Function for the doing sequential Monte Carlo algorithm given the propagation rule over time (via `propagateFunc`). This is the most general interface for implementing a new SMC strategy, by providing a new propagation rule.

See the sections Details, Required Functions and Optional Functions for explanation on the arguments and the return values of the arguments that are themselves functions.
Usage

```r
sequentialMonteCarlo(nStreams, nPeriods, dimPerPeriod, propagateFunc, resampCriterionFunc = NULL, resampFunc = NULL, summaryFunc = NULL, nMHSteps = 0, MHUpdateFunc = NULL, nStreamsPreResamp = NULL, returnStreams = FALSE, returnLogWeights = FALSE, verboseLevel = 0, ...)
```

Arguments

- `nStreams` integer > 0.
- `nPeriods` integer > 0.
- `dimPerPeriod` integer > 0.
- `propagateFunc` function of six arguments (currentPeriod, nStreamsToGenerate, lag1Streams, lag1LogWeights, startingStreams, NNNI).
- `resampCriterionFunc` function of four arguments (currentPeriod, currentStreams, currentLogWeights, NNNI).
- `resampFunc` function of four arguments (currentPeriod, currentStreams, currentLogWeights, NNNI).
- `summaryFunc` function of four arguments (currentPeriod, currentStreams, currentLogWeights, NNNI).
- `nMHSteps` integer ≥ 0.
- `MHUpdateFunc` function of six arguments (currentPeriod, nMHSteps, currentStreams, lag1Streams, lag1LogWeights, NNNI).
- `nStreamsPreResamp` integer > 0.
- `returnStreams` logical.
- `returnLogWeights` logical.
- `verboseLevel` integer, a value ≥ 2 produces a lot of output.
- `...` optional arguments to be passed to propagateFunc, resampCriterionFunc, resampFunc, summaryFunc and MHUpdateFunc.

Details

We introduce the following terms, which will be used in the sections Required Function and Optional Function below:

- `stream` the state vector also called the particle, the hidden state or the latent variable. Below we will use the terms stream and state vector interchangeably.
- `dimPerPeriod` the dimension of the space, the state vectors live in.
sequentialMonteCarlo

Value

This function returns a list with the following components:

draws
a list with the following components: summary, propUniqueStreamIds, streams, logWeights, acceptanceRates. See the section Note for more details.

nStreams
the nStreams argument.

nPeriods
the nPeriods argument.

dimPerPeriod
the dimPerPeriod argument.

nStreamsPreResamp
the nStreamsPreResamp argument.

nMHSteps
the nMHSteps argument.

filterType
type of the filter: “sequentialMonteCarlo”.

time
the time taken by the run.

Required function: propagateFunc

Arguments: The following argument(s) require some explanation:

nStreamsToGenerate
the number of streams to generate for propagating from currentPeriod 1 to currentPeriod. This function is usually called by setting nStreamsToGenerate to nStreamsPreResamp.

lag1Streams
a matrix of dimension nStreams × dimPerPeriod of streams for currentPeriod 1.

lag1LogWeights
a vector of length nStreams of log weights corresponding to the streams in the argument matrix lag1Streams.

startingStreams
a matrix of dimension nStreams × dimPerPeriod to be used for currentPeriod 1. If this is NULL, then the function should provide a way to generate streams for currentPeriod 1.

Return value: a named list with the following components:

currentStreams
a matrix of dimension nStreamsToGenerate × dimPerPeriod. The rows of this matrix contain the propagated (updated) streams for period currentPeriod, given the argument lag1Streams matrix and the argument lag1LogWeights vector for currentPeriod 1.

currentLogWeights
the propagated (updated) log weights vector of length nStreamsToGenerate, associated with the streams in the rows of the returned currentStreams matrix.

Optional function: resampCriterionFunc

Arguments: The following argument(s) require some explanation:

currentStreams
a matrix with dimPerPeriod columns, the rows containing the updated streams for currentPeriod.

currentLogWeights
a vector of log weights corresponding to the streams in the argument matrix currentStreams.

Return value: TRUE or FALSE reflecting the decision of the resampling scheme implemented by this function.
Note: The following points are in order:

– resampling schemes mainly depend on `currentLogWeights`, the other two arguments might come in handy for implementing period or stream specific resampling schemes.
– if `nStreamsPreResamp > nStreams`, then this function should always return TRUE.

Optional function: `resampFunc`

Arguments: see the sub-section `Arguments:` for section Optional function: `resampCriterionFunc`.

Return value: a named list with the following components:

- `currentStreams` a matrix of dimension `nStreams` × `dimPerPeriod`. The rows of this matrix contain the streams for period `currentPeriod + 1` that were resampled from those of the argument `currentStreams` matrix, which may contain ≥ `nStreams` rows.
- `currentLogWeights` The log weights vector of length `nStreams`, associated with the streams that were resampled in the returned `currentStreams` matrix. Note, after the resampling step, usually all the log weights are set to 0.

Note: the components of the list returned by this function and the arguments to this function have two common names, namely, `currentStreams` and `currentLogWeights`. These entities have different meanings, as explained above. For example, the argument matrix `currentStreams` could possibly have ≥ `nStreams` rows, whereas the returned `currentStreams` has exactly `nStreams` number of (resampled) streams in its rows.

Optional function: `summaryFunc`

Arguments: The following argument(s) require some explanation:

- `currentStreams` a matrix of dimension `nStreams` × `dimPerPeriod` of streams for `currentPeriod`.
- `currentLogWeights` a vector of log weights corresponding to the streams in the argument matrix `currentStreams`.

Return value: a vector of length of `dimSummPerPeriod` of summaries for `currentPeriod` given the `currentStreams` and the `currentLogWeights`.

Optional function: `MHUpdateFunc`

Arguments: The following argument(s) require some explanation:

- `nMHSteps` the number of Metropolis Hastings (MH) steps (iterations) to be performed.
- `currentStreams` a matrix of dimension `nStreams` × `dimPerPeriod` of streams for `currentPeriod`.
- `lag1Streams` a matrix of dimension `nStreams` × `dimPerPeriod` of streams for `currentPeriod - 1`.
- `lag1LogWeights` a vector of length `nStreams` of log weights corresponding to the streams in the argument matrix `lag1Streams`.

Return value: a named list with the following components:
currentStreams a matrix of dimension nStreams × dimPerPeriod. The rows of this matrix contain the streams for period currentPeriod that are (possibly) MH-updated versions of the rows of the argument currentStreams matrix.

acceptanceRates a vector of length nStreams, representing the acceptance rates of the nMHSteps-many MH steps for each of the streams in the rows of the argument currentStreams matrix.

Note: a positive value of nMHSteps performs as many MH steps on the rows of the argument currentStreams matrix. This is done to reduce the possible degeneracy after the resampling.

Warning

Using very small values (≤ 1e3) for nStreams might not give reliable results.

Note

The effect of leaving the default value NULL for some of the arguments above are as follows:

resampCriterionFunc the builtin resampling criterion, namely, resample when square of the coefficient of variation of the weights ≥ 1, is used.
resampFunc the builtin resampling function, which resamples streams with probability proportional to their weights, is used.
summaryFunc the builtin summary function, which returns the weighted average of each of the dimPerPeriod dimensions, is used.

MHUpdateFunc unlike, particleFilter, there is no builtin Metropolis Hastings updating function, which generates proposals for currentPeriod streams using those of currentPeriod - 1. The user needs to implement this function if nMHSteps > 0.

nStreamsPreResamp it is set to nStreams.

Also, the following point is worth noting:

resampCriterionFunc, resampFunc, summaryFunc are only necessary when user wants to try out new resampling schemes or enhanced summary generation procedures, as part of their research. The default builtins take care of the typical problems.

