Package ‘StatMatch’

January 9, 2017

Type Package
Title Statistical Matching
Version 1.2.5
Date 2016-12-22
Author Marcello D’Orazio
Maintainer Marcello D’Orazio <mdo.statmatch@gmail.com>
Depends R (>= 2.7.0), proxy, clue, survey, RANN, lpSolve
Suggests MASS, Hmisc
Description Integration of two data sources referred to the same target population which share a number of common variables (aka data fusion). Some functions can also be used to impute missing values in data sets through hot deck imputation methods. Methods to perform statistical matching when dealing with data from complex sample surveys are available too.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2017-01-09 17:11:42

R topics documented:

StatMatch-package .. 2
comb.samples ... 3
comp.prop .. 8
create.fused .. 11
fact2dummy .. 13
Fbwidths.by.x ... 14
Frechet.bounds.cat .. 17
gower.dist .. 21
harmonize.x ... 23
mahalanobis.dist ... 28
maximum.dist .. 30
mixed.mtc .. 31
NND.hotdeck .. 37
Statistical Matching or Data Fusion

Description

Functions to perform statistical matching (aka data fusion), i.e. the integration of two data sources. Some functions can also be used to impute missing values in data sets through hot deck imputation methods.

Details

Statistical matching (aka data fusion) aims at integrating two data sources referred to same target population and sharing a number of variables in common. The final objective is that of studying the relationship of variables not jointly observed in a single data sources. The integration can be performed at micro (a synthetic of fused file is the output) or macro level (estimates of correlations, regression coefficients, contingency tables are required). Nonparametric hot deck imputation methods (random, rank and nearest neighbour donor) can be used to derive the synthetic data set. In alternative it is possible to use a mixed (parametric–nonparametric) procedure based on predictive mean matching. Methods to perform statistical matching when dealing with data from complex sample surveys are available too. Finally some functions can be used to explore the uncertainty due to the typical matching framework. For major details see D’Orazio et al. (2006) or the package vignette.

Author(s)

Marcello D’Orazio
Maintainer: Marcello D’Orazio <mdo.statmatch@gmail.com>

References

Description

This function permits to cross-tabulate two categorical variables, Y and Z, observed separately in two independent surveys (Y is collected in survey A and Z is collected in survey B) carried out on the same target population. The two surveys share a number of common variables X. When it is available a third survey C, carried on the same population, in which both Y and Z are collected, these data are used as a source of auxiliary information.

The statistical matching is performed by carrying out calibration of the survey weights, as suggested in Renssen (1998).

It is possible also to use the function to derive the estimates that units present a given category of the target variable (estimation are based on Liner Probability Models and are obtained as a by-product of the Renssen’s method).

Usage

```r
comb.samples(svy.A, svy.B, svy.C=NULL, y.lab, z.lab, form.x, 
estimation=NULL, micro=FALSE, ...)
```

Arguments

- `svy.A` A `svydesign` R object that stores the data collected in the survey A and all the information concerning the sampling design. This object can be created by using the function `svydesign` in the package `survey`. All the variables specified in `form.x` and by `y.lab` must be available in `svy.A`.

- `svy.B` A `svydesign` R object that stores the data collected in the survey B and all the information concerning the sampling design. This object can be created by using the function `svydesign` in the package `survey`. All the variables specified in `form.x` and by `z.lab` must be available in `svy.B`.

- `svy.C` A `svydesign` R object that stores the data collected in the the survey C and all the information concerning the sampling design. This object can be created by using the function `svydesign` in the package `survey`.

 When `svy.C=NULL` (default), i.e. no auxiliary information is available, the function returns an estimate of the contingency table of Y vs. Z under the Conditional Independence assumption (CIA) (see Details for major information).

 When `svy.C` is available, if `estimation="incomplete"` then it must contain at least `y.lab` and `z.lab` variables. On the contrary, when `estimation="synthetic"` all the variables specified in `form.x`, `y.lab` and `z.lab` must be available in `svy.C`.

- `y.lab` A string providing the name of the Y variable, collected in survey A and in survey C (if available). The Y variable can be a categorical variable (factor in R) or a continuous one (in this latter case `z.lab` should be categorical).
z.lab

A string providing the name of the Z variable collected in survey B and in survey C (if available). The Z variable can be a categorical variable (factor in R) or a continuous one (in this latter case y.lab should be categorical).

form.x

A R formula specifying the matching variables (subset of the X variables) collected in all the surveys, and how have to be considered in combining samples. For instance `form.x=x1+x2` means that the variables x1 and x2 have to be considered marginally without taking into account their cross-tabulation; just their marginal distribution is considered. In order to skip the intercept the formula has to be written as `form.x=x1:x2-1`.

When dealing with categorical variables, if the formula is written as `form.x=x1:x2-1`, it means that the the joint distribution of the two variables (table of x1 vs. x2) has to be considered.

To better understand the usage of `form.x` see `model.matrix` (see also `formula`).

Due to weights calibration features, it is preferable to work with categorical X variables. In some cases, procedure may be successful when a single continuous variable is considered jointly with one or more categorical variables, but in most of the cases, it may be necessary to categorize the continuous variable (see Details).

estimation

A character string that identifies the method to be used to estimate the table of Y vs. Z when data from survey C are available. As suggested in Renssen (1998), two alternative methods are available: (i) Incomplete Two-Way Stratification (`estimation="incomplete"`, or `estimation="ITWS"`, the default one) and (ii) Synthetic Two-Way Stratification (`estimation="synthetic"` or `estimation="STWS"`). In the first case (`estimation="incomplete"`) only Y and Z variables must be available in `svy.C`. On the contrary, when `estimation="synthetic"` the survey C must contain all the X variables specified via `form.x`, the Y variable and the Z variable. See Details for further information.

micro

Predictions of Z in A and of Y in B are provided. In particular when Y and Z are both categorical variables it is provided the estimated probability that a unit presents a category of the given variable. These probabilities are estimated as a by-product of the whole procedure by considering Linear Probability Models, as suggested in Renssen (1998) (see Details).

Further arguments that may be necessary for calibration. In particular, the argument `calfun` allows to specify the calibration function:

(i) `calfun="linear"` for linear calibration (default);
(ii) `calfun="raking"` to rake the survey weights; and
(iii) `calfun="logit"` for logit calibration. See `calibrate` for major details.

Note that when `calfun="linear"` there is the chance of having negative calibrated weights. This drawback can be avoided by requiring that the final weights lie in a given interval specified via the argument `bounds` of the function `calibrate`. Generally speaking, in sample surveys one expects that weights are greater than or equal to 1, i.e. `bounds=c(1, Inf)`. The number of iterations used in calibration can be modified by using the argument `maxit` (by default `maxit=50`).

See `calibrate` for further details.
Details

This function estimates the contingency table of Y vs. Z by performing a series of calibrations of the survey weights. In practice the estimation is carried out on data in survey C by exploiting all the information from surveys A and B. When survey C is not available the table of Y vs. Z is estimated under the assumption of Conditional Independence (CIA), i.e. $p(Y, Z) = p(Y|X) \times p(Z|X) \times p(X)$.

When data from survey C are available (Renssen, 1998), the table of Y vs. Z can be estimated by: Incomplete Two-Way Stratification (ITWS) or Synthetic Two-Way Stratification (STWS). In the first case (ITWS) the weights of the units in survey C are calibrated so that the new weights allow to reproduce the marginal distributions of Y estimated on survey A, and that of Z estimated on survey B. Note that the distribution of the X variables in survey A and in survey B, must be harmonized before performing ITWS (see harmonize.x).

The Synthetic Two-Way Stratification allows to estimate the table of Y vs. Z by considering also the X variables observed in C. This method consists in correcting the table of Y vs. Z estimated under the CIA according to the relationship between Y and Z observed in survey C (for major details see Renssen, 1998).

When the argument micro is set to TRUE the function provides also Z.A and Y.B. The first data.frame has the same rows as svy.A and the number of columns equals the number of categories of the Z variable specified via z.lab. Each row provides the estimated probabilities of assuming a value in the various categories. The same happens for Y.B which presents the estimated probabilities of assuming a category of y.lab for each unit in B.

The estimated probabilities are obtained by applying the linear probability models (for major details see Renssen, 1998). Unfortunately, such models may provide estimated probabilities less than 0 or greater than 1. Much caution should be used in using such predictions for practical purposes.

Value

A R list with the results of the calibration procedure according to the input arguments.

- **yz.CIA**: The table of Y (y.lab) vs. Z (z.lab) estimated under the Conditional Independence Assumption (CIA).
- **cal.C**: The survey object svy.C after the calibration. Only when svy.C is provided.
- **yz.est**: The table of Y (y.lab) vs. Z (z.lab) estimated under the method specified via estimation argument. Only when svy.C is provided.
- **Z.A**: Only when micro=TRUE. It is a data frame with the same rows as in svy.A and the number of columns is equal to the number of categories of the variable z.lab. Each row provides the estimated probabilities for that unit of presenting the various categories of z.lab.
- **Y.B**: Only when micro=TRUE. It is a data frame with the same rows as in svy.B and the number of columns is equal to the number of categories of y.lab. Each row provides the estimated probabilities for that unit of presenting the various categories of y.lab.
- **call**: Stores the call to this function with all the values specified for the various arguments (call=match.call()).
Author(s)

Marcello D’Orazio <mdo.statmatch@gmail.com>

References

See Also

calibrate, svydesign, harmonize.x

Examples

data(quine, package="MASS") # loads quine from MASS
str(quine)
quine$c.Days <- cut(quine$Days, c(-1, seq(0,20,10),100))
table(quine$c.Days)

split quine in two subsets
set.seed(124)
lab.A <- sample(nrow(quine), 70, replace=TRUE)
quine.A <- quine[lab.A, c("Eth","Sex","Age","Lrn")]
quine.B <- quine[-lab.A, c("Eth","Sex","Age","c.Days")]

create svydesign objects
require(survey)
quine.A$f <- 70/nrow(quine) # sampling fraction
quine.B$f <- (nrow(quine)-70)/nrow(quine)
svy.qA <- svydesign(~1, fpc=f, data=quine.A)
svy.qB <- svydesign(~1, fpc=f, data=quine.B)

Harmonization wrt the joint distribution
of ('Sex' x 'Age' x 'Eth')

vector of population total known
estimated from the full data set
note the formula!
tot.m <- colSums(model.matrix(~Eth:Sex:Age-1, data=quine))
tot.m

out.hz <- harmonize.x(svY.A=svy.qA, svY.B=svy.qB, x.tot=tot.m,
form.x=~Eth:Sex:Age-1, cal.method="linear")

estimation of 'Lrn' vs. 'c.Days' under the CIA
svy.qA.h <- out.hz$cal.A
comb.samples

svy.qB.h <- out.hz$cal.B

out.1 <- comb.samples(svy.A=svy.qA.h, svy.B=svy.qB.h,
 svy.C=NULL, y.lab="Lrn", z.lab="c.Days",
 form.x=Eth:Sex:Age-1)

out.1$yz.CIA
addmargins(out.1$yz.CIA)

incomplete two-way stratification

select a sample c from quine
and define a survey object

set.seed(4321)
lab.C <- sample(nrow(quine), 50, replace=TRUE)
quine.C <- quine[lab.C, c("Lrn","c.Days")]
quine.C$f <- 50/nrow(quine) # sampling fraction
svy.qc <- svydesign(~1, fpc=~f, data=quine.C)

call comb.samples
out.2 <- comb.samples(svy.A=svy.qA.h, svy.B=svy.qB.h,
 svy.C=svy.qC, y.lab="Lrn", z.lab="c.Days",
 form.x=Eth:Sex:Age-1, estimation="incomplete",
 calfun="linear", maxit=100)

summary(weights(out.2$cal.C))
out.2$yz.est # estimated table of 'Lrn' vs. 'c.Days'
difference wrt the table 'Lrn' vs. 'c.Days' under CIA
addmargins(out.2$yz.est)-addmargins(out.2$yz.CIA)

synthetic two-way stratification
only macro estