Package ‘SMIR’

February 19, 2015

Type Package
Title Companion to Statistical Modelling in R
Version 0.02
Date 2009-5-05
Author Murray Aitkin, Brian Francis, John Hinde, Ross Darnell
<ross.darnell@csiro.au>
Maintainer Ross Darnell <ross.darnell@csiro.au>
Depends R (>= 2.6.0),
Suggests lattice, foreign, gdata, car, dglm, gnm, MASS, npmlreg,
survival
LazyLoad no
LazyData no
Description This package accompanies Aitkin et al, Statistical Modelling in R, OUP, 2009. The package contains some functions and datasets used in the text.
License GPL (>= 2)
Repository CRAN
Date/Publication 2012-10-29 08:57:40
NeedsCompilation no

R topics documented:

 betablok .. 2
 bronchitis ... 3
 byssinosis ... 4
 cars ... 4
 chd ... 5
 claims .. 6
 coxph.disparity 7
 disparity .. 8
 disparity.glm ... 9
Description

A 22-centre clinical trial of beta-blockers for reducing mortality after myocardial infarction, described by Yusuf et. al. (1984). The important issue is the generalizability of the treatment effect across different patient populations.

Usage

data(betablok)
Format

A dataframe with 44 obs. and 4 variables:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>r</td>
<td>integer</td>
<td></td>
</tr>
<tr>
<td>[2]</td>
<td>n</td>
<td>integer</td>
<td></td>
</tr>
<tr>
<td>[3]</td>
<td>centre</td>
<td>int</td>
<td></td>
</tr>
<tr>
<td>[4]</td>
<td>treat</td>
<td>factor w/2 levels "C","T"</td>
<td></td>
</tr>
</tbody>
</table>

Note

See p.524 in SMIR

Source

Description

The data consist of observations on three variables for each of 212 men in a sample of Cardiff enumeration districts.

Usage

data(bronchit)

Format

A data.frame of 212 obs of 3 variables:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>r</td>
<td>integer, 1= respondent suffered from chronic bronchitis</td>
</tr>
<tr>
<td>[2]</td>
<td>cig</td>
<td>numeric, the number of cigarettes per day</td>
</tr>
<tr>
<td>[3]</td>
<td>poll</td>
<td>numeric, the smoke level in the locality</td>
</tr>
</tbody>
</table>

Note

See p.224 in SMIR

Source

the use of logit models in geography, Geo.Abstracts Ltd, CATMOG 10, University of East Anglia, Norwich.

byssinosis
Byssinosis in the cotton industry

Description

The dataset contains the number of workers in a survey of the US cotton industry suffering and not suffering from the lung disease byssinosis, together with the values of five cross-classifying categorical explanatory variables: the race, sex and smoking habit of the worker, the length of employment in three categories, and the dustiness of the workplace in three categories.

Usage

data(byssinosis)

Format

A data.frame of 72 obs. of 7 variables:

[,1] dust Factor w/ 3 levels "most","less"
[,2] race Factor w/ 2 levels "white","non-white"
[,3] sex Factor w/ 2 levels "male","female"
[,4] smok Factor w/ 2 levels "smoker","non"
[,5] emp Factor w/ 3 levels "<10"","10-20",...
[,6] yes int, Number of workers who suffered byssinosis
[,7] no int, Number of workers who did not suffer from byssinosis

Note

See p.255 in SMIR

Source

cars
Performance data for cars from Motor Trend magazine

Description

The data are quarter-mile acceleration time in seconds and fuel consumption in miles per (US) gallon for 32 cars tested by the US Motor Trend magazine in 1974. Nine explanatory variables are
given: shape of engine, number of cylinders, transmission type, number of gears, engine displacement in cubic inches, horsepower, number of carburettor barrels, final drive ratio, and weight of the car in thousands of pounds.

Usage
data(cars)

Format
A data.frame of 32 obs. of 11 variables:

.1	s	integer, shape of engine (straight = 1, vee = 0)
.2	c	integer, number of cylinders
.3	t	integer, transmission type, (automatic = 0, manual = 1)
.4	g	integer, number of gears
.5	disp	numeric, engine displacement in cubic inches
.6	hp	integer, horsepower
.7	cb	integer, number of carburettors
.8	drat	numeric, final drive ratio
.9	wt	numeric, weight of car in thousands of pounds
.10	qmt	numeric, quarter-mile acceleration time in seconds
.11	mpg	numeric, fuel consumption in miles per gallon
.12	model	Factor w/ 32 levels "AMC Javelin"...:18 19 ...