This function returns a list with component called draw. The detailed description of this component, as promised in section Value, is as follows. It is a list itself with the following components:

summary a matrix of dimension nPeriods × dimSummPerPeriod.
propUniqueStreamIds a vector of length nPeriods. The values are either proportions of unique stream ids accepted (at each period) if resampling was done or NA.
streams an array of dimension nStreams × dimPerPeriod × nPeriods. This is returned if returnStreams = TRUE.
logWeights a matrix of dimension nStreams × nPeriods. This is returned if returnLogWeights = TRUE.
acceptanceRates a matrix of dimension nStreams × nPeriods. This is returned if nMHSteps > 0.

Author(s)

Gopi Goswami <goswami@stat.harvard.edu>
References

See Also

particleFilter, auxiliaryParticleFilter

Examples

```r
MSObj <- MarkovSwitchingFuncGenerator(-12345)
smcObj <-
  with(MSObj,
    {
      sequentialMonteCarlo(nStreams = 5000,
        nPeriods = nrow(yy),
        dimPerPeriod = ncol(yy),
        propagateFunc = propagateFunc,
        returnStreams = TRUE,
        returnLogWeights = TRUE,
        verboseLevel = 1)
    })
print(smcObj)
print(names(smcObj))
with(c(smcObj, MSObj),
    {
      par(mfcol = c(2, 1))
      plot(as.ts(yy),
        main = expression('The data and the underlying regimes'),
        cex.main = 0.8,
        xlab = 'period',
        ylab = 'data and the regime means',
        cex.lab = 0.8)
      lines(as.ts(mu), col = 2, lty = 2)
      plot(as.ts(draws$summary[1, ]),
        main = expression('The underlying regimes and their estimates'),
        cex.main = 0.8,
        xlab = 'period',
        ylab = 'regime means',
        cex.lab = 0.8)
      lines(as.ts(mu), col = 2, lty = 2)
    })

MSObj <- MarkovSwitchingFuncGenerator(-54321)
smcObj <-
  with(MSObj,
    {
      sequentialMonteCarlo(nStreams = 5000,
        nPeriods = nrow(yy),
        dimPerPeriod = ncol(yy),
```
propagateFunc = propagateFunc,
returnStreams = TRUE,
returnLogWeights = TRUE,
verboseLevel = 1)

print(smcObj)
print(names(smcObj))
with(c(smcObj, M5Obj),
{
 par(mfcol = c(2, 1))
 plot(as.ts(yy),
 main = expression('The data and the underlying regimes'),
 cex.main = 0.8,
 xlab = 'period',
 ylab = 'data and the regime means',
 cex.lab = 0.8)
 lines(as.ts(mu), col = 2, lty = 2)
 plot(as.ts(draws$summary[1,]),
 main = expression('The underlying regimes and their estimates'),
 cex.main = 0.8,
 xlab = 'period',
 ylab = 'regime means',
 cex.lab = 0.8)
 lines(as.ts(mu), col = 2, lty = 2)
})

utilsForExamples

The utility function(s) for examples

Description

The utility function(s) that are used in the example sections of the exported functions in this package.

Usage

MarkovSwitchingFuncGenerator(seed = 975313579)

Arguments

seed the seed for random number generation.

Value

A list containing the objects to be used as arguments to the exported functions in the respective example sections of this package.

Author(s)

Gopi Goswami <goswami@stat.harvard.edu>
See Also

particleFilter, auxiliaryParticleFilter, sequentialMonteCarlo
Index

*Topic **datagen**
 utilsForExamples, 21
*Topic **methods**
 auxiliaryParticleFilter, 1
 particleFilter, 8
 sequentialMonteCarlo, 15
*Topic **print**
 print, 15

auxiliaryParticleFilter, 1, 13, 15, 20, 22

MarkovSwitchingFuncGenerator
 (utilsForExamples), 21

particleFilter, 6, 7, 8, 15, 19, 20, 22
print, 15

sequentialMonteCarlo, 15, 15, 22

utilsForExamples, 21