Package ‘SVMMaj’

February 19, 2015

Type Package
Title SVMMaj algorithm
Version 0.2-2
Date 2010-12-16
Author Hoksan Yip, Patrick J.F. Groenen, Georgi Nalbantov
Maintainer Hok San Yip <hoksan@gmail.com>
Description Implements the SVM-Maj algorithm to train data with Support Vector Machine, this algorithm uses two efficient updates, one for linear kernel and one for the nonlinear kernel.
Imports graphics, stats, MASS, methods
Depends R (>= 2.9.0), kernlab
License GPL-2
LazyData Yes
Repository CRAN
Date/Publication 2011-01-13 12:09:49
NeedsCompilation no

R topics documented:

 AusCredit ... 2
diabetes ... 3
hinge ... 4
isb ... 5
normalize ... 6
predict.svmmaj ... 7
svmmaj ... 8
svmmajcrossval ... 11
voting .. 12

Index 14
AusCredit

Australian Credit Approval Dataset

Description

This file concerns credit card applications of 690 households.

Usage

AusCredit
AusCredit.tr
AusCredit.te

Format

This data set has been split into two components for the convenience of the model training. The data frame object X consists of with 6 numerical and 8 categorical attributes. The labels have been changed for the convenience of the statistical algorithms. For example, attribute 4 originally had 3 labels p,g,gg and these have been changed to labels 1,2,3.

Factor y indicates whether the application has been accepted or rejected.

The training set AusCredit.tr contains a randomly selected set of 400 subjects, and AusCredit.te contains the remaining 290 subjects. AusCredit contains all 690 objects.

Details

All attribute names and values have been changed to meaningless symbols to protect confidentiality of the data.

This dataset is interesting because there is a good mix of attributes – continuous, nominal with small numbers of values, and nominal with larger numbers of values. There are also a few missing values.

Source

Examples

attach(AusCredit)
summary(X)
summary(y)
detach(AusCredit)
Description

From National Institute of Diabetes and Digestive and Kidney Diseases.

Usage

diabetes
diabetes.tr
diabetes.te

Format

x is a data frame of 768 female patients with 8 attributes.

- **no.pregnant**: number of pregnancies.
- **glucose**: plasma glucose concentration in an oral glucose tolerance test
- **blood.press**: diastolic blood pressure (mm Hg)
- **triceps.thick**: triceps skin fold thickness (mm)
- **insulin**: 2-Hour serum insulin (mu U/ml)
- **BMI**: body mass index (weight in kg/(height in m)^2)
- **pedigree**: diabetes pedigree function
- **age**: age in years

y contains the class labels: Yes or No, for diabetic according to WHO criteria.

The training set diabetes.tr contains a randomly selected set of 600 subjects, and diabetes.te contains the remaining 168 subjects. diabetes contains all 768 objects.

Details

Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females at least 21 years old of Pima Indian heritage.

Source

References

Examples

```r
attach(diabetes)
summary(X)
summary(y)
```

hinge

Hinge error function of SVM-Maj

Description

This function creates a function to compute the hinge error, given its predicted value \(q \) and its class \(y \), according to the loss term of the Support Vector machine loss function.

Usage

```r
getHinge(hinge = 'quadratic', hingeK = 3, eps = 1e-8)
# S3 method for class 'hinge'
plot(x, y=1, z=NULL,...)
```

Arguments

- `hinge` Hinge error function to be used, possible values are 'absolute', 'quadratic' and 'huber'.
- `hingeK` The parameter of the huber hinge (only if `hinge` = 'huber').
- `eps` Specifies the maximum steepness of the quadratic majorization function \(m(q) = a*q^2 - 2*b*q + c \), where \(a <= .25* eps^{-1} \).
- `x` The hinge object returned from `getHinge`.
- `y` Specifies the class (-1 or 1) to be plotted for the hinge error.
- `z` If specified, the majorization function with the supporting point \(z \) will also be plotted.
- `...` Other arguments passed to plot method.

Value

The hinge error function with arguments \(q \) and \(y \) to compute the hinge error. The function returns a list with the parameters of the majorization function SVM-Maj (a, b and c) and the loss error of each object (loss).

Author(s)

Hok San Yip, Patrick J.F. Groenen, Georgi Nalbantov

References

isb

See Also

`svmmaj`

Examples

```r
hingefunction <- getHinge()
## plot hinge function value and, if specified, the majorization function at z
plot(hingefunction, z = 3)
## generate loss function value
loss <- hingefunction(q = -10:10, y = 1) $loss
```

isb

I-spline basis of each column of a given matrix

Description

Create a I-spline basis for an array. `isb` will equally distribute the knots over the value range using quantiles.

Usage

```r
isb(x, spline.knots = 0, knots=NULL, spline.degree = 1)
```

Arguments

- **x**
 The predictor variable, which will be transformed into I-spline basis.
- **spline.knots**
 Number of inner knots to use. `isb` will equally distribute the knots over the value range using quantiles. `spline.knots` will only be used if `knots` is not given.
- **knots**
 An array consisting all knots (boundary knots as well as the interior knots) to be used to create the spline basis.
- **spline.degree**
 The polynomial degree of the spline basis.

Value

Returns the I-spline with the used spline settings as attribute. The spline settings attribute can transform the same attribute of any other objects using the same knots.

Author(s)

Hok San Yip, Patrick J.F. Groenen, Georgi Nalbantov
References

See Also

svmmaj

Examples

create I-spline basis for the first 50 observations
x <- iris$Sepal.Length
B1 <- isb(x[1:50],spline.knots=4,spline.degree=3)
extracting the spline transformation settings
spline.param <- attr(B1,'splineInterval')
use the same settings to apply to the next 50 observations
B2 <- isb(x[-(1:50)],spline.degree=3,knots=spline.param)

<table>
<thead>
<tr>
<th>normalize</th>
<th>Normalize/standardize the columns of a matrix</th>
</tr>
</thead>
</table>

Description

Standardize the columns of an attribute matrix X to zscores, to the range [0 1] or a prespecified scale.

Usage

normalize(x,standardize = 'zscore')

Arguments

x An attribute variable which will be scaled.

standardize Either a string value denoting a predefined scaling, or a list with values a and b corresponding with the numeric centering and scaling, that is, using the function x * standardize$b - standardize$a.

Value

The standardized matrix. The numeric centering and scalings used are returned as attribute "standardize".

Author(s)

Hok San Yip, Patrick J.F. Groenen, Georgi Nalbantov
predict.svmmaj

References

See Also
svmmaj

Examples
standardize the first 50 objects to zscores
x <- iris$Sepal.Length
x1 <- normalize(x[1:50],standardize='zscore')
use the same settings to apply to the next 100 observations
x2 <- normalize(x[-(1:50)],standardize=attr(x1,'standardization'))

predict.svmmaj Out-of-Sample Prediction from Unseen Data.

Description
This function predicts the predicted value (including intercept), given a previous trained model which has been returned by svmmaj.

Usage
S3 method for class 'svmmaj'
predict(object, X.new, y=NULL, show.plot=FALSE,...)

Arguments

object Model which has been trained beforehand using svmmaj.
X.new Attribute matrix of the objects to be predicted, which has the same number of attributes as the untransformed attribute matrix in model.
y The actual class labels (only if show.plot==TRUE).
show.plot If show.plot==TRUE, it plots the density of the predicted value for both class labels, if y is not specified, the density of all objects will be plotted.
 ...
 Arguments to be passed to methods.

Value
The predicted value (including intercept) of class q.svmmaj, with attributes:

y The observed class labels of each object.
yhat be predicted class labels of each object.
classes The class labels.
Author(s)
Hok San Yip, Patrick J.F. Groenen, Georgi Nalbantov

References

See Also
svmmaj

Examples
attach(AusCredit)

model training
model <- svmmaj(X[1:400,],y[1:400],hinge='quadratic', lambda=1)

model prediction
q4 <- predict(model,X[-(1:400),],y[-(1:400)],show.plot=TRUE)
q4

svmmaj

SVM-Maj Algorithm

Description
SVM-Maj is an algorithm to compute a support vector machine (SVM) solution. In its most simple form, it aims at finding hyperplane that optimally separates two given classes. This objective is equivalent to finding a linear combination of k predictor variables to predict the two classes for n observations. SVM-Maj minimizes the standard support vector machine (SVM) loss function. The algorithm uses three efficient updates for three different situations: primal method which is efficient in the case of n^k, the decomposition method, used when the matrix of predictor variables is not of full rank, and a dual method, that is efficient when $n<k$. Apart from the standard absolute hinge error, SVM-Maj can also handle the quadratic and the Huber hinge.

Usage
svmmaj(X,y,lambda=1,...)

Default S3 method:
svmmaj(X, y, lambda=1, weights.obs = 1, weights.var = 1, scale = 'none',
spline.knots=0L, spline.degree=1L, kernel=vanilladot, kernel.sigma=1, kernel.degree=1,
kernel.scale=1, kernel.offset=0, hinge='absolute', hinge.k=5, convergence=1e-8,
print.step=FALSE, initial.point=NULL, increase.step = 20, eps=1e-8,
check.positive=TRUE, na.action=na.omit,...)

plotWeights(object,plotdim=c(3,3))

S3 method for class 'svmmaj'
plot(x,titletext=NULL,...)
Arguments

\textbf{X} \hspace*{1cm} A data frame (or object coercible by \texttt{as.data.frame} to a data frame) consisting the attributes, the class of each attribute can be either numeric, logical or factor.

\textbf{y} \hspace*{1cm} A factor (or object coercible by \texttt{factor} to a factor) consisting the class labels.

\textbf{lambda} \hspace*{1cm} Regularization parameter of the penalty term.

\textbf{weights.obs} \hspace*{1cm} Vector of length \(n \) with the nonnegative weight for the residual of each object (with length \(n \)). If the length is 2, then it specifies the weight per class.

\textbf{weights.var} \hspace*{1cm} Vector of length \(k \) with weights for each attribute.

\textbf{scale} \hspace*{1cm} Specifies whether the columns of attribute matrix \(X \) needs to be standardized into zscores or to the interval \([0, 1]\). Possible values are: none, zscore and interval. Moreover, the standardization parameters can be given instead.

\textbf{spline.knots} \hspace*{1cm} Number of internal knots of the spline basis. When the number of knots exceeds the number of (categorical) values of an explanatory variable, the duplicate knots will be removed using \texttt{link[base]{unique}}. \(\text{spline.knots} = 0 \) and \(\text{spline.degree} = 1 \) in case of no splines.

\textbf{spline.degree} \hspace*{1cm} The polynomial degree of the splines, for no splines: \(\text{spline.knots} = 0 \) and \(\text{spline.degree} = 1 \).

\textbf{kernel} \hspace*{1cm} Specifies which kernel function to be used (see \texttt{dots} of package \texttt{kernlab}). Default kernel is the linear kernel.

\textbf{kernel.sigma} \hspace*{1cm} The kernel parameter \(\sigma \) for the RBF kernel (see \texttt{rbfdot}). Default value is 1.

\textbf{kernel.degree} \hspace*{1cm} The degree parameter of the polynomial kernel (see \texttt{polydot}).

\textbf{kernel.scale} \hspace*{1cm} The scale parameter of the polynomial kernel (see \texttt{polydot}).

\textbf{hinge} \hspace*{1cm} Specifies which hinge term to be used. Possible values are: absolute, quadratic, huber.

\textbf{hinge.k} \hspace*{1cm} The parameter of the huber hinge, if the huber hinge is used.

\textbf{convergence} \hspace*{1cm} Specifies the convergence criterion of the algorithm. Default is \(1e^{-08} \).

\textbf{print.step} \hspace*{1cm} \texttt{print.step=TRUE} shows the progress of the iteration.

\textbf{initial.point} \hspace*{1cm} Initial solution.

\textbf{increase.step} \hspace*{1cm} The iteration number from which relaxed update will be used.

\textbf{eps} \hspace*{1cm} The relaxation of the majorization function for absolute hinge: \(.25 \cdot \text{eps}^{-1} \) is the maximum steepness of the majorization function.

\textbf{check.positive} \hspace*{1cm} Specifies whether a check has to be made for positive input values.

\textbf{na.action} \hspace*{1cm} Generic function for handling NA values.

\textbf{object} \hspace*{1cm} The model returned from \texttt{svmmaj}.

\textbf{x} \hspace*{1cm} The model returned from \texttt{svmmaj} used to plot the distribution of the objects per class using \texttt{plot.svmmaj}.

\textbf{titletext} \hspace*{1cm} An optional title for \texttt{plot.svmmaj}.

\textbf{plotdim} \hspace*{1cm} A vector of the form \(c(nr, nc) \). Subsequent figures will be drawn in an \(nr \)-by-\(nc \) array on the device.

\textbf{...} \hspace*{1cm} Other arguments passed to methods.
Value

Returns a svmmaj-class, of which the methods plot, plotWeights, summary and predict can be applied. (see also predict.svmmaj) The returning object consist of the following values:

call The function specifications which has been called.
lambda The regularization parameter of the penalty term which has been used.
loss The corresponding loss function value of the final solution.
iteration Number of iterations needed to evaluate the algorithm.
X The attribute matrix of \(\text{dim}(X) = c(n,k) \).
y The vector of length \(n \) with the actual class labels. These labels can be numeric \(\{0, 1\} \) or two strings.
classes A vector of length \(n \) with the predicted class labels of each object, derived from q.tilde
Xtrans The attribute matrix \(X \) after standardization and (if specified) spline transformation.
norm.param The applied normalization parameters (see normalize).
splineInterval The spline knots which has been used (see isb).
splineLength Denotes the number of spline basis of each explanatory variable in \(X \).
method The decomposition matrices used in estimating the model.
hinge The hinge function which has been used (see hinge).
beta If identified, the beta parameters for the linear combination (only available for linear kernel).
q A vector of length \(n \) with predicted values of each object including the intercept.
nSV Number of support vectors.

plotWeights shows, one graph per attribute, the weights of all attributes. The type of graph depends on the type of the attribute: the spline line of the corresponding attribute in case a spline has been used, a bar plot for categorical and logical values, and a linear line for all other type of the attribute values. This function cannot be used in a model with a non-linear kernel.

Author(s)

Hok San Yip, Patrick J.F. Groenen, Georgi Nalbantov

References

See Also

dots for the computations of the kernels. predict.svmmaj normalize isb hinge
Examples

attach(diabetes)

using default settings
model1 <- model <- svm(X,y,hinge='quadratic', lambda=1)
summary(model1)

weights.obs = list(positive=2,negative=1)
using radial basis kernel
model2 <- svm(X,y,hinge='quadratic', lambda=1, weights.obs=weights.obs,
 standardize='interval',kernel=rbfdot,
 kernel.sigma=1)
summary(model2)
I-spline basis
model3 <- svm(X,y,,weights.obs=weights.obs,spline.knots=3,spline.degree=2)
plotWeights(model3,plotdim=c(2,4))

svmmajcrossval

-k-fold Cross-Validation of SVM-Maj

Description

This function performs a gridsearch of k-fold crossvalidations using SVM-Maj and returns the
combination of input values which has the best forecasting performance.

Usage

svmmajcrossval(X,y,search.grid=list(lambda=2*seq(5,-5,length.out=19)),...,
 convergence=1e-4, weights.obs=1, check.positive = TRUE, print.progress=FALSE, ngroup = 5, groups = NULL)

Arguments

X A data frame (or object coercible by as.data.frame to a data frame) consisting
 the attributes.

y A factor (or object coercible by factor to a factor) consisting the class labels.

search.grid A list with for each factor the range of values to search for.

... Other arguments to be passed through svmmaj.

convergence Specifies the convergence criterion for svmmaj. Default is 1e-08.

weights.obs Weights for the classes.

check.positive Specifies whether a check should be performed for positive lambda and weights.obs.

print.progress =TRUE shows the progress of the cross-validation.

ngroup The number of groups to be divided into.

groups A predetermined group division for performing the cross validation.
Value

missclass.opt The minimum (weighted) missclassification rate found in out-of-sample training along the search grid.

param.opt The level of the factors which gives the minimum loss term value.

param.grid The matrix of all gridpoints which has been performed during the cross-validation, with its corresponding weighted out-of-sample missclassification rate.

Author(s)

Hok San Yip, Patrick J.F. Groenen, Georgi Nalbantov

References

See Also

svmmaj

Examples

require(MASS)
Xt <- subset(Pima.tr,select=-type)
yt <- Pima.tr$type

setting grid range
search.grid= list(lambda=10^seq(1,-1) ,kernel.sigma=2^seq(0,2))

performing gridsearch with k-fold crossvalidation
results<-svmmajcrossval(Xt,yt,search.grid = search.grid, standardize = 'interval',kernel = rbf,hinge='quadratic')
results

voting Congressional Voting Records Data Set

Description

1984 United Stated Congressional Voting Records; Classify as Republican or Democrat.

Usage

voting
voting.tr
voting.te
Format

\(X \) is a data frame with 434 congress members and 16 attributes: 16 key votes identified by the Congressional Quarterly Almanac (CQA). All attributes are binary values, with 1 = yes and 0 = no.

\[
\begin{align*}
X_1 & \text{ handicapped-infants} \\
X_2 & \text{ water-project-cost-sharing} \\
X_3 & \text{ adoption-of-the-budget-resolution} \\
X_4 & \text{ physician-fee-freeze} \\
X_5 & \text{ el-salvador-aid} \\
X_6 & \text{ religious-groups-in-schools} \\
X_7 & \text{ anti-satellite-test-ban} \\
X_8 & \text{ aid-to-nicaraguan-contras} \\
X_9 & \text{ mx-missile} \\
X_{10} & \text{ immigration} \\
X_{11} & \text{ synfuels-corporation-cutback} \\
X_{12} & \text{ education-spending} \\
X_{13} & \text{ superfund-right-to-sue} \\
X_{14} & \text{ crime} \\
X_{15} & \text{ duty-free-exports} \\
X_{16} & \text{ export-administration-act-south-africa}
\end{align*}
\]

\(y \) consists factors which denotes whether the congress memeber is a Republican or a Democrat.

The training set \(\text{voting.tr} \) contains a randomly selected set of 300 subjects, and \(\text{voting.te} \) contains the remaining 134 subjects. \(\text{voting} \) contains all 434 objects.

Details

This data set includes votes for each of the U.S. House of Representatives Congressmen on the 16 key votes identified by the CQA. The CQA lists nine different types of votes: voted for, paired for, and announced for (these three simplified to yea), voted against, paired against, and announced against (these three simplified to nay), voted present, voted present to avoid conflict of interest, and did not vote or otherwise make a position known (these three simplified to an unknown disposition).

Source

Examples

\begin{verbatim}
attach(voting)
summary(X)
summary(y)
\end{verbatim}
Index

*Topic datasets
 AusCredit, 2
 diabetes, 3
 voting, 12

as.data.frame, 9, 11
AusCredit, 2

diabetes, 3
dots, 9, 10

factor, 9, 11

getHinge (hinge), 4
hinge, 4, 10

isb, 5, 10

normalize, 6, 10

plot.hinge (hinge), 4
plot.svmmaj (svmmaj), 8
plotWeights (svmmaj), 8
polydot, 9
predict.svmmaj, 7, 10
print.hinge (hinge), 4
print.q.svmmaj (predict.svmmaj), 7
print.summary.svmmaj (svmmaj), 8
print.svmmaj (svmmaj), 8

rbfdot, 9

summary.svmmaj (svmmaj), 8
svmmaj, 5–8, 8, 12
svmmajcrossval, 11

voting, 12