Note
See p.144 in SMIR

Source

Description
The file gives the number of men diagnosed as having coronary heart disease (CHD) in an American study of 1329 men (the data are presented and analysed in Ku and Kullback, 1974). The serum cholesterol level and blood pressure in mm mercury were recorded for each man, and are reported in one of four categories, giving a 4X4 cross-classified in each cell of which the number of men with CHD and the total number of men examined are given.

Usage
data(chd)
claims

Format

A data.frame of 16 obs. of 4 variables:

<table>
<thead>
<tr>
<th></th>
<th>chol</th>
<th>bp</th>
<th>r</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Factor w/ 4 levels "$<200","200-219$",...</td>
<td>Factor w/ 4 levels "$<127","127-146$",...</td>
<td>integer, number of men with CHD</td>
<td>integer, total number of men in study</td>
</tr>
</tbody>
</table>

Note

See p.248 in SMIR

Source

claims Insurance claims data

Description

The file gives the number of policyholders of an insurance company who were “exposed to risk”, and the number of car insurance claims made in the third quarter of 1973 by these policyholders, arranged as a contingency table cross-classified by three four-level factors: dist, the district in which the policyholder lived (1: rural, 2: small towns, 3: large towns, 4: major cities), car, the engine capacity of the car (1: $<$ 1 litre, 2: 1 – 1.5 litres, 3: 1.5 – 2 litres, 4: $>$ 2 litres), and age, the age of the policyholder (1: $<$ 25, 2: 25 – 29, 3: 30 – 35, 4: $>$ 35)

Usage

data(claims)

Format

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>c</th>
<th>age</th>
<th>dist</th>
<th>car</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>integer, number of policy holders</td>
<td>integer, number of claims</td>
<td>Factor w/ 4 levels "$<25","25-29","30-35",">35$"</td>
<td>Factor w/ 4 levels "rural","small towns","large towns","major cities"</td>
<td>Factor w/ 4 levels "$<1","1-1.5","1.5-2",">2$"</td>
</tr>
</tbody>
</table>
coxpath.disparity

Note

See p.271 in SMIR

Source

Description

The coxpath.disparity() function returns the disparity from the piecewise exponential model, including all the terms in the likelihood, and is directly comparable to the disparity for the fit of other models used in this chapter.

Usage

coxpath.disparity(fit)

Arguments

- fit: name of an object of class “coxpath”

Details

This form of the likelihood, allows the Cox proportional hazards model to be compared directly to fully parametric models. (Note that log-likelihood value stored in coxpath.object is not comparable as it is based on the proportional hazards function and does not include the baseline hazard, this cancels out in the conditional probabilities that form the partial likelihood.)

Value

a num vector

Author(s)

<johh.hinde@nuigalway.ie>

References

Examples

```r
require(survival)
data(feigl)
feigl <- within(feigl, (lwbc <- log(wbc)))
feigl.cph <- coxph(Surv(time) ~ ag * lwbc, data = feigl, 
method = "breslow")
coxph.disparity(feigl.cph)
```

Description

disparity is a generic function used to produce the disparities of the results of various models.

Usage

disparity(model)

Arguments

- `model` a valid model `lm` or `glm` object

Author(s)

<ross.darnell@csiro.au>

References

Examples

```r
## The function is currently defined as
function(model, ...)
UseMethod("disparity")
```
disparity.glm

Disparities for Generalized Linear Model Fits

Description

This function is a method for class glm objects.

Usage

S3 method for class 'glm'
disparity(model)

Arguments

model an object of class "glm".

Details

disparity prints \(-2 \times \) log-likelihood.

Author(s)

<ross.darnell@csiro.au>

disparity.lm

Disparities for Linear Model Fits

Description

This function is a method for class lm objects.

Usage

S3 method for class 'lm':
S3 method for class 'lm'
disparity(model)

Arguments

model an object of class "lm".

Details

disparity prints \(-2 \times \) log-likelihood.

Author(s)

<ross.darnell@csiro.au>
faults
Faults in rolls of material

Description
Bissell gives the numbers of yarn breaks observed in a roll of fabric whilst a textile process was running, as well as the length of the roll of fabric.

Usage
```r
data(faults)
```

Format
A data.frame of 32 obs. of 2 variables:

- `[.1] l` integer, roll length (m)
- `[.2] n` integer, number of faults

Note
See pages 269 and 474 of SMIR

Source

feigl
Leukaemia survival times — Feigl & Zelen

Description
The file contains the survival times in weeks of 33 patients suffering from acute myelogeneous leukaemia, and the values of two explanatory variables, white blood cell count in thousands and a positive or negative factor , positive values being defined by the presence of Auer rods and/or significant granulature of the leukaemic cells in the bone marrow at diagnosis, and negative values if both Auer rods and granulature are absent.

Usage
```r
data(feigl)
```

Format
A data.frame of 33 obs. of 3 variables:
data gehan

Description

Data from a clinical trial which compared 6-mercaptopurine (6-MP) to a placebo in the maintenance of remissions in acute leukemia. The remission times in weeks one year after the start of the study were recorded. Participants were paired according to remission status, an aspect not described in Gehan (1965).

Usage

data(gehan)

Format

A dataframe containing 42 obs. of 5 variables:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>pair</td>
<td>numeric defining pair according to remission status</td>
</tr>
<tr>
<td>[2,]</td>
<td>time</td>
<td>numeric time to remission available at the time the trial was stopped</td>
</tr>
<tr>
<td>[3,]</td>
<td>cens</td>
<td>numeric "0" indicating censored,"1" uncensored</td>
</tr>
<tr>
<td>[4,]</td>
<td>treat</td>
<td>factor w/ 2 levels "6-MP", "control"</td>
</tr>
</tbody>
</table>

Source

ghq

Psychiatric diagnosis based on GHQ

Description
These data were published by Silvapulle, and come from a psychiatric study of the relation between psychiatric diagnosis (as case or non-case) and the value of the score on a 12-item General Health Questionnaire (GHQ), for 120 patients attending a general practitioner’s surgery. Each patient was administered the GHQ, resulting in a score between 0 and 12, (however there were no cases or non-cases with GHQ scores of 11 or 12) and was subsequently given a full psychiatric examination by a psychiatrist who did not know the patient’s GHQ score. The patient was classified by the psychiatrist as either a “case”, requiring psychiatric treatment, or a “non-case”.

Usage
data(ghq)

Format

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[.1]</td>
<td>sex</td>
<td>Factor w/ 2 levels "men","women"</td>
</tr>
<tr>
<td>[.2]</td>
<td>ghq</td>
<td>integer, score from 0,...,12</td>
</tr>
<tr>
<td>[.3]</td>
<td>c</td>
<td>integer, number of patients considered a "case"</td>
</tr>
<tr>
<td>[.4]</td>
<td>nc</td>
<td>integer, number of patients considered a "non-case"</td>
</tr>
</tbody>
</table>

Note
See p.235 in SMIR

Source

hostility

Bennett's hostility data

Description
A measure of hostility based on word use exhibiting hostility by husbands of wives who had been admitted to hospital after suicide attempts by taking drug overdoses compared to a “control” group of husbands.
Usage

data(hostility)

Format

A data frame with 67 observations on the following 10 variables.

- group: a numeric vector
- nationality: a numeric vector
- po: a factor with levels none previous
- in.host: a numeric vector
- amb.host: a numeric vector
- out.host: a numeric vector
- covert.host: a numeric vector
- positivity: a numeric vector
- g: a factor with levels overdoses F controls T controls
- nation: a factor with levels Australian British

Note

See p.168 of SMIR

Source

Examples

data(hostility)
maybe str(hostility)
plot(hostility)

<table>
<thead>
<tr>
<th>insult</th>
<th>Effects of unprovoked verbal attack</th>
</tr>
</thead>
</table>

Description

Ten male and nine female subjects were asked to fill out a questionnaire which mixed innocuous questions with questions attempting to assess the subject’s self-reported hostility. A hostility score for each individual was calculated from these responses. After completing the questionnaire, the subjects were then left waiting for a long time, and were subjected to insults and verbal abuse by the experimenter when the questionnaire was eventually collected. All subjects were told that they had filled out the questionnaire incorrectly, and were instructed to fill it out again. A second hostility score was then calculated from these later responses.
Usage
data(insult)

Format
A data frame of 19 obs. of 3 variables:

.1	hbefore	integer, hostility score before verbal attack
.2	hafter	integer, hostility score after verbal attack
.3	sex	Factor w/ 2 levels "female","male"

Note
See pages 5 and 17 of SMIR

Source

lsat

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lsat</td>
<td>LSAT</td>
</tr>
</tbody>
</table>

Description
The original dataset consists of responses from 1,000 subjects to five dichotomous items from section 6 of the LSAT exam. The version here is presented as frequencies of unique patterns of responses. The data is from Bock and Lieberman 1970.

Usage
data(lsat)

Format
A data frame with 32 observations on the following 7 variables. The variable wt7 represents the number with each pattern.

y1 a numeric vector
y2 a numeric vector
y3 a numeric vector
y4 a numeric vector
y5 a numeric vector
wt6 a numeric vector
wt7 a numeric vector
Note
See p.547 in SMIR

Source

References

Examples
data(lsat)

\[Pneumoconiosis in coal miners \]

Description
The file gives the numbers of coalminers classified by radiological examination into one of three categories of pneumoconiosis, normal, mild pneumoconiosis and severe pneumoconiosis, and by years spent working at the coalface (interval midpoint).

Usage
data(miners)

Format
A data.frame of 8 obs. of 4 variables:

\.1	years	numeric, years (midpoint) of years spent at coalface
\.2	n	integer, number of miners classified as normal
\.3	m	integer, number of miners with mild pneumoconiosis
\.4	s	integer, number of miners with severe pneumoconiosis

Note
See p.279 in SMIR

Source
NPL.bands

Nonparametric likelihood confidence bands

Description

Usage

```r
NPL.bands(x, conf.level)
```

Arguments

- `x`: a numeric vector
- `conf.level`: Either 0.95 (default) or 0.99

Value

- `x`: The unique values of `x`
- `lower`: The lower bound
- `upper`: The upper bound

Author(s)

<ross.darnell@csiro.au>

Examples

```r
### Empirical distribution of a gamma variable
### and comparing to a normal
library(lattice)
y <- round(rgamma(100, shape=1.4, scale=10))
meany <- mean(y)
sdy <- sd(y)
print(xyplot(qnorm(lower)+qnorm(upper)-x, data=NPL.bands(y),
panel=function(x,y,...){
panel.xyplot(x,y,...)
panel.curve(qnorm(pnorm(x, mean=meany, sd=sdy))))))
### and for a larger sample
yy <- round(rgamma(1000, shape=1.4, scale=20))
meanyy <- mean(yy)
sdyy <- sd(yy)
print(xyplot(qnorm(lower)+qnorm(upper)-x, data=NPL.bands(yy),
panel=function(x,y,...){
panel.xyplot(x,y,...)
panel.curve(qnorm(pnorm(x, mean=meanyy, sd=sdyy))))))
### and for a t-distributed variable with df=10
```
y <- round(rt(1000, df=10), 1)
mean <- mean(y)
sd <- sd(y)
print(xyplot(qnorm(lower) + qnorm(upper) ~ x, data=NPL.bands(y),
panel=function(x, y, ...){
 panel.xyplot(x, y, ...)
 panel.curve(qnorm(pnorm(x, mean=mean, sd=sd)))})
and for a mixture of t-distributed variables with df=5
y <- round(c(r1000, df=5)*5+20, r1000, df=5)*5+40)
mean <- mean(y)
sd <- sd(y)
print(xyplot(qnorm(lower) + qnorm(upper) ~ x, data=NPL.bands(y),
panel=function(x, y, ...){
 panel.xyplot(x, y, ...)
 panel.curve(qnorm(pnorm(x, mean=mean, sd=sd)))})
#

poison

Box Cox Poison Dataset

Description

Survival times (units 10 hrs) of animals in a 3 x 4 factorial experiment, the factors being (a) three poisons and (b) four treatments given in Box and Cox (1964). Each combination of the two factors is used for four animals, the allocation to animals being completely randomized.

Usage

data(poison)

Format

A dataframe containing 48 observations for 2 factors type and treat and the vector time.

```
[,1] type Factor w/ 3 levels "I","II","III"
[,2] treat Factor w/ 4 levels "A","B","C","D"
[,3] time numeric (units 10 hrs)
```

Note

See pp.161, 180 and 184 in SMIR

Source

Description

The file consists of survival times in days of 137 lung cancer patients from a Veteran’s Administration Lung Cancer trial, together with explanatory variables: performance status, a measure of general medical status on a continuous scale 1–9.9, with 1–3 completely hospitalized, 4–6 partial confinement to hospital, 7–9.9 able to care for self; age in years; time in months from diagnosis to starting on the study; a factor prior therapy (1 no, 2 yes); a factor treatment (1 standard, 2 test) and a factor tumour type (1 squamous, 2 small, 3 adeno, 4 large). There are three censored observations.

Usage

data(prentice)

Format

A data.frame of 137 obs. of 8 variables:

<table>
<thead>
<tr>
<th></th>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[.1]</td>
<td>treat</td>
<td>integer, 1= standard, 2= test</td>
</tr>
<tr>
<td>[.2]</td>
<td>type</td>
<td>integer, 1= squamous, 2 =small, 3= adeno, 4= large</td>
</tr>
<tr>
<td>[.3]</td>
<td>time</td>
<td>integer, survival time in days</td>
</tr>
<tr>
<td>[.4]</td>
<td>censor</td>
<td>integer, censoring indicator</td>
</tr>
<tr>
<td>[.5]</td>
<td>status</td>
<td>integer, general medical status on a scale 1–9.9</td>
</tr>
<tr>
<td>[.6]</td>
<td>mfd</td>
<td>integer, time in months from diagnosis</td>
</tr>
<tr>
<td>[.7]</td>
<td>age</td>
<td>integer, age in years</td>
</tr>
<tr>
<td>[.8]</td>
<td>prior</td>
<td>integer, prior therapy 1=no, 2=yes</td>
</tr>
</tbody>
</table>

Note

See p.414 in SMIR

Source

R2

Coefficient of determination of linear models

Description

This function provides the coefficient of determination for lm objects that may not have an intercept.
Usage

R2(model)

Arguments

model an object as returned by 'lm'

Author(s)

<ross.darnell@csiro.au>

References

Examples

data(trees)
R2(lm(v ~ d + h - 1, data=trees))

R2CV

Cross-validated coefficient of determination

Description

This function provides the leave-one-out crossvalidation version of the coefficient of determination for regression models

Usage

R2CV(model)

Arguments

model an object as returned by 'lm'

References

Examples

data(trees)
R2CV(lm(v ~ d + h, data=trees))
Description

Calculates the coefficient of determination for any model of class 'lm'.

Usage

Rsq(model)

Arguments

model a model object list with argument y and method fitted

See Also

cor

Description

A sample of twenty-four children was randomly drawn from the population of fifth-grade children attending a state primary school in a Sydney suburb. Each child was assigned to one of two experimental groups, and given instructions by the experimenter on how to construct, from nine differently coloured blocks, one of the 3X3 square designs in the Block Design subtest of the Wechsler Intelligence Scale for Children (WISC). Children in the first group were told to construct the design by starting with a row of three blocks (row group), and those in the second group were told to start with a corner of three blocks (corner group). The total time in seconds to construct four different designs was then measured for each child.

Before the experiment began, the extent of each child’s “field dependence” was tested by the Embedded Figures Test (EFT), which measures the extent to which subjects can abstract the essential logical structure of a problem from its context (high scores corresponding to high field dependence and low ability).
Format
A data.frame of 24 obs. of 4 variables:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[.1]</td>
<td>child</td>
<td>integer, child id</td>
<td></td>
</tr>
<tr>
<td>[.2]</td>
<td>group</td>
<td>Factor w/ 2 levels "corner","row"</td>
<td></td>
</tr>
<tr>
<td>[.3]</td>
<td>time</td>
<td>integer, time in seconds</td>
<td></td>
</tr>
<tr>
<td>[.4]</td>
<td>eft</td>
<td>integer, EFT score</td>
<td></td>
</tr>
</tbody>
</table>

Note
See p.97 of SMIR

Source

stackloss

The Brownlee stackloss data

Description
The data consist of 21 observations on stack-loss (the loss of acid through the stack) in a chemical plant for the conversion of ammonia to nitric acid, with three explanatory variables: air flow(x_1), cooling water inlet temperature(x_2) and acid concentration(x_3).

Usage
data(stackloss)

Format
A data.frame of 21 obs. of 4 variables:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[.1]</td>
<td>y</td>
<td>integer, loss of acid through the stack</td>
<td></td>
</tr>
<tr>
<td>[.2]</td>
<td>x1</td>
<td>integer, air flow</td>
<td></td>
</tr>
<tr>
<td>[.3]</td>
<td>x2</td>
<td>integer, cooling water inlet temperature</td>
<td></td>
</tr>
<tr>
<td>[.4]</td>
<td>x3</td>
<td>integer, acid concentration</td>
<td></td>
</tr>
</tbody>
</table>

Note
See p.469 of SMIR

Source
Description

The file contains the data on 65 transplanted patients, consisting of the patient’s age at transplantation, prior open-heart surgery (1 = yes, 0 = no), a censoring indicator (1 = yes, 0 = no), the survival time in days after transplant, a score representing the mismatch between the patient’s and the donor’s tissue type (values range from 0.00 to 3.05), and an indicator for death by rejection (1 = yes, 0 = no). One zero survival time is recoded to 0.5. There are 41 deaths and 24 censored survivals, with 39 distinct death times.

Usage

data(stan)

Format

A data frame with 65 observations on the following 12 variables.

- id a numeric vector
- za a numeric vector
- zb a numeric vector
- age a numeric vector
- surg a numeric vector
- acc a numeric vector
- died a numeric vector
- surv a numeric vector
- nmm a numeric vector
- hla a numeric vector
- mm a numeric vector
- rej a numeric vector

Note

See p.422 in SMIR

Source

Examples

data(stan)
maybe str(stan)
STATLAB census data

Description

The STATLAB Census covers 1296 member families of the Kaiser Foundation Health Plan (a pre-paid medical care program) living in the San Francisco Bay Area during the years 1961 - 1972. These families were participating members of the Child Health and Development Study conceived and directed by Jacob Yerushalmy, for many years Professor of Biostatistics in the School of Public Health, University of California, Berkeley.

On her first visit to the Oakland hospital of the Health Plan after pregnancy was diagnosed, each woman was interviewed intensively on a wide range of medical and socioeconomic matters relating both to herself and to her husband. In addition, various physical and physiological measures were made. When her child was born, further data about her and her newborn baby were recorded. Approximately 10 years later the child and mother were called in for follow-up testing, interviewing, and measurement. In some instances, the husband was also interviewed and measured.

The 1296 families of the STATLAB Census are divided into two equal subpopulations: 648 families consisting of a mother, father, and female child; and 648 families of a mother, father, and male child. The children were all born in the Kaiser Foundation Hospital, Oakland, California, between 1 April 1961 and 15 April 1963. The Census does not cover any other children who may also have existed in these families.

Usage

data(statlab)

Format

A data.frame of 1296 obs. of 34 variables:

- id: integer
- c.b.blood: Factor w/ 9 levels
- c.b.lgth: numeric
- c.b.wgt: numeric
- c.b.mo: integer
- c.b.day: integer
- c.b.hour: integer
- c.t.hght: numeric
- c.t.wgt: integer
- c.t.l: Factor w/ 8 levels
- c.t.pea: integer
- c.t.ra: integer
- m.b.blood: Factor w/ 9 levels
- m.b.ag: integer
- m.b.wgt: integer
- m.b.o: Factor w/ 8 levels
- m.b.sm: Factor w/ 31 levels
This function is a method for class `treg`.

