Package ‘SixSigma’

Type Package
Title Six Sigma Tools for Quality Control and Improvement
Version 0.9-4
Encoding UTF-8
Author Emilio L. Cano, Javier M. Moguerza, Mariano Prieto and Andrés Redchuk
Maintainer Emilio L. Cano <emilio.lcano@uclm.es>
Description Functions and utilities to perform Statistical Analyses in the Six Sigma way. Through the DMAIC cycle (Define, Measure, Analyze, Improve, Control), you can manage several Quality Management studies: Gage R&R, Capability Analysis, Control Charts, Loss Function Analysis, etc. Data frames used in the books `Six Sigma with R' (Springer, 2012) and `Quality Control with R' (Springer, 2015) are also included in the package.
URL http://www.sixsigmawithr.com
License GPL (>= 2)
Depends R (>= 2.14.0)
Imports grDevices, stats, graphics, qcc, lattice, ggplot2, reshape2, nortest, e1071, scales, testthat, xtable
LazyLoad yes
LazyData yes
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2017-03-13 21:14:13

R topics documented:

climProfiles .. 2
outProfiles ... 3
climProfiles

plotControlProfiles
plotProfiles
SixSigma
smoothProfiles
ss.ca.yield
ss.ca.z
ss.cc
ss.cc.constants
ss.ceDiag
ss.ci
ss.data.batteries
ss.data.bills
ss.data.bolts
ss.data.ca
ss.data.density
ss.data.doe1
ss.data.doe2
ss.data.pastries
ss.data.pb1
ss.data.pb2
ss.data.pb3
ss.data.pb4
ss.data.pc
ss.data.pc.big
ss.data.pc.r
ss.data.rr
ss.data.strings
ss.data.thickness
ss.data.thickness2
ss.data.wbx
ss.data.wby
ss.heli
ss.lf
ss.lfa
ss.pMap
ss.rr
ss.study.ca

Index

climProfiles Compute profiles limits

Description

Function to compute prototype profile and confidence bands for a set of profiles (Phase I)
Usage

climProfiles(profiles, x = 1:nrow(profiles), smoothprof = FALSE, smoothlim = FALSE, alpha = 0.01)

Arguments

profiles Matrix with profiles in columns
x Vector for the independent variable
smoothprof regularize profiles? [FALSE]
smoothlim regularize confidence bands? [FALSE]
alpha limit for control limits [0.01]

Value

a matrix with three profiles: prototype and confidence bands

Author(s)

Javier M. Moguerza and Emilio L. Cano

References

Examples

wby.phase1 <- ss.data.wby[, 1:35]
wby.limits <- climProfiles(profiles = wby.phase1,
 x = ss.data.wbx,
 smoothprof = FALSE,
 smoothlim = FALSE)
plotProfiles(profiles = wby.phase1,
 x = ss.data.wbx,
 cLimits = wby.limits)

outProfiles Get out-of-control profiles

Description

Returns a list with information about the out-of-control profiles given a set of profiles and some control limits

Usage

outProfiles(profiles, x = 1:nrow(profiles), cLimits, tol = 0.5)
plotControlProfiles

Arguments

- **profiles** Matrix of profiles
- **x** Vector with the independent variable
- **climits** Matrix with the prototype and confidence bands profiles
- **tol** Tolerance (%)

Value

- a list with the following elements:
 - **labOut** labels of the out-of-control profiles
 - **idOut** ids of the out-of-control profiles
 - **pOut** proportion of times the profile values are out of the limits

References

Examples

```r
wbby.phase1 <- ss.data.wby[, 1:35]
wb.bylimits <- climProfiles(profiles = wbby.phase1,
                           x = ss.data.wbx,
                           smoothprof = TRUE,
                           smoothlim = TRUE)
wbby.phase2 <- ss.data.wby[, 36:50]
wb.out.phase2 <- outProfiles(profiles = wbby.phase2,
                           x = ss.data.wbx,
                           climits = wbby.limits,
                           tol = 0.8)
wb.out.phase2
plotProfiles(wbby.phase2,
            x = ss.data.wbx,
            climits = wbby.limits,
            outControl = wb.out.phase2$idOut,
            onlyout = TRUE)
```

plotControlProfiles *Profiles control plot*

Description

Plots the proportion of times that each profile remains out of the confidence bands

Usage

```r
plotControlProfiles(pOut, tol = 0.5)
```
plotProfiles

Arguments

pOut identifiers of profiles out of control
tol tolerance for the proportion of times the value of the profile is out of control

Value

There is only graphical output

Author(s)

Javier M. Moguerza and Emilio L. Cano

References

Examples

wby.phase1 <- ss.data.wby[, 1:35]
wby.limits <- climProfiles(profiles = wby.phase1,
 x = ss.data.wbx,
 smoothprof = TRUE,
 smoothlim = TRUE)
wby.phase2 <- ss.data.wby[, 36:50]
wby.out.phase2 <- outProfiles(profiles = wby.phase2,
 x = ss.data.wbx,
 cLimits = wby.limits,
 tol = 0.8)
plotControlProfiles(wby.out.phase2$pOut, tol = 0.8)

plotProfiles

Plot Profiles

Description

Plot profiles and optionally control limits

Usage

plotProfiles(profiles, x = 1:nrow(profiles), cLimits = NULL,
 outControl = NULL, onlyout = FALSE)
Arguments
- profiles: matrix with profiles in columns
- x: vector with the independent variable
- cLimits: matrix with three profiles: prototype and confidence bands (limits)
- outControl: identifiers of out-of-control profiles
- onlyout: plot only out-of-control profiles? [FALSE]

Value
- Only graphical output with the profiles

Author(s)
- Javier M. Moguerza and Emilio L. Cano

References

Examples
- plotProfiles(profiles = ss.data.wby, x = ss.data.wbx)

Description
- Six Sigma Tools for Quality and Process Improvement

Details
- This package contains functions and utilities to perform Statistical Analyses in the Six Sigma way. Through the DMAIC cycle (Define, Measure, Analyze, Improve, Control), you can manage several Quality Management studies: Gage R&R, Capability Analysis, Control Charts, Loss Function Analysis, etc. Data frames used in "Six Sigma with R" (Springer, 2012) are also included in the package. Use the package to perform Six Sigma Methodology tasks, throughout its breakthrough strategy: Define, Measure, Analyze, Improve, Control (DMAIC)
- Define: Process Map (ss.pMap), Cause and effect Diagram (ss.ceDiag);
- Measure: Gage R&R study (ss.rr); Capability Analysis (ss.study.ca); Loss Function Analysis (ss.lfa)
- Analyze: Confidence Intervals (ss.ci)
- Control: Moving Average Control Chart
- Soon: further functions
Note

The current version includes Loss Function Analysis, Gage R&R Study, confidence intervals, Process Map and Cause-and-Effect diagram. We plan to regularly upload updated versions, with new functions and improving those previously deployed. The subsequent versions will cover tools for the whole cycle:

- Define
- Measure
- Analyze
- Improve
- Control

Author(s)

Emilio L. Cano, Javier M. Moguerza, Mariano Prieto Corcoba and Andrés Redchuk;
Maintainer: Emilio L. Cano <emilio.lopez@urjc.es>

References

See Also

ss.pMap, ss.rr, ss.ceDiag, ss.ci, ss.heli, ss.lfa

Examples

example(ss.ci)
example(ss.study.ca)
example(ss.rr)
example(ss.lf)
example(ss.lfa)
example(ss.ceDiag)
smoothProfiles

Regularise set of profiles

Description

This function takes a set of profiles and regularise them by means of a SVM

Usage

smoothProfiles(profiles, x = 1:nrow(profiles), svm.c = NULL,
svm.eps = NULL, svm.gamma = NULL, parsvm.unique = TRUE)

Arguments

profiles Matrix of y values, one column per profile
x Vector of predictive variable values, common to all profiles
svm.c SVM parameter (cost)
svm.eps SVM parameter (epsilon)
svm.gamma SVM parameter (gamma)
parsvm.unique Same parameters for all profiles? (logical [TRUE])

Value

Regularized profiles

Note

The package e1071 is needed in order to be able to use this function. SVM Parameters can be vectors of the same length as number of profiles, or a single value for all of them

Author(s)

Javier M. Moguerza and Emilio L. Cano

References

ss.ca.yield

Examples

```r
wby.smooth <- smoothProfiles(profiles = ss.data.wby,
   x = ss.data.wbx)
plotProfiles(profiles = wby.smooth,
   x = ss.data.wbx)
```

Main calculations regarding The Voice of the Process in SixSigma: Yield, FTY, RTY, DPMO

Description

Computes the Yield, First Time Yield, Rolled Throughput Yield and Defects per Million Opportunities of a process.

Usage

```r
ss.ca.yield(defects = 0, rework = 0, opportunities = 1)
```

Arguments

- `defects`: A vector with the number of defects in each product/batch, ...
- `rework`: A vector with the number of items/parts reworked
- `opportunities`: A numeric value with the size or length of the product/batch

Details

The three arguments must have the same length.

Value

- **Yield**: Number of good stuff / Total items
- **FTY**: (Total - scrap - rework) / Total
- **RTY**: prod(FTY)
- **DPMO**: Defects per Million Opportunities

Author(s)

Emilio L. Cano

References

Examples

```r
ss.ca.z.yield(c(3, 5, 12), c(1, 2, 4), 1915)
```

Description

Compute the Capability Indices of a process, Z (Sigma Score), C_p and C_{pk}.

Usage

```r
ss.ca.cp(x, LSL = NA, USL = NA, LT = FALSE, f.na.rm = TRUE, 
       ci = FALSE, alpha = 0.05)
```

Arguments

- **x**: A vector with the data of the process performance
- **LSL**: Lower Specification Limit
- **USL**: Upper Specification Limit
- **LT**: Long Term data (TRUE/FALSE). Not used for the moment
- **f.na.rm**: Remove NA data (TRUE/FALSE)
- **ci**: If TRUE computes a Confidence Interval
- **alpha**: Type I error (α) for the Confidence Interval

Value

A numeric value for the index, or a vector with the limits of the Confidence Interval

Author(s)

EL Cano

References

See Also

`ss.study.ca`
Examples

ss.ca.cp(ss.data.ca$Volume, 740, 760)
ss.ca.cpk(ss.data.ca$Volume, 740, 760)
ss.ca.z(ss.data.ca$Volume, 740, 760)

ss.cc

Description

Plot control charts

Usage

ss.cc(type, data, cdata, CTQ = names(data)[1], groups, climits, nsigmas = 3)

Arguments

type Type of chart (see details)
data data.frame with the process data.
cdata Vector with the controlled process data to compute limits.
CTQ Name of the column in the data.frame containing the CTQ.
groups Name of the column in the data.frame containing the groups.
climits Limits of the controlled process. It should contain three ordered values: lower limit, center line and upper limit.
nsigmas Number of sigmas to compute the limits from the center line (default is 3)

Details

If control limits are provided, cdata is dismissed and a message is shown. If there are no control limits nor controlled data, the limits are computed using data. Supported types of control charts:

- mrMoving Range

Value

A plot with the control chart, and a list with the following elements:

LCL Lower Control Limit
CL Center Line
UCL Upper Control Limit
phase II when cdata or climits are provided. I otherwise.
out Out of control points
ss.cc.constants

Note
We have created this function since the qAnalyst package has been removed from CRAN, and it was used in the "Six Sigma with R" book to plot moving average control charts.

Author(s)
EL Cano

References

See Also
ss.cc.constants

Examples
```r
ss.cc("mr", ss.data.pb1, CTQ = "pb.humidity")
testout <- ss.data.pb1
testout[31,] <- list(31,17)
ss.cc("mr", testout, CTQ = "pb.humidity")
```

ss.cc.constants
Functions to find out constants of the relative range distribution.

Description
These functions compute the constants d2, d3 and c4 to get estimators of the standard deviation to set control limits.

Usage
```r
ss.cc.getd2(n = NA)
```

Arguments
- `n`
 Sample size

Value
A numeric value for the constant.

Author(s)
EL Cano
References

See Also

ss.cc

Examples

ss.cc.getd2(20)
ss.cc.getd3(20)
ss.cc.getc4(20)

ss.ceDiag
Cause and Effect Diagram

Description

Represents a Cause and Effect Diagram by cause group.

Usage

```r
ss.ceDiag(effect, causes.gr, causes,  
main = "Six Sigma Cause-and-effect Diagram", sub, ss.col = c("#666666",  
"#BBBBBB", "#CCCCCC", "#DDDDDD", "#EEEEEE"))
```

Arguments

- `effect`
 A short character string that represents the effect we want to analyse.
- `causes.gr`
 A vector of characters that represents the causes groups.
- `causes`
 A vector with lists that represents the individual causes for each
- `main`
 Main title for the diagram
- `sub`
 Subtitle for the diagram (recommended the Six Sigma project name)
- `ss.col`
 A vector of colors for a personalized drawing. At least five colors, sorted by descendant intensity

Details

The default value for `ss.col` is `c("#666666", "#BBBBBB", "#CCCCCC", "#DDDDDD", "#EEEEEE"))`, a grayscale style. You can pass any accepted colour string.

Value

A drawing of the causes and effect with "fish-bone" shape
Note
The cause and effect diagram is also known as "Ishikawa diagram", and has been widely used in Quality Management. It is one of the Seven Basic Tools of Quality.

Author(s)
EL Cano

References

See Also
ss.pMap

Examples

effect <- "Flight Time"
causes <- vector(mode = "list", length = length(causes.gr))
causes[1] <- list(c("operator #1", "operator #2", "operator #3"))
causes[2] <- list(c("height", "cleaning"))
causes[3] <- list(c("scissors", "tape"))
causes[4] <- list(c("rotor.length", "rotor.width2", "paperclip"))
causes[5] <- list(c("thickness", "marks"))
causes[6] <- list(c("calibrate", "model"))
ss.ceDiag(effect, causes.gr, causes, sub = "Paper Helicopter Project")

Confidence Interval for the mean

Description
Computes a confidence interval for the mean of the variable (parameter or feature of the process), and prints the data, a histogram with a density line, the result of the Shapiro-Wilks normality test and a quantile-quantile plot.
Usage

ss.ci(x, sigma2 = NA, alpha = 0.05, data = NA, xname = "x",
approx.z = FALSE, main = "Confidence Interval for the Mean", digits = 3,
sub = "", ss.col = c("#666666", "#BBBBBB", "#CCCCCC", "#DDDDDD",
"#EEEEEE"))

Arguments

x A numeric vector with the variable data
sigma2 The population variance, if known
alpha The error used to compute the 100 \times (1 - alpha)\% confidence interval
data The data frame containing the vector
xname The name of the variable to be shown in the graph
approx.z If TRUE it uses z statistic instead of t when sigma is unknown and sample size
is greater than 30. The default is FALSE, change only if you want to compare
with results obtained with the old-fashioned method mentioned in some books.
main The main title for the graph
digits Significant digits for output
sub The subtitle for the graph (recommended: six sigma project name)
ss.col A vector with colors

Details

When the population variance is known, or the size is greater than 30, it uses z statistic. Otherwise,
it is uses t statistic.
If the sample size is lower than 30, a warning is displayed so as to verify normality.

Value

The confidence Interval.
A graph with the figures, the Shapiro-Wilks test, and a histogram.

Note

Thanks to the kind comments and suggestions from the anonymous reviewer of a tentative article.

Author(s)

EL Cano

References

ss.data.batteries

See Also

ss.data.rr

Examples

```
ss.ci(len, data=ss.data.strings, alpha = 0.05,
    sub = "Guitar Strings Test | String Length",
    xname = "Length")
```

```
ss.data.batteries   Data for the batteries example
```

Description

This is a simulated data set of 18 measurements of the voltage of batteries using different voltmeters.

Usage

```
data(ss.data.batteries)
```

Format

A data frame with 18 observations on the following 4 variables.

```
voltmeter  a factor with levels 1 2
battery    a factor with levels 1 2 3
run        a factor with levels 1 2 3
voltage    a numeric vector
```

Note

This data set is used in chapter 5 of the book “Six Sigma with R” (see References).

Source

See references.

References

See Also

ss.rr
Examples

data(ss.data.batteries)
summary(ss.data.batteries)
plot(voltage~voltmeter, data = ss.data.batteries)

ss.data.bills Errors in bills data set

Description

This data set contains the number of errors detected in a set of bills and the name of the person in charge of the bill.

