Package ‘SeleMix’

Type Package
Title Selective Editing via Mixture Models
Version 1.0.1
Date 2016-11-22
Author Ugo Guarnera, Teresa Buglielli
Maintainer Teresa Buglielli <bugliell@istat.it>
Description Detection of outliers and influential errors using a latent variable model.
Imports mvtnorm, graphics
Suggests Ecdat, xtable
License EUPL
LazyData yes
NeedsCompilation no
Repository CRAN
Date/Publication 2016-11-22 16:57:10

R topics documented:

ex1.data ... 2
ex2.data ... 2
ml.est ... 3
pred.y ... 5
sel.edit ... 7
sel.pairs ... 9
sel.plot .. 9

Index 11
ex1.data

Example data frame

Description
Simulated data from a Gaussian contamination model

Usage
data(ex1.data)

Format
A data frame with 500 observations and 2 variables (X1,Y1).

X1 error-free variable (numeric)
Y1 contaminated variable (numeric)

Details
Data have been generated by a Gaussian model. The variable Y1 has been contaminated with parameters B=(-0.26, 1.26), sigma=1.21, w=0.05, lambda=10.

Examples
data(ex1.data)

ex2.data

Example Data for package SeleMix

Description
Simulated data from a Gaussian contaminated model

Usage
data(ex2.data)

Format
A data frame with 500 observations on the following 2 variables.

Y1 first numeric contaminated variable
Y2 second numeric contaminated variable
Details

Data have been simulated by Gaussian contamination model with two contaminated variables (Y1,Y2) with parameters \(B=(1.03, 0.96) \), \(\sigma=\text{matrix}(\begin{pmatrix} 1.22 & 1.42 \\ 1.42 & 2.89 \end{pmatrix}, 2, 2) \), \(w=0.05 \), \(\lambda=10 \).

Examples

data(ex2.data)

ml.est

Fitting Contamination Model

Description

Provides ML estimates of a Gaussian contamination model.

Usage

```r
ml.est (y, x=NULL, model = "LN", lambda=3, w=0.05, lambda.fix=FALSE, w.fix=FALSE, eps=1e-7, max.iter=500, t.out=0.5, graph=FALSE)
```

Arguments

- `y` matrix or data frame containing the response variables
- `x` optional matrix or data frame containing the error free covariates
- `model` data distribution: LN = lognormal(default), N=normal
- `lambda` starting value for the variance inflation factor (default=3)
- `w` starting value for the proportion of contaminated data (default=0.05)
- `lambda.fix` logical. TRUE if lambda is known
- `w.fix` logical. TRUE if w is known
- `eps` epsilon : tolerance parameter for the log-likelihood convergence (default=1e-7)
- `max.iter` maximum number of EM iterations (default=500)
- `t.out` threshold value for posterior probabilities of identifying outliers (default=0.5)
- `graph` logical. TRUE to display graphics (default=FALSE)
Details

This function provides the parameter estimates of a contamination model where a set of y variables is assumed to depend on a (possibly empty) set of covariates (x variables) through a mixture of two linear regressions with Gaussian residuals. The covariance matrices of the two mixture components are assumed to be proportional (the proportionality constant being \(\lambda \)). In case of no x variables a mixture of two Gaussian distribution is estimated. BIC and AIC scores (bic.aic) are returned corresponding to both standard Gaussian model and contamination model in order to help the user to avoid possible over-parametrisation.

According to the estimated model parameters, a matrix of predictions of ‘true’ y values (ypred) is computed. To each unit in the dataset, a flag (outlier) is assigned taking value 0 or 1 depending on whether the posterior probability of being erroneous (tau) is greater than the user specified threshold (t.out1).

The model is estimated using complete observations. Missing values in the x variables are not allowed. However, y variables can be partly observed. Robust predictions of y variables are provided even when they are not observed. A vector of missing pattern (pattern) indicates which item is observed and which is missing.

In case the option ‘model = LN’ is specified, each zero value is changed in 1e-7 and a warning is returned.

In order to graphically monitor EM algorithm, a scatter plot is showed where outliers are depicted as long as they are identified. The trajectory of the \(\lambda \) parameter is also showed until convergence.

Value

ml.est returns a list containing the following components:

- **ypred**: matrix of predicted values for y variables
- **B**: matrix of estimated regression coefficients
- **sigma**: estimated covariance matrix
- **lambda**: estimated variance inflation factor
- **w**: estimated proportion of erroneous data
- **tau**: vector of posterior probabilities of being contaminated
- **outlier**: 1 if the observation is classified as an outlier, 0 otherwise
- **n.outlier**: total of outlier observations
- **pattern**: vector of non-response patterns for y variables: 0 = missing, 1 = present value
- **is.conv**: logical value: TRUE if the EM algorithm has converged
- **n.iter**: number of iterations of EM algorithm
- **sing**: if TRUE iteration are stopped because there is an almost perfect fit
- **bic.aic**: Bayesian Information Criterion and Akaike Information Criterion for contaminated and non contaminated Gaussian models

Author(s)

M. Teresa Buglielli <bugliell@istat.it>, Ugo Guarnera <guarnera@istat.it>
References

Examples

Parameter estimation with one contaminated variable and one covariate
data(ex1.data)
ml.par <- ml.estimate(y=ex1.data[,"Y1"], x=ex1.data[,"X1"], graph=TRUE)
str(ml.par)
sum(ml.par$outlier) # number of outliers

Parameter estimation with two contaminated variables and no covariates
data(ex2.data)
par.joint <- ml.estimate(y=ex2.data, x=NULL, graph=TRUE)
sum(par.joint$outlier) # number of outliers

pred.y

Description

Provides predictions of y variables according to a Gaussian contamination model

Usage

pred.y (y, x=NULL, B, sigma, lambda, w, model="LN", t.outl=0.5)

Arguments

y
matrix or data frame containing the response variables

x
optional matrix or data frame containing the error free covariates

B
matrix of regression coefficients

sigma
covariance matrix

lambda
variance inflation factor

w
proportion of erroneous data

model
data distribution: LN = lognormal(default), N=normal

t.outl
threshold value for posterior probabilities of identifying outliers (default=0.5)
Details

This function provides expected values of a set of variables \((y_1, y_2, \ldots)\) according to a mixture of two regression models with Gaussian residuals (see \texttt{ml.est}). If no covariates are available (\(x\) variables), a two component Gaussian mixture is used. Expected values (predictions) are computed on the base of a set of parameters of appropriate dimensions (\(B, \sigma, \lambda, w\)) and (possibly) a matrix (or data frame) containing the error-free \(x\) variables.

Missing values in the \(x\) variables are not allowed. However, robust predictions of \(y\) variables are also provided when these variables are not observed. A vector of missing pattern (\texttt{pattern}) indicates which item is observed and which is missing.

For each unit in the data set the posterior probability of being erroneous (\(\tau\)) is computed and a flag (\texttt{outlier}) is provided taking value 0 or 1 depending on whether \(\tau\) is greater than the user specified threshold (\texttt{t.outl}).

Value

\texttt{pred.y} returns a data frame containing the following columns:

- \texttt{y1.p, y2.p, \ldots} predicted values for \(y\) variables
- \texttt{tau} posterior probabilities of being contaminated
- \texttt{outlier} 1 if the observation is classified as an outlier, 0 otherwise
- \texttt{pattern} non-response patterns for \(y\) variables: 0 = missing, 1 = present value

Author(s)

M. Teresa Buglielli <bugliell@istat.it>, Ugo Guarnera <guarnera@istat.it>

References

Examples

```r
# Parameter estimation with one contaminated variable and one covariate
data(ex1.data)
# Parameters estimated applying ml.est to \code{ex1.data}
B1 <- as.matrix(c(-0.152, 1.215))
sigma1 <- as.matrix(1.25)
lambda1 <- 15.5
w1 <- 0.0479

# Variable prediction
ypred <- pred.y (y=ex1.data[,"Y1"], x=ex1.data[,"X1"], B=B1, sigma=sigma1, lambda=lambda1, w=w1, model="LN", t.outl=0.5)
# Plot ypred vs Y1
sel.pairs(cbind(ypred[,1,drop=FALSE],ex1.data[,"Y1",drop=FALSE]),
```

Description

Computes the score function and identifies influential errors

Usage

```r
sel.edit (y, ypred, wgt=rep(1,nrow(as.matrix(y ))),
          tot=colSums(ypred * wgt), t.sel=0.01)
```

Arguments

- `y`: matrix or data frame containing the response variables
- `ypred`: matrix of predicted values for `y` variables
- `wgt`: optional vector of sampling weights (default=1)
- `tot`: optional vector containing reference estimates of totals for the `y` variables. If omitted, it is computed as the (possibly weighted) sum of predicted values
- `t.sel`: optional vector of threshold values, one for each variable, for selective editing (default=0.01)

Details

This function ranks observations (rank) according to the importance of their potential errors. The order is made with respect to the global score function values (`global.score`). The function also selects the units to be edited (sel) so that the expected residual error of all variables is below a prefixed level of accuracy (t.sel). The global score (`global.score`) is the maximum of the local scores computed for each variable (`y1.score`, `y2.score`,...). The local scores are defined as a weighted (weights) absolute difference between the observed (`y1`, `y2`,...) and the predicted values (`y1.p`, `y2.p`,...) standardised with respect to the reference total estimates (tot).

The selection of the units to be edited because affected by an influential error (sel=1) is made according to a two-step algorithm:
1) order the observations with respect to the `global.score` (decreasing order);
2) select the first k units such that, from the (k+1)th to the last observation, all the residual errors (`y1.reserr`, `y2.reserr`,...) for each variable are below t.sel.

The function provides also an indicator function (`y1.sel`, `y2.sel`,...) reporting which variables contain an influential errors in a unit selected for the revision.
Value

sel.edit returns a data matrix containing the following columns:

- \(y_1, y_2, \ldots \) observed variables
- \(y_1.p, y_2.p, \ldots \) predictions of \(y \) variables
- \(\text{weights} \) sampling weights
- \(y_1.\text{score}, y_2.\text{score}, \ldots \) local scores
- \(\text{global.score} \) global score
- \(y_1.\text{reserr}, y_2.\text{reserr}, \ldots \) residual errors
- \(y_1.\text{sel}, y_2.\text{sel}, \ldots \) influential error flags
- \(\text{rank} \) rank according to global score
- \(\text{sel} \) 1 if the observation contains an influential error, 0 otherwise

Author(s)

M. Teresa Buglielli <bugliell@istat.it>, Ugo Guarnera <guarnera@istat.it>

References

Examples

Example 1
Parameter estimation with one contaminated variable and one covariate
data(ex1.data)
ml.par <- ml.est(y=ex1.data[,"Y1"], x=ex1.data,"X1")
Detection of influential errors
sel <- sel.edit(y=ex1.data[,"Y1"], ypred=ml.par$ypred)
head(sel)
sum(sel[,"sel"])
orders results for decreasing importance of score
sel.ord <- sel[order(sel[,"rank"],)]
adds columns to data
ex1.data <- cbind(ex1.data, tau=ml.par$tau, outlier=ml.par$outlier, sel[,"rank", "sel"])
plot of data with outliers and influential errors
sel.pairs(ex1.data[,c("X1","Y1")],outl=ml.par$outlier, sel=sel[,"sel"])
Example 2
data(ex2.data)
par.joint <- ml.est(y=ex2.data)
sel <- sel.edit(y=ex2.data, ypred=par.joint$ypred)
sel.pairs(ex2.data, outl=par.joint$outlier, sel=sel[, "sel"])

sel.pairs

Scatterplot Matrix

Description
A scatterplot matrix with outlier and influential errors is produced.

Usage

```r
sel.pairs(x, outl = rep(0, nrow(x)), sel = rep(0, nrow(x)),
          labs = NULL, log = TRUE, legend=TRUE, title=NULL)
```

Arguments
- `x`: matrix or data frame of the coordinates of points
- `outl`: vector identifying outliers (1 or TRUE means outlier)
- `sel`: vector identifying influential errors (1 or TRUE means influential error)
- `labs`: names of the variables
- `log`: if TRUE logarithm of `x` are plotted
- `legend`: if TRUE a legend is added to first boxplot
- `title`: an overall title for the plot

Details
The `ij`th scatterplot contains `x[,i]` plotted against `x[,j]`. Outliers are represented as blue circles, influential errors as red circles and points that are both outlier and influential error as cyan circles.

sel.plot

Scatterplot with information about outliers and influential errors

Description
In addition to a standard scatterplot, outliers and influential errors are highlighted.

Usage

```r
sel.plot (data, vars=1:2, outl = rep(0, nrow(data)), sel = rep(0, nrow(data)),
          log = TRUE, n.identify=0, file=NULL, title=NULL)
```
Arguments

data	named matrix or data frame containing at least the coordinates of points
vars
vector with the names or column numbers of the two variables to plot
outl
vector identifying outliers (1 or TRUE means outlier)
sel
vector identifying influential errors (1 or TRUE means influential error)
log
if TRUE logarithm of data[, vars] are plotted
n.identify
number of points to be identified on the scatterplot. Corresponding data are printed on console or file (if a file name is specified)
file
name of the output file. If n.identify is equal 0 the graphic is saved in a jpeg file. If n.identify is greater than 0 data rows corresponding selected points are saved in a csv file
title
an overall title for the plot

Details

The scatterplot contains the first variable plotted against the second. Outliers are represented as blue circles, influential errors as red circles and points that are both outlier and influential error as cyan circles.

Examples

data(ex2.data)
par.joint <- ml.est(y=ex2.data)
sel <- sel.edit(y=ex2.data, ypred=par.joint$ypred)
 sel.plot(ex2.data, outl=par.joint$outlier, sel=sel[,"sel"], title="EXAMPLE 2")
Not run:
 sel.plot(ex2.data, outl=par.joint$outlier, sel=sel[,"sel"], title="EXAMPLE 2", n.identify=3)

End(Not run)
Index

*Topic datasets
 ex1.data, 2
 ex2.data, 2

 ex1.data, 2
 ex2.data, 2

 ml.est, 3, 6

 pred.y, 5

 sel.edit, 7
 sel.pairs, 9
 sel.plot, 9