Usage

```r
## S3 method for class 'treg'
summary(object, ...)
```

Arguments

- `object` an object of class `treg`.
- `...` further arguments passed to or from other methods.

Value

The function `summary.treg` computes and prints statistics of "lm" class objects as well as the robust estimates of coefficients, the disparity and 'r', the degrees of freedom.
toxaemia

Author(s)
<ross.darnell@csiro.au>

References

See Also
treg

toxaemia

Bradford toxaemia data

Description

The number of women giving birth to their first child who showed toxaemic signs (hypertension and/or proteinurea, classified as Yes or No) during pregnancy.

Usage

data(toxaemia)

Format

A data frame with 60 observations on the following 4 variables.

- **response**: a factor with levels *HN HU NN NU*
- **smoke**: a factor with levels *Ø 1-19 20+
- **class**: a factor with levels *I II III IV V*
- **count**: a numeric vector

Note

See p.330 in SMIR

Source

Examples

data(toxaemia)
tox.prop.table1 <- with(toxaemia, prop.table(tapply(count,
 list(class = class, response = response, smoke = smoke),
 sum), c(1, 3))[, c(2, 1, 4, 3), 1:2])
tox.prop.table2 <- with(toxaemia, prop.table(tapply(count,
 list(class = class, response = response, smoke = smoke),
 sum), c(1, 3))[, c(2, 1, 4, 3), 3, drop = FALSE])

Toxoplasmosis in El Salvador

Description
The file shows the number of men tested and the number with a positive test for toxoplasmosis in 34 cities in El Salvador, together with the annual rainfall in metres.

Usage

data(toxoplas)

Format
A data.frame of 34 obs. of 3 variables:

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>n</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[1]</td>
<td>integer, number of men with a positive test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[[2]</td>
<td>integer, number of men tested</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[[3]</td>
<td>numeric, annual rainfall in metres</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note
See p.484 in SMIR

Source

The Minitab cherry tree data

Description
The volume of usable wood \(v \) in cubic feet (1 foot = 30.48 cm) is given for each of a sample of 31 black cherry trees, and the height \(h \) in feet and the diameter \(d \) in inches (1 inch = 2.54 cm) at a height 4.5 feet above the ground.
Usage

\texttt{data(trees)}

Format

A data.frame of 31 obs. of 3 variables:

<table>
<thead>
<tr>
<th></th>
<th>d</th>
<th>numeric, diameter in inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>h</td>
<td>integer, height in feet</td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>numeric volume of usable wood,</td>
</tr>
</tbody>
</table>

Note

See pp.126 and 191 in SMIR

Source

treg \hspace{1cm} \textit{t-regression model fit}

Description

Robust regression by modelling errors as t-distributed with known degrees of freedom rather than normal

Usage

\texttt{treg(lm.object, r, verbose=TRUE)}

Arguments

- \texttt{lm.object} An object of class "lm"
- \texttt{r} a vector of degrees of freedom
- \texttt{verbose} TRUE prints estimates for $-2 \times \log$ likelihood, sigma, and r at each iteration.

Details

Fits the t distribution for known degrees of freedom, σr, and computes the profile likelihood and obtains the joint MLEs of the regression coefficients, sigma and disparity of a \textit{robust} regression.
The trypanosome data

Follman and Lambert (1989) gave an example of a logistic regression with a varying intercept term. The data consist of numbers y of trypanosomes killed out of n treated at a treatment dose x.

Usage

data(trypanos)

Format

A data frame with 8 observations on the following 3 variables.

x a numeric vector
n a numeric vector
y a numeric vector
Note
See p.500 in SMIR

Source

Examples
```
data(trypanos)
library(npmlreg)
(trypanos.npl <- alldist(cbind(y, (n - y)) ~ log(x),
                         random = ~1, data = trypanos, family = binomial,
                         plot.opt = 0, verbose = FALSE,k=1))
(trypanos.np2 <- update(trypanos.npl,k=2))
```

<table>
<thead>
<tr>
<th>vaso</th>
<th>Gilliatt’s vaso-constriction data</th>
</tr>
</thead>
</table>

Description
These data were obtained in a carefully controlled study of the effect of the rate and volume of air inspired by human subjects on the occurrence or non-occurrence of a transient vasoconstriction response in the skin of the fingers.