Usage

data("ss.data.bills")

Format

A data frame with 32 observations on the following 3 variables.

- **nbill** a numeric vector identifying a given bill
- **clerk** a character vector for the clerk responsible for the bill
- **errors** a character vector with the number of errors in the bill

Details

This data set illustrates concepts in the book “Quality Control with R”.

Source

Table 6.1 in the reference below.

References

Examples

data(ss.data.bills)
str(ss.data.bills)
barplot(table(ss.data.bills$clerk),
 main = "number of invoices")
aggregate(errors ~ clerk, ss.data.bills, sum)
Data for the bolts example

Description

A data frame with 50 observations of the diameter of the bolts manufactured in a production line.

Usage

data(ss.data.bolts)

Format

A data frame with 50 observations on the following variable.

diameter a numeric vector with the diameter of the bolts

Note

This data set is used in chapter 4 of the book “Six Sigma with R” (see References).

Source

See references.

References

See Also

ss.lfa

Examples

data(ss.data.bolts)
summary(ss.data.bolts)
hist(ss.data.bolts$diameter)
Data for a filling process in a winery

Description

The only field of the data is the volume measured in 20 bottles.

Usage

`data(ss.data.ca)`

Format

A data frame with 20 observations on the following variable.

- **Volume**: a numeric vector (volume in cl)

Note

This data set is used in chapter 7 of the book “Six Sigma with R” (see References).

Source

See references.

References

See Also

`ss.study.ca`

Examples

```r
data(ss.data.ca)
summary(ss.data.ca)
hist(ss.data.ca$Volume)
```
Description

This data set contains the density for 24 pellets.

Usage

```r
data("ss.data.density")
```

Format

A vector with 24 items for the density of a set of pellets (gr/cm3).

Details

This data set illustrates concepts in the book “Quality Control with R”. Note that, in the book, the vector named `pdensity` is directly created and then used in the examples.

Source

Table 1.2 in the reference below.

References

Examples

```r
data(ss.data.density)
str(ss.data.density)
library(qcc)
qcc(ss.data.density,
    type = "xbar.one")
```
Description

Experimental data for the scores given to a set of pizza doughs.

Usage

```r
data(ss.data.doe1)
```

Format

A data frame with 16 observations on the following 6 variables.

- `repl` Replication id
- `flour` Level of flour in the recipe (\(M + \))
- `salt` Level of salt in the recipe (\(M + \))
- `bakPow` Level of Baking Powder in the recipe (\(M + \))
- `score` Score assigned to the recipe
- `ord` Randomized order

Note

This data set is used in chapter 11 of the book “Six Sigma with R” (see References).

Source

See references.

References

Examples

```r
data(ss.data.doe1)
summary(ss.data.doe1)
lattice::bwplot(score ~ flour | salt + bakPow,
data = ss.data.doe1,
xlab = "Flour",
strip = function(..., style) lattice::strip.default(..., strip.names=c(TRUE,TRUE)))
```
Data for the pizza dough example (robust design)

Description
Experimental data for the scores given to a set of pizza doughs. Noise factors added for robust design.

Usage
data(ss.data.doe2)

Format
A data frame with 64 observations on the following 7 variables.

- repl: Replication id
- flour: Level of flour in the recipe (\(M \pm \))
- salt: Level of salt in the recipe (\(M \pm \))
- bakPow: Level of Baking Powder in the recipe (\(M \pm \))
- temp: Level of temperature in preparation (\(M \pm \))
- time: Level of time in preparation (\(M \pm \))
- score: Score assigned to the recipe

Note
This data set is used in chapter 11 of the book “Six Sigma with R” (see References).

Source
See references.

References

Examples
data(ss.data.doe2)
summary(ss.data.doe2)
lattice::bwplot(score ~ temp | time, data = ss.data.doe2)
Description
A data frame with 18 observations of the amount of the CTQ compound in some pastries from a bakery. There are two runs for each combination of two factors (laboratory and batch).

Usage
\[
data(ss.data.pastries)
\]

Format
A data frame with 18 observations on the following 4 variables.

- \texttt{lab}: laboratory: a factor with levels 1 2 3
- \texttt{batch}: batch: a factor with levels 1 2 3
- \texttt{run}: identifies the run: a factor with levels 1 2
- \texttt{comp}: proportion of the compound in the pastry: a numeric vector

Note
This data set is used in chapter 5 exercises of the book “Six Sigma with R” (see References).

Source
See references.

References

Examples
\[
data(ss.data.pastries)
s\texttt{summary}(ss.data.pastries)
lattice::\texttt{xyplot}(comp ~ lab | batch, data = ss.data.pastries)
\]
Description
Humidity of 30 raw material used to make particle boards for individual control chart.

Usage
data(ss.data.pb1)

Format
A data frame with 30 observations on the following 2 variables.
- pb.group Group id (distinct for each observation)
- pb.humidity Humidity of the particle board

Note
This data set is used in chapter 12 of the book “Six Sigma with R” (see References).

Source
See references.

References

Examples
```r
data(ss.data.pb1)
summary(ss.data.pb1)
library(qcc)
pb.groups.one <- with(ss.data.pb1, qcc.groups(pb.humidity, pb.group))
pb.xbar.one <- qcc(pb.groups.one, type="xbar.one")
summary(pb.xbar.one)
plot(pb.xbar.one)
```
Particle Boards Example - by Groups

Description

Humidity of 20 groups of size 5 of raw materials to make particle boards. For the mean and range control chart.

