Package ‘SemiPar’

April 16, 2018

Version 1.0-4.2
Title Semiparametric Regression
Author Matt Wand <mwend@uts.edu.au>
Maintainer Billy Aung Myint <r@use-r.com>
Imports MASS, cluster, nlme
Suggests lattice
License GPL (>= 2)
URL http://matt-wand.utsacademics.info/SPmanu.pdf
Repository CRAN
Date/Publication 2018-04-16 15:01:35 UTC
NeedsCompilation no

R topics documented:

age.income ... 2
bpd ... 3
calif.air.poll ... 4
copper ... 4
elec.temp .. 5
ethanol ... 6
fitted.spm ... 7
fossil ... 8
fuel.frame ... 9
janka ... 10
lidar ... 10
lines.spm .. 11
milan.mort .. 12
monitor.mercury ... 13
onions ... 14
Description

The `age.income` data frame has 205 pairs observations on Canadian workers from a 1971 Canadian Census Public Use Tape (Ullah, 1985).

Usage

```r
data(age.income)
```

Format

This data frame contains the following columns:

- **age** age in years.
- **log.income** logarithm of income.

Source

References

Semiparametric Regression Cambridge University Press.
http://stat.tamu.edu/~carroll/semiregbook/
Examples

```r
library(SemiPar)
data(age.income)
attach(age.income)
plot(age,log.income)
```

bpd

Bronchopulmonary dysplasia data

Description

The `bpd` data frame has data on 223 human babies.

Usage

```r
data(bpd)
```

Format

This data frame contains the following columns:

- **birthweight** birthweight of baby (grammes).
- **BPD** an indicator of presence of bronchopulmonary dysplasia (BPD): 0=absent, 1=present.

Source

References

http://stat.tamu.edu/~carroll/semiregbook/

Examples

```r
library(SemiPar)
data(bpd)
attach(bpd)
plot(birthweight,BPD)
boxplot(split(birthweight,BPD),col="green")
```
calif.air.poll
California air pollution data

Description

The calif.air.poll data frame has 345 sets of observations ozone level and meteorological variables in Upland, California, U.S.A., in 1976.

Usage

```r
data(calif.air.poll)
```

Format

This data frame contains the following columns:

- **ozone.level** Ozone concentration (ppm) at Sandburg Air Force Base.
- **daggett.pressure.gradient** Pressure gradient at Daggett, California.
- **inversion.base.height** Inversion base height, feet.
- **inversion.base.temp** Inversion base temperature, degrees Fahrenheit.

Source

Examples

```r
library(SemiPar)
data(calif.air.poll)
pairs(calif.air.poll)
```

copper
Copper data

Description

The copper data frame has 442 sets of observations from a simulation based on a stockpile of mined material in the former Soviet Union. Boreholes have been drilled into the dump. The drill core is cut every 5 metres and assayed for copper and cobalt content in percentage by weight.

Usage

```r
data(copper)
```
elec.temp

Format

This data frame contains the following columns:

- **sample.num**: sample number.
- **id**: sample identification number.
- **zone**: zone code.
- **xcoord**: x co-ordinate.
- **ycoord**: y co-ordinate.
- **zcoord**: z co-ordinate.
- **grade**: grade measurement.
- **core.length**: percentage of copper.

Source

Examples

```r
library(SemiPar)
data(copper)
pairs(copper[,4:7])
```

elec.temp Electricity usage and temperature data

Description

The `elec.temp` data frame has 55 observations on monthly electricity usage and average temperature for a house in Westchester County, New York, USA.

Usage

```r
data(elec.temp)
```

Format

This data frame contains the following columns:

- **usage**: monthly electricity usage (kilowatt-hours) from a house in Westchester County, New York, USA.
- **temp**: average temperature (degrees Fahrenheit) for the corresponding month.

Source

References

Semiparametric Regression Cambridge University Press.
http://stat.tamu.edu/~carroll/semiregbook/

Examples

library(SemiPar)
data(elec.temp)attach(elec.temp)plot(usage,temp)

ethanol Ethanol data

Description

The ethanol data frame contains 88 sets of measurements for variables from an experiment in which ethanol was burned in a single cylinder automobile test engine.