Usage
data(vaso)

Format
A data.frame of 39 obs. of 4 variables:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subject</td>
<td>Factor w/ 3 levels "1","2","3",...</td>
</tr>
<tr>
<td>[1]</td>
<td>Volume</td>
<td>numeric, volume of air expired</td>
</tr>
<tr>
<td>[2]</td>
<td>Rate</td>
<td>numeric, rate of air expired</td>
</tr>
<tr>
<td>[3]</td>
<td>Y</td>
<td>integer, transient vasoconstriction response, 1=yes, 0=no</td>
</tr>
</tbody>
</table>

Note
See p.209 in SMIR

Source
References

University of North Carolina Vietnam War Student Survey

Description

A survey of student opinion on the Vietnam War was taken at the University of North Carolina in Chapel Hill in May 1967 and published in the student newspaper. Students were asked to fill in “ballot papers”, available in the Student Council building, stating which policy out of A, B, C or D they supported. Responses were cross-classified by sex and by undergraduate year or graduate status. The policies were:

- **A**: The US should defeat the power of North Vietnam by widespread bombing of its industries, ports and harbours and by land invasion.
- **B**: The US should follow the present policy in Vietnam.
- **C**: The US should de-escalate its military activity, stop bombing North Vietnam, and intensify its efforts to begin negotiation.
- **D**: The US should withdraw its military forces from Vietnam immediately.

Usage
data(vietnam)

Format

A data.frame of 40 obs. of 4 variables:

- [.1] policy Factor w/ 4 levels "A","B","C","D"
- [.2] year Factor w/ 5 levels "1","2","3","4","5"
- [.3] sex Factor w/ 2 levels "female","male"
- [.4] count integer , the number of students in each cell

Note

See p.310 in SMIR

Source

Woolson and Clarke's Obesity Study

Description

This is a subset of the Obesity dataset. Binary indicators of obesity on 1014 children who were 7-9 years old in 1977, and were followed up in 1979 and 1981. Children were classified as obese if their weights were more than 210% of the population median weight for their gender and height.

Usage

```r
data(woolson)
```

Format

A data frame with 48 observations on the following 4 variables.

- `x` a numeric vector
- `y` a numeric vector
- `sex` a numeric vector
- `age` a numeric vector

Note

See p.539 in SMIR

Source

Examples

```r
data(woolson)
```
Index

*Topic **datasets**
 - betablok, 2
 - bronchitis, 3
 - byssinosis, 4
 - cars, 4
 - chd, 5
 - claims, 6
 - faults, 10
 - feigl, 10
 - ghq, 12
 - hostility, 12
 - insult, 13
 - lsat, 14
 - miners, 15
 - poison, 17
 - prentice, 18
 - solv, 20
 - stackloss, 21
 - stan, 22
 - statlab, 23
 - toxaemia, 25
 - toxoplas, 26
 - trees, 26
 - trypanos, 28
 - vaso, 29
 - vietnam, 30
 - woolson, 31

*Topic **distribution**
 - NPL bands, 16

*Topic **models**
 - disparity, 8

*Topic **regression**
 - R2, 18
 - R2CV, 19
 - summary.treg, 24

*Topic **robust**
 - treg, 27

*Topic **survival**
 - coxph.disparity, 7

 gehan, 11
 - betablok, 2
 - bronchit (bronchitis), 3
 - bronchitis, 3
 - byssinosis, 4
 - cars, 4
 - chd, 5
 - claims, 6
 - coxph.disparity, 7
 - disparity, 8
 - disparity.glm, 9
 - disparity.lm, 9
 - faults, 10
 - feigl, 10
 - gehan, 11
 - ghq, 12
 - hostility, 12
 - insult, 13
 - lsat, 14
 - miners, 15
 - NPL bands, 16
 - poison, 17
 - prentice, 18
 - R2, 18
 - R2CV, 19
 - Rsq, 20
 - solv, 20
 - stackloss, 21
 - stan, 22
INDEX

statlab, 23
summary.treg, 24

toxaemia, 25
toxoplas, 26
trees, 26
treg, 25, 27
trypanos, 28

vaso, 29
vietnam, 30

woolson, 31