Usage

data(ss.data.pb2)

Format

A data frame with 100 observations on the following 2 variables.

- **pb.group**: a numeric vector
- **pb.humidity**: a numeric vector

Note

This data set is used in chapter 12 of the book “Six Sigma with R” (see References).

Source

See references.

References

Examples

data(ss.data.pb2)
summary(ss.data.pb2)
if (require(qcc)){
 pb.groups.xbar <- with(ss.data.pb2, qcc.groups(pb.humidity, pb.group))
 pb.xbar <- qcc(pb.groups.xbar, type="xbar")
 summary(pb.xbar)
} else {
 message("qcc package is needed to run this example")
}
Particle Boards Example - Attribute data

Description
Counts of raw materials stockouts during 22 weekdays in a month.

Usage
```r
data(ss.data.pb3)
```

Format
A data frame with 22 observations on the following 3 variables.

- `day` Day id
- `stockouts` Number of stockouts
- `orders` Number of orders

Note
This data set is used in chapter 12 of the book “Six Sigma with R” (see References).

Source
See references.

References

Examples
```r
data(ss.data.pb3)
summary(ss.data.pb3)
if (require(qcc)){
  with(ss.data.pb3,
    plot(qcc(stockouts, orders, type ="p")))
}
else {
  message("qcc package is needed to run this example")
}
```
Data for Practice Boards Example - number of defects

Description

Number of defects detected in an order of particle boards.

Usage

data(ss.data.pb4)

Format

A data frame with 80 observations on the following 2 variables.

order Order id
defects Number of defects

Note

This data set is used in chapter 12 of the book “Six Sigma with R” (see References).

Source

See references.

References

Examples

data(ss.data.pb4)
summary(ss.data.pb4)
Data set for the printer cartridge example

Description
This data set contains data from a simulated process of printer cartridge filling.

Usage
data(ss.data.pc)

Format
A data frame with 24 observations on the following 6 variables.

- pc.col a factor with levels C B for the colour
- pc.filler a factor with levels 1 2 3
- pc.volume a numeric vector
- pc.density a numeric vector
- pc.batch a numeric vector
- pc.op a factor with levels A B C D for the operator

Note
This data set is used in chapter 8 of the book “Six Sigma with R” (see References).

Source
See references.

References

Examples
data(ss.data.pc)
summary(ss.data.pc)
Description

This data set contains data from a simulated process of printer cartridges filling with complete replications.

Usage

data(ss.data.pc.big)

Format

A data frame with 72 observations on the following 5 variables,

filler a factor with levels 1 2 3
batch a factor with levels 1 2 3 4
col a factor with levels B C
operator a factor with levels 1 2 3
volume a numeric vector

Note

This data set is used in chapter 8 of the book “Six Sigma with R” (see References).

Source

See references.

References

Examples

data(ss.data.pc.big)
summary(ss.data.pc.big)
Description

This data set contains data from a simulated process of printer cartridge filling. The dataframe contains defects by region of each type of cartridge.

Usage

data(ss.data.pc.r)

Format

A data frame with 5 observations on the following 4 variables.

pc.regions a factor with levels region.1 region.2 region.3 region.4 region.5
pc.def.a a numeric vector for defects type A
pc.def.b a numeric vector for defects type B
pc.def a numeric vector for total defects

Note

This data set is used in chapter 8 of the book “Six Sigma with R” (see References).

Source

See references.

References

Examples

data(ss.data.pc.r)
summary(ss.data.pc.r)
ss.data.rr

Gage R&R data

Description

Example data for Measure phase of the Six Sigma methodology.

Usage

```r
data(ss.data.rr)
```

Format

A data frame with 27 observations on the following 5 variables.

- **prototype** a factor with levels `prot #1 prot #2 prot #3`
- **operator** a factor with levels `op #1 op #2 op #3`
- **run** a factor with levels `run #1 run #2 run #3`
- **time1** a numeric vector
- **time2** a numeric vector

Note

This data set is used in chapter 5 of the book “Six Sigma with R” (see References).

Source

See references.

References

Examples

```r
data(ss.data.rr)
summary(ss.data.rr)
```
ss.data.strings

Data set for the Guitar Strings example

Description

This data set contains data from a simulated process of guitar strings production.

Usage

data(ss.data.strings)

Format

A data frame with 120 observations on the following 6 variables.

- id a numeric vector
- type a factor with levels A B D E E6 G3
- res a numeric vector for resistance
- len a numeric vector for length
- sound a numeric vector for
- power a numeric vector

Note

This data set is used in chapter 10 of the book “Six Sigma with R” (see References).

Source

See references.

References

Examples

data(ss.data.strings)
summary(ss.data.strings)
Description

This data set contains the thickness and additional data for 24 metal plates.

Usage

data("ss.data.thickness")

Format

A data frame with 24 observations on the following 5 variables.

- `thickness`: a numeric vector with the thickness (in)
- `day`: a factor with the day (two days)
- `shift`: a factor with the shift (two shifts)
- `dayshift`: a factor with the day-shift combination
- `position`: a factor with the position of the thickness with respect to the nominal value of 0.75 in

Details

This data set illustrates concepts in the book “Quality Control with R”. Note that, in the book, the data set is named `plates` and it is created sequentially throughout the examples.

Source

Table 5.1 in the reference below.

References

Examples

data(ss.data.thickness)
str(ss.data.thickness)
lattice::bwplot(thickness ~ shift | day,
 data = ss.data.thickness)
Description

This data set contains the thickness and additional data for 84 metal plates.