Usage

data(ethanol)

Format

This data frame contains the following columns:

NOx the concentration of nitric oxide (NO) and nitrogen dioxide (NO2) in engine exhaust, normalized by the work done by the engine.
C the compression ratio of the engine
E the equivalence ratio at which the engine was run – a measure of the richness of the air/ethanol mix.

Source

References

Semiparametric Regression Cambridge University Press.
http://stat.tamu.edu/~carroll/semiregbook/
Examples

```r
library(SemiPar)
data(ethanol)
pairs(ethanol)
```

fitted.spm
Fitted values for semiparametric regression.

Description

Extracts fitted values from a semiparametric regression fit object.

Usage

```r
# S3 method for class 'spm'
fitted(object,...)
```

Arguments

- `object`: a fitted `spm` object as produced by `spm()`.
- `...`: other possible arguments.

Details

Extracts fitted from a semiparametric regression fit object. The fitted are defined to be the set of values obtained when the predictor variable data are substituted into the fitted regression model.

Value

The vector of fitted.

Author(s)

M.P. Wand <mwand@uow.edu.au> (other contributors listed in SemiPar Users’ Manual).

References

Semiparametric Regression Cambridge University Press.
http://stat.tamu.edu/~carroll/semiregbook/

SemiPar 1.0 Users’ Manual.
http://matt-wand.utsacademics.info/SPmanu.pdf

See Also

`.rpm plot.spm lines.spm predict.spm summary.spm residuals.spm`
Examples

```r
library(SemiPar)
data(fossil)
attach(fossil)
fit <- spm(strontium.ratio~f(age))
plot(fit)
points(age,fitted(fit),col="red")
```

fossil

Fossil data

Description

The fossil data frame has 106 observations on fossil shells.

Usage

```r
data(fossil)
```

Format

This data frame contains the following columns:

- **age** age in millions of years
- **strontium.ratio** ratios of strontium isotopes

Source

References

http://stat.tamu.edu/~carroll/semiregbook/

Examples

```r
library(SemiPar)
data(fossil)
attach(fossil)
plot(age,strontium.ratio)
```
Description

The `fuel.frame` data frame contains data on 5 variables (columns) for 117 cars (rows).

Usage

data(fuel.frame)

Format

This data frame contains the following columns:

- **car.name**: character variable giving the name (make) of the car
- **Weight**: the weight of the car in pounds.
- **Disp.**: the engine displacement in litres.
- **Mileage**: gas mileage in miles/gallon.
- **Fuel**: a derived variable concerning fuel efficiency.
- **Type**: a factor giving the general type of car. The levels are: Small, Sporty, Compact, Medium, Large, Van.

Source

References

Examples

```r
library(SemiPar)
data(fuel.frame)
pairs(fuel.frame)
par(mfrow=c(2,2))
fuel.fit <- lm(Fuel ~ Weight + Disp., fuel.frame)
plot(fuel.fit,ask=FALSE)
par(mfrow=c(1,1))
```
janka

Janka hardness data

Description

The `janka` data frame has 36 observations on Australian timber samples.

Usage

```r
data(janka)
```

Format

This data frame contains the following columns:

- `dens` a measure of density of the timber.
- `hardness` the Janka hardness (structural property) of the timber.

Source

References

http://stat.tamu.edu/~carroll/semiregbook/

Examples

```r
library(SemiPar)
data(janka)attach(janka)plot(dens, hardness)
```

lidar

LIDAR data

Description

The `lidar` data frame has 221 observations from a light detection and ranging (LIDAR) experiment.

Usage

```r
data(lidar)
```
Format

This data frame contains the following columns:

- **range** distance travelled before the light is reflected back to its source.
- **logratio** logarithm of the ratio of received light from two laser sources.

Source

References

Examples

```r
library(SemiPar)
data(lidar)
attach(lidar)
plot(range, logratio)
```

lines.spm

Add a curves to an existing plot.

Description

Takes a fitted spm object produced by `spm()` and adds a curve. The function is only appropriate in the case of a single predictor.

Usage

```r
## S3 method for class 'spm'
lines(x, ...)
```

Arguments

- `x` a fitted spm object as produced by `spm()`.
- `...` other graphics parameters described in Appendix B of the SemiPar Users’ Manual http://matt-wand.utsacademics.info/SPmanu.pdf

Details

Takes a fitted spm object produced by `spm()` and adds a curve. The function is only appropriate in the case of a single predictor.
Value

The function adds a curve to a plot.

Author(s)

M.P. Wand <mwand@uow.edu.au> (other contributors listed in SemiPar Users’ Manual).

References

Semiparametric Regression Cambridge University Press.
http://stat.tamu.edu/~carroll/semiregbook/

SemiPar 1.0 Users’ Manual.
http://matt-wand.utsacademics.info/SPmanu.pdf

See Also

spm.plot, spm.predict, spm.summary, spm.residuals, spm.fitted

Examples

library(SemiPar)
data(fossil)
attach(fossil)
fit <- spm(strontium.ratio~f(age))
plot(fossil,type="n")
lines(fit)
points(fossil)

Now do several customisations

op <- par(bg="white")
par(bg="honeydew")
plot(fossil,type="n")
lines(fit,col="green",lwd=5,shade.col="mediumpurple!")
points(fossil,col="orange",pch=16)
par(op)

milan.mort Milan mortality data

Description

The milan.mort data frame has data on 3652 consecutive days (10 consecutive years: 1st January, 1980 to 30th December, 1989) for the city of Milan, Italy.
Usage

data(milan.mort)

Format

This data frame contains the following columns:

- **day.num**: number of days since 31st December, 1979
- **day.of.week**: 1=Monday, 2=Tuesday, 3=Wednesday, 4=Thursday, 5=Friday, 6=Saturday, 7=Sunday.
- **holiday**: indicator of public holiday: 1=public holiday, 0=otherwise.
- **mean.temp**: mean daily temperature in degrees Celsius.
- **rel.humid**: relative humidity.
- **tot.mort**: total number of deaths.
- **resp.mort**: total number of respiratory deaths.
- **SO2**: measure of sulphur dioxide level in ambient air.
- **TSP**: total suspended particles in ambient air.

Source

References

http://stat.tamu.edu/~carroll/semiregbook/

Examples

library(SemiPar)
data(milan.mort)
pairs(milan.mort,pch=".")

Description

The `monitor.mercury` data frame has 22 observations from sampling locations around a solid waste incinerator in Warren County, New Jersey, USA

Usage

data(monitor.mercury)
Format

This data frame contains the following columns:

UTM.North longitude of sampling location.

UTM.East latitude of sampling location.

mercury.concentration mercury concentration in dry sphagnum moss grown at the sampling location.

Source

References

http://stat.tamu.edu/~carroll/semiregbook/

Examples

```r
library(semipar)
data(monitor.mercury)
pairs(monitor.mercury)
```

onions *Onions data*

Description

The onions data frame contains 84 sets of observations from an experiment involving the production of white Spanish onions in two South Australian locations.

Usage

```r
data(onions)
```

Format

This data frame contains the following columns:

dens areal density of plants (plants per square metre)

yield onion yield (grammes per plant).

location indicator of location: 0=Purnong Landing, 1=Virginia.
pig.weights

Source

References

Examples

```r
library(SemiPar)
data(onions)
attach(onions)
points.cols <- c("red","blue")
plot(densLyield,col=points.cols[location+1],pch=16)
legend(100,250,c("Purnong Landing","Virginia"),col=points.cols,pch=rep(16,2))
```

pig.weights Pig weight data

Description
The pig.weights data frame has 9 repeated weight measures on 48 pigs.

Usage
data(pig.weights)

Format
This data frame contains the following columns:

- **id.num** identification number of pig.
- **num.weeks** number of weeks since measurements commenced.
- **weight** bodyweight of pig "id.num" after "num.weeks" weeks.

Source

References
Examples

```r
library(SemiPar)
data(pig.weights)
library(lattice)
xyplot(weight~num.weeks,data=pig.weights,groups=id.num,type="b")
```

plot.spml Semiparametric regression plotting

Description

Takes a fitted spm object produced by spm() and plots the component smooth functions that make it up, on the scale of the linear predictor.

Usage

```r
## S3 method for class 'spm'
plot(x,...)
```

Arguments

- `x` a fitted spm object as produced by spm()
- `...` other graphics parameters described in Appendix B of the SemiPar Users’ Manual http://matt-wand.utsacademics.info/SPmanu.pdf

Details

Produces plots with each panel corresponding to a component of the semiparametric regression model.

Value

The function generates plots.

Author(s)

M.P. Wand <mwand@uow.edu.au> (other contributors listed in SemiPar Users’ Manual).

References

predict.spm

See Also

 spm lines.spm predict.spm summary.spm

Examples

library(SemiPar)
data(fossil)attach(fossil)
fit <- spm(strontium.ratio~f(age))plot(fit)

Now do several customisations

op <- par(bg="white")par(bg="honeydew")plot(fit,ylim=range(strontium.ratio),col="green",
 lwd=5,shade.col="mediumpurple",rug.col="blue")points(age,strontium.ratio,col="orange",pch=16)par(op)

predict.spm Semiparametric regression prediction.

Description

 Takes a fitted spm object produced by spm() and obtains predictions at new data values.

Usage

 ## S3 method for class 'spm'
predict(object,newdata,se,...)

Arguments

 object a fitted spm object as produced by spm().
 newdata a data frame containing the values of the predictors at which predictions are
 required. The columns should have the same name as the predictors.
 se when this is TRUE standard error estimates are returned for each prediction. The
 default is FALSE.
 ... other arguments.

Details

 Takes a fitted spm object produced by spm() and obtains predictions at new data values as specified
 by the 'newdata' argument. If 'se=TRUE' then standard error estimates are also obtained.
Value

If se=FALSE then a vector of predictions at ‘newdata’ is returned. If se=TRUE then a list with components named ‘fit’ and ‘se’ is returned. The ‘fit’ component contains the predictions. The ‘se’ component contains standard error estimates.

Author(s)

M.P. Wand <mwand@uow.edu.au> (other contributors listed in SemiPar Users’ Manual).

References

Semiparametric Regression Cambridge University Press.
http://stat.tamu.edu/~carroll/semiregbook/

SemiPar 1.0 Users’ Manual.
http://matt-wand.utsacademics.info/SPmanu.pdf

See Also

spm lines.spm plot.spm summary.spm

Examples

```r
library(SemiPar)
data(fossil)
attach(fossil)
fit <- spm(strontium.ratio~f(age))
newdata.age <- data.frame(age=c(90,100,110,120,130))
preds <- predict(fit,newdata=newdata.age,se=TRUE)
print(preds)

plot(fit,xlim=c(90,130))
points(unlist(newdata.age),preds$fit,col="red")
points(unlist(newdata.age),preds$fit+2*preds$se,col="blue")
points(unlist(newdata.age),preds$fit-2*preds$se,col="green")
```

print.spm

Prints semiparametric regression fit object.

Description

Prints a brief description of a semiparametric regression fit object to the screen.

Usage

```r
## S3 method for class 'spm'
print(x,...)
```
Arguments

- `x`: a fitted `spm` object as produced by `spm()`.
- `...`: other possible arguments.

Details

Prints a brief description of a semiparametric regression fit object to the screen.

Value

The function prints to the screen.

Author(s)

M.P. Wand <wand@uow.edu.au> (other contributors listed in SemiPar Users’ Manual).

References

http://stat.tamu.edu/~carroll/semiregbook/

http://matt-wand.utsacademics.info/SPmanu.pdf

See Also

- `spm`, `plot.spm`, `lines.spm`, `predict.spm`, `summary.spm`, `residuals.spm`, `fitted.spm`

Examples

```r
library(SemiPar)
data(fossil)
attach(fossil)
fit <- spm(strontium.ratio~f(age))
print(fit)
```

Ragweed data

Description

The `ragweed` data frame has data on ragweed levels and meteorological variables for 335 days in Kalamazoo, Michigan, U.S.A.

Usage

```r
data(ragweed)
```
residuals.spm

Format

This data frame contains the following columns:

- **ragweed**: ragweed level (grains per cubic metre).
- **day.in.seas**: day number in the current ragweed pollen season.
- **temperature**: temperature of following day (degrees Fahrenheit).
- **rain**: indicator of significant rain the following day: 1 = at least 3 hours of steady or brief but intense rain, 0 = otherwise.
- **wind.speed**: wind speed forecast for following day (knots).

Source

References

Examples

```r
library(semipar)
data(ragweed)
pairs(ragweed, pch=".")
```

residuals.spm

Residuals for semiparametric regression.

Description

Extracts residuals from a semiparametric regression fit object.

Usage

```r
## S3 method for class 'spm'
residuals(object, ...)
```

Arguments

- **object**: a fitted `spm` object as produced by `spm()`.
- **...**: other possible arguments.
Details

Extracts residuals from a semiparametric regression fit object. The residuals are defined to be the difference between the response variable and the fitted values.

Value

The vector of residuals.

Author(s)

M.P. Wand <mwand@uow.edu.au> (other contributors listed in SemiPar Users’ Manual).

References

http://stat.tamu.edu/~carroll/semiregbook/

http://matt-wand.utsac .eduinfo/SPmanu.pdf

See Also

`spm.plot`, `spm.lines`, `spm.predict`, `spm.summary`, `spm.fitted`

Examples

```r
library(SemiPar)
data(fossil)
attach(fossil)
fit <- spm(strontium.ratio~f(age))
plot(age,residuals(fit))
abline(0,0)
```

retire.plan
Retirement plan data

Description

The *retire.plan* data frame has data on "401(k)" retirement plans for employees of 92 firms managed by a company code-named Best Retirement Inc. (BRI).

Usage

`data(retire.plan)`
Format

This data frame contains the following columns:

- **contrib** contribution to retirement plan at end of first year
- **group** 1=client has group life of group health insurance policy, 0=otherwise.
- **turnover** employee turnover rate.
- **eligible** number of employees eligible to participate in 401(k) plans.
- **vest** 1=plan has immediate vesting of employer contributions, 0=otherwise.
- **failsafe** 1=plan has a fail-safe provision, 0=otherwise.
- **match** percentage of contributions matched by the employer.
- **salary** average annual employee salary in dollars.
- **estimate** underwriter’s estimate of end-of-year contributions in dollars.
- **susan** 1=plan was sold by a sales representative who has been specifically trained to deal exclusively with 401(k) plans (code-named Susan Shepard).

Source

References

http://stat.tamu.edu/~carroll/semiregbook/

Examples

```r
library(SemiPar)
data(retire.plan)
pairs(retire.plan)
```

salinity

Salinity data

Description

The salinity data frame has 28 observations on hydrological measurements from Pamlico Sound, North Carolina, USA.

Usage

```r
data(salinity)
```
sausage

Format

This data frame contains the following columns:

- **salinity** salinity in Pamlico Sound.
- **lagged.salinity** salinity in Pamlico Sound during the previous six weeks.
- **trend** trend=1 if the data is the first six-week period of the spring, and so forth. Used to detect possible effects of the seasonal warming trend.
- **discharge** discharge of fresh water from rivers into the sound.

Source

References

http://stat.tamu.edu/~carroll/semiregbook/

Examples

```r
library(SemiPar)
data(salinity)
pairs(salinity)
```

```
  salinity  discharge
trend

**sausage**

Sausage data

**Description**

The sausage data frame has data on 54 ‘hot dog’ sausages.

**Usage**

data(sausage)

**Format**

This data frame contains the following columns:

- **type** type of meat.
- **calories** number of calories.
- **sodium** measure of sodium content.
Source


References


Examples

```r
library(semipar)
data(sausage)
attach(sausage)
points.cols <- c("red", "blue", "green")
plot(sodium, calories, col=points.cols[, type], pch=16)
legend(200, 180, c("beef", "pork", "poultry"), col=points.cols, pch=rep(16, 3))
```

---

scallop  
*Scallop abundance data*

Description

The scallop data frame has 148 triplets concerning scallop abundance; based on a 1990 survey cruise in the Atlantic continental shelf off Long Island, New York, U.S.A.

Usage

data(scallop)

Format

This data frame contains the following columns:

- **latitude** degrees latitude (north of the Equator).
- **longitude** degrees longitude (west of Greenwich).
- **tot.catch** size of scallop catch at location specified by "latitude" and "longitude".

Source

References

http://stat.tamu.edu/~carroll/semiregbook/

Examples

```r
library(SemiPar)
data(scallop)
pairs(scallop)
```

---

**sitka**  
*Sitka spruce data*

Description

The *sitka* data frame contains measurements of log-size for 79 Sitka spruce trees grown in normal or ozone-enriched environments. Within each year, the data are organised in four blocks, corresponding to four controlled environment chambers. The first two chambers, containing 27 trees each, have an ozone-enriched atmosphere, the remaining two, containing 12 and 13 trees respectively, have a normal (control) atmosphere.

Usage

```r
data(sitka)
```

Format

This data frame contains the following columns:

- **id.num**: identification number of tree.  
- **order**: time order ranking within each tree.  
- **days**: time in days since 1st January, 1988.  
- **log.size**: tree size measured on a logarithmic scale.  
- **ozone**: indicator ozone treatment: 0=control,1=ozone.

Source


References

http://stat.tamu.edu/~carroll/semiregbook/
Examples

```r
library(SemiPar)
data(sitka)
attach(sitka)
library(lattice)
ozone.char <- rep("control", nrow(sitka))
ozone.char[ozone==1] <- "ozone"
xyplot(log.size~days|ozone.char, data=sitka, groups=id.num, type="b")
```

---

**spm**  
*Fit a SemiParametric regression Model*

**Description**

`spm` is used to fit semiparametric regression models using the mixed model representation of penalized splines (per Ruppert, Wand and Carroll, 2003).

**Usage**

```r
spm(form, random=NULL, group=NULL, family="gaussian", spar.method="REML", omit.missing=NULL)
```

**Arguments**

- `form`: a formula describing the model to be fit. Note, that an intercept is always included, whether given in the formula or not.
- `random`: "random=~1" specifies inclusion of a random intercept according to the groups specified by the "group" argument.
- `group`: a vector of labels for specifying groups.
- `family`: for specification of the type of likelihood model assumed in the fitting. May be "gaussian", "binomial" or "poisson".
- `spar.method`: method for automatic smoothing parameter selection. May be "REML" (restricted maximum likelihood) or "ML" (maximum likelihood).
- `omit.missing`: a logical value indicating whether fields with missing values are to be omitted.

**Details**

See the SemiPar Users’ Manual for details and examples.

**Value**

An list object of class "spm" containing the fitted model. The components are:

- `fit`: mimics fit object of `lme()` for family="gaussian" and `glmmPQL()` for family="binomial" or family="poisson".
- `info`: information about the inputs.
- `aux`: auxiliary information such as variability estimates.
summarizes the fit.
Usage

```r
S3 method for class 'spm'
summary(object,...)
```

Arguments

- `object` a fitted spm object as produced by `spm()`.
- `...` other arguments.

Details

Produces tables for the linear (parametric) and non-linear (nonparametric) components. The linear table provides coefficient estimates, standard errors and p-values. The non-linear table provides degrees of freedom values and other information.

Value

The function generates summary tables.

Author(s)

M.P. Wand <mwand@uow.edu.au> (other contributors listed in SemiPar Users’ Manual).

References


See Also

- `spm.plot`, `spm.predict`

Examples

```r
library(SemiPar)
data(onions)
attach(onions)
log.yield <- log(yield)
fit <- spm(log.yield~location+f(dens))
summary(fit)
```
**Description**

The `term.structure` data frame has 117 observations on the prices of U.S. STRIPS (Separate Trading on Registered Interest and Principal of Securities) on December 31, 1995.

**Usage**

```r
data(term.structure)
```

**Format**

This data frame contains the following columns:

- `time.to.maturity`: time in years between 31st December, 1995, and the date on which the STRIPS matures.
- `price`: price of the STRIPS as a percent of par.

**Source**

University of Houston Fixed Income Database.

**References**


*Semiparametric Regression* Cambridge University Press.
[http/stat.tamu.edu/~carroll/semiregbook/](http://stat.tamu.edu/~carroll/semiregbook/)

**Examples**

```r
library(SemiPar)
data(term.structure)attach(term.structure)plot(time.to.maturity, price)
```
Description

The trade.union data frame has data on 534 U.S. workers.

Usage

data(trade.union)

Format

This data frame contains the following columns:

- **years.educ** number of years of education.
- **south** indicator of living in southern region of U.S.A.
- **female** gender indicator: 0=male, 1=female.
- **years.experience** number of years of work experience
- **union.member** indicator of trade union membership: 0=non-member, 1=member.
- **wage** wages in dollars per hour.
- **age** age in years.
- **race** 1=black, 2=Hispanic, 3=white.
- **occupation** 1=management, 2=sales, 3=clerical, 4=service, 5=professional, 6=other.
- **sector** 0=other, 1=manufacturing, 2=construction.
- **married** indicator of being married: 0=unmarried, 1=married.

Source


References

http://stat.tamu.edu/~carroll/semiregbook/

Examples

library(SemiPar)
data(trade.union)
pairs(trade.union,pch=".")
Description

The ustemp data frame has 56 observations on the temperature and location of 56 U.S. cities.

Usage

data(ustemp)

Format

This data frame contains the following columns:

- **city** character string giving name of city and state (two-letter abbreviation).
- **min.temp** average minimum January temperature.
- **latitude** degrees latitude (north of Equator).
- **longitude** degrees longitude (west of Greenwich).

Source


References

http://stat.tamu.edu/~carroll/semiregbook/

Examples

library(SemiPar)  
data(ustemp)  
attach(ustemp)  
grey.levs <- min.temp+20  
col.vec <- paste("grey",as.character(grey.levs),sep="")  
plot(-longitude,latitude,col=col.vec,pch=16,cex=3,xlim=c(-130,-60))  
text(-longitude,latitude,as.character(city))
Index

*Topic datasets
  age.income, 2
  bpd, 3
  calif.air.poll, 4
  copper, 4
  elec.temp, 5
  ethanol, 6
  fossil, 8
  fuel.frame, 9
  janka, 10
  lidar, 10
  milan.mort, 12
  monitor.mercury, 13
  onions, 14
  pig.weights, 15
  ragweed, 19
  retire.plan, 21
  salinity, 22
  sausage, 23
  scallop, 24
  sitka, 25
  term.structure, 29
  ustemp, 31

*Topic models
  fitted.spm, 7
  lines.spm, 11
  plot.spm, 16
  predict.spm, 17
  print.spm, 18
  residuals.spm, 20
  spm, 26
  summary.spm, 27

*Topic nonlinear
  spm, 26

*Topic regression
  fitted.spm, 7
  lines.spm, 11
  plot.spm, 16
INDEX

pig.weights, 15
plot.spm, 7, 12, 16, 18, 19, 21, 27, 28
predict.spm, 7, 12, 17, 17, 19, 21, 28
print.spm, 18

ragweed, 19
residuals.spm, 7, 12, 19, 20
retire.plan, 21

salinity, 22
sausage, 23
scallop, 24
sitka, 25

spm, 7, 12, 17–19, 21, 26, 28
summary.spm, 7, 12, 17–19, 21, 27, 27

term.structure, 29
trade.union, 30

ustemp, 31