Usage

data("ss.data.thickness2")

Format

A data frame with 84 observations on the following 5 variables.

- **day**: a factor with the day (seven days)
- **shift**: a factor with the shift (two shifts)
- **thickness**: a numeric vector with the thickness (in)
- **ushift**: a factor with the day-shift combination
- **flaws**: an integer vector with the number of flaws on the surface of sampled plates

Details

This data set illustrates concepts in the book “Quality Control with R”.

Source

Examples 8.1 and 9.9 in the reference below.

References

Examples

```r
data(ss.data.thickness2)
str(ss.data.thickness2)
lattice::dotplot(thickness ~ shift | day,
                 data = ss.data.thickness2,
                 layout = c(7, 1))
```
Description

This data set contains the 500 locations at which the density of a 0.5\textit{in}-thick engineered woodboard is measured, i.e., 0.001 \textit{in} apart.

Usage

data("ss.data.wbx")

Format

A vector with 500 items for the locations \textit{(in)}.

Details

This data set illustrates concepts in the book “Quality Control with R”. This data set should be used along with the \texttt{ss.data.wby} data set.

Source

Example 10.1 in the reference below. It is a variation of the one introduced by Walker (2002).

References

See Also

\texttt{ss.data.wby}

Examples

data(ss.data.wbx)
data(ss.data.wby)
plotProfiles(profiles = ss.data.wby,
x = ss.data.wbx)
Description

This data set contains 50 profiles corresponding to the density measurements of 50 0.5in-thick engineered woodboard, measured in 500 locations.

Usage

```r
data("ss.data.wby")
```

Format

A matrix with 500 rows (locations) and 50 columns (woodboard).

Details

This data set illustrates concepts in the book “Quality Control with R”. This data set should be used along with the `ss.data.wbx` data set.

Source

Example 10.1 in the reference below. It is a variation of the one introduced by Walker (2002).

References

See Also

`ss.data.wbx`

Examples

```r
data(ss.data.wbx)
data(ss.data.wby)
plotProfiles(profiles = ss.data.wby,
            x = ss.data.wbx)
```
ss.heli

Creates a pdf file with the design of the Paper Helicopter

Description

The pdf file contains a template with lines and indications to build the paper helicopter described in many SixSigma publications.

Usage

ss.heli()

Details

The pdf file must be printed in A4 paper, without adjusting size to paper.

Value

No value is returned. A pdf file is saved in the working directory.

Note

See the vignette("HelicopterInstructions") to see assembling instructions.

Author(s)

EL Cano

References

Examples

ss.heli()
vignette("HelicopterInstructions")
Description

The quality loss function is one of the tools of the Six Sigma methodology. The function assigns a cost to an observed value, that is larger as far as it is from the target.

Usage

\[\text{ss.lf}(lfa.Y_1, lfa.Delta, lfa.Y0, lfa.L0) \]

Arguments

- \(lfa.Y1\): The observed value of the CTQ (critical to quality) characteristic that will be evaluated.
- \(lfa.Delta\): The tolerance for the CTQ.
- \(lfa.Y0\): The target for the CTQ.
- \(lfa.L0\): The cost of poor quality when the characteristic is \(Y_0 + \Delta\).

Value

\[\text{ss.lf} \] A number with the evaluated function at \(Y_1\)

Author(s)

EL Cano

References

See Also

- \text{ss.lfa}

Examples

Example bolts: evaluate LF at 10.5 if Target=10, Tolerance=0.5, L_0=0.001
\[\text{ss.lf}(10.5, 0.5, 10, 0.001) \]
Loss Function Analysis

Description
This function performs a Quality Loss Function Analysis, based in the Taguchi Loss Function for "Nominal-the-Best" characteristics.

Usage
ss.lfa(lfa.data, lfa.ctq, lfa.Delta, lfa.Y0, lfa.L0, lfa.size = NA, lfa.output = "both", lfa.sub = "Six Sigma Project")

Arguments
lfa.data Data frame with the sample to get the average loss.
lfa.ctq Name of the field in the data frame containing the data.
lfa.Delta Tolerance of the process.
lfa.Y0 Target of the process (see note).
lfa.L0 Cost of poor quality at tolerance limit.
lfa.size Size of the production, batch, etc. to calculate the total loss in a group (span, batch, period, ...)
lfa.output Type of output (see details).
lfa.sub Subtitle for the graphic output.

Details
lfa.output can take the values "text", "plot" or "both".

Value
lfa.k Constant k for the loss function
lfa.lf Expression with the loss function
lfa.MSD Mean Squared Differences from the target
lfa.avLoss Average Loss per unit of the process
lfa.Loss Total Loss of the process (if a size is provided)

Note
For smaller-the-better characteristics, the target should be zero (lfa.Y0 = 0). For larger-the-better characteristics, the target should be infinity (lfa.Y0 = Inf).

Author(s)
EL Cano
References

See Also
ss.lf, ss.data.bolts.

Examples
```r
ss.lfa(ss.data.bolts, "diameter", 0.5, 10, 0.001,
     lfa.sub = "10 mm. Bolts Project",
     lfa.size = 100000, lfa.output = "both")
```

Description
This function takes information about the process we want to represent and draw the Process Map, with its X’s, x’s, Y’s and y’s in each step of the process.

Usage
```r
ss.pMap(steps, inputs.overall, outputs.overall, input.output, x.parameters,
         y.features, main = "Six Sigma Process Map", sub, ss.col = c("#666666",
         "#BBBBBB", "#CCCCCC", "#DDDDDD", "#EEEEEE"))
```

Arguments
- `steps`: A vector of characters with the name of the 'n' steps
- `inputs.overall`: A vector of characters with the name of the overall inputs
- `outputs.overall`: A vector of characters with the name of the overall outputs
- `input.output`: A vector of lists with the names of the inputs of the i-th step, that will be the outputs of the (i - 1) - th step
- `x.parameters`: A vector of lists with a list of the x parameters of the process. The parameter is a vector with two values: the name and the type (view details)
- `y.features`: A vector of lists with a list of the y features of the step. The feature is a vector with two values: the name and the type (view details)
- `main`: The main title for the Process Map
sub \hspace{1cm} \text{Subtitle for the diagram (recommended the Six Sigma project name)}

ss.col \hspace{1cm} \text{A vector of colours for a custom drawing. At least five colours, sorted by descendant intensity (see details)}

Details

The type of the x parameters and y features can be: C(controllable), N(noise), Cr(Critical), P(Procedure). The default value for ss.col is c("#666666", "#BBBBBB", "#CCCCCC", "#DDDDDD", "#EEEEEE"), a grayscale style. You can pass any accepted color string.

Value

A graphic representation of the Map Process.

Note

The process map is the starting point for a Six Sigma Project, and it is very important to find out who the x’s and y’x are.

Author(s)

EL Cano

References

See Also

ss.ceDiag

Examples

inputs.overall<-c("operators", "tools", "raw material", "facilities")
outputs.overall<-c("helicopter")
steps<-c("INSPECTION", "ASSEMBLY", "TEST", "LABELING")
#Inputs of process "i" are inputs of process "i+1"
input.output<-vector(mode="list", length=length(steps))
input.output[1]<-list(c("sheets", "..."))
input.output[2]<-list(c("sheets"))
input.output[3]<-list(c("helicopter"))
input.output[4]<-list(c("helicopter"))

#Parameters of each process
x.parameters<-vector(mode="list",length=length(steps))
x.parameters[1]<-list(c(list(c("width", "NC")), list(c("operator", "C")),
 list(c("Measure pattern", "P")), list(c("discard", "P"))))
x.parameters[2]<-list(c(list(c("operator", "C")), list(c("cut", "P")),
 list(c("fix", "P")), list(c("rotor.width", "C")), list(c("rotor.length", "C")),
 list(c("tape", "C"))))
x.parameters[3]<-list(c(list(c("operator", "C")), list(c("throw", "P")),
 list(c("discard", "P")), list(c("environment", "N"))))
x.parameters[4]<-list(c(list(c("operator", "C")), list(c("label", "P"))))
x.parameters

#Features of each process
y.features<-vector(mode="list",length=length(steps))
y.features[1]<-list(c(list(c("ok", "Cr"))))
y.features[2]<-list(c(list(c("weight", "Cr"))))
y.features[3]<-list(c(list(c("time", "Cr"))))
y.features[4]<-list(c(list(c("label", "Cr"))))
y.features

ss.PMap(steps, inputs.overall, outputs.overall,
 input.output, x.parameters, y.features,
 sub="Paper Helicopter Project")

ss.rr
Gage R & R (Measurement System Assessment)

Description

Performs Gage R&R analysis for the assessment of the measurement system of a process. Related to the Measure phase of the DMAIC strategy of Six Sigma.

Usage

```r
ss.rr(var, part, appr, lsl = NA, usl = NA, sigma = 6, data,
    main = "Six Sigma Gage R&R Study", sub = "," , alphaLim = 0.05,
    errorTerm = "interaction", digits = 4)
```

Arguments

- `var`
 Measured variable

- `part`
 Factor for parts

- `appr`
 Factor for appraisers (operators, machines,...)

- `lsl`
 Numeric value of lower specification limit used with USL to calculate Study Variation as %Tolerance

- `usl`
 Numeric value of upper specification limit used with LSL to calculate Study Variation as %Tolerance

- `sigma`
 Numeric value for number of std deviations to use in calculating Study Variation
data Data frame containing the variables
main Main title for the graphic output
sub Subtitle for the graphic output (recommended the name of the project)
alphaLim Limit to take into account interaction
errorTerm Which term of the model should be used as error term (for the model with interaction)
digits Number of decimal digits for output

Details

Performs an R&R study for the measured variable, taking into account part and appraiser factors. It outputs the sources of Variability, and six graphs: bar chart with the sources of Variability, plots by appraiser, part and interaction and x-bar and R control charts.

Value

Analysis of Variance Table/s. Variance composition and % Study Var. Graphics.

anovaTable The ANOVA table of the model
anovaRed The ANOVA table of the reduced model (without interaction, only if interaction not significant)
varComp A matrix with the contribution of each component to the total variation
studyVar A matrix with the contribution to the study variation
ncat Number of distinct categories

Note

The F test for the main effects in the ANOVA table is usually made taken the operator/appraisal interaction as the error term (repeated measures model), thereby computing F as $\frac{MS_{factor}}{MS_{interaction}}$, e.g. in appendix A of AIAG MSA manual, in Montgomery (2009) and by statistical software such as Minitab. However, in the example provided in page 127 of the AIAG MSA Manual, the F test is performed as $\frac{MS_{factor}}{MS_{equipment}}$, i.e., repeatability. Thus, since version 0.9-3 of the SixSigma package, a new argument errorTerm controls which term should be used as error Term, one of "interaction", "repeatability".

Argument alphaLim is used as upper limit to use the full model, i.e., with interaction. Above this value for the interaction effect, the ANOVA table without the interaction effect is also obtained, and the variance components are computed pooling the interaction term with the repeatability.

Author(s)

EL Cano with contributions by Kevin C Limburg
References

See Also

ss.data.rr

Examples

```r
ss.rr(time1, prototype, operator, data = ss.data.rr,
      sub = "Six Sigma Paper Helicopter Project",
      alpahLim = 0.05,
      errorTerm = "interaction",
      lsl = 0.7,
      usl = 1.8)
```

ss.study.ca
Graphs and figures for a Capability Study

Description

Plots a Histogram with density lines about the data of a process. Check normality with qqplot and normality tests. Shows the Specification Limits and the Capability Indices.

Usage

```r
ss.study.ca(xST, xLT = NA, LSL = NA, USL = NA, Target = NA,
            alpha = 0.05, f.na.rm = TRUE, f.main = "Six Sigma Capability Analysis Study",
            f.sub = "")
```

Arguments

- **xST**
 Short Term process performance data
- **xLT**
 Long Term process performance data
- **LSL**
 Lower Specification Limit of the process
- **USL**
 Upper Specification Limit of the process
- **Target**
 Target of the process
- **alpha**
 Type I error for the Confidence Interval
f.na.rm If TRUE NA data will be removed
f.main Main Title for the graphic output
f.sub Subtitle for the graphic output

Value

Figures and plot for Capability Analysis

Author(s)

EL Cano

References

See Also

ss.ca.cp

Examples

```r
ss.study.ca(ss.data.ca$Volume, rnorm(40, 753, 3),
LSL = 740, USL = 760, T = 750, alpha = 0.05,
f.sub = "Winery Project")
```
Index

*Topic Gauge
 ss.rr, 42
*Topic MSA
 ss.rr, 42
*Topic R&R
 ss.rr, 42
*Topic Taguchi
 ss.lf, 38
 ss.lfa, 39
*Topic capability
 ss.ca.z, 10
 ss.data.ca, 19
*Topic cause-and-effect
 ss.ceDiag, 13
*Topic cc
 ss.data.pb1, 24
 ss.data.pb2, 25
 ss.data.pb3, 26
 ss.data.pb4, 27
*Topic charts
 ss.cc.constants, 12
 ss.data.pc, 28
 ss.data.pc.big, 29
 ss.data.pc.r, 30
*Topic confidence
 ss.ci, 14
*Topic constants
 ss.cc.constants, 12
*Topic control
 ss.cc.constants, 12
*Topic cpk
 ss.ca.z, 10
*Topic cp
 ss.ca.z, 10
*Topic datasets
 ss.data.bills, 17
 ss.data.density, 20
 ss.data.thickness, 33
 ss.data.thickness2, 34
 ss.data.wbx, 35
 ss.data.wby, 36
*Topic data
 ss.data.batteries, 16
 ss.data.bolts, 18
 ss.data.ca, 19
 ss.data.doe1, 21
 ss.data.doe2, 22
 ss.data.pastries, 23
 ss.data.pb1, 24
 ss.data.pb2, 25
 ss.data.pb3, 26
 ss.data.pb4, 27
 ss.data.pc, 28
 ss.data.pc.big, 29
 ss.data.pc.r, 30
 ss.data.rr, 31
 ss.data.strings, 32
*Topic doe
 ss.data.doe1, 21
 ss.data.doe2, 22
*Topic function
 ss.lf, 38
 ss.lfa, 39
*Topic interval
 ss.ci, 14
*Topic lfa
 ss.ca.z, 10
*Topic loss
 ss.lf, 38
 ss.lfa, 39
*Topic map
 ss.pMap, 40
*Topic mean
 ss.ci, 14
*Topic msa
 ss.data.batteries, 16
 ss.data.pastries, 23
 ss.data.rr, 31
INDEX

ss.data.strings, 32
+Topic normality
 ss.ci, 14
+Topic process
 ss.pMap, 40
+Topic repeatability
 ss.rr, 42
+Topic reproducibility
 ss.rr, 42
+Topic test
 ss.ci, 14

climProfiles, 2

outProfiles, 3

plotControlProfiles, 4
plotProfiles, 5

SixSigma, 6
SixSigma-package (SixSigma), 6
smoothProfiles, 8
ss.ca.cp, 45
ss.ca.cp(ss.ca.z), 10
ss.ca.cpk(ss.ca.z), 10
ss.ca.yield, 9
ss.ca.z, 10
ss.cc, 11
ss.cc.constants, 12, 12
ss.cc.getc4(ss.cc.constants), 12
ss.cc.getd2(ss.cc.constants), 12
ss.cc.getd3(ss.cc.constants), 12
ss.ceDiag, 7, 13, 41
ss.ci, 7, 14
ss.data.batteries, 16
ss.data.bills, 17
ss.data.bolts, 18, 40
ss.data.ca, 19
ss.data.density, 20
ss.data.doe1, 21
ss.data.doe2, 22
ss.data.pastries, 23
ss.data.pb1, 24
ss.data.pb2, 25
ss.data.pb3, 26
ss.data.pb4, 27
ss.data.pc, 28
ss.data.pc.big, 29
ss.data.pc.r, 30

ss.data.rr, 16, 31, 44
ss.data.strings, 32
ss.data.thickness, 33
ss.data.thickness2, 34
ss.data.wbx, 35, 36
ss.data.wby, 35, 36
ss.heli, 7, 37
ss.lf, 38, 40
ss.lfa, 7, 18, 38, 39
ss.pMap, 7, 14, 40
ss.rr, 7, 16, 42
ss.study.ca, 10, 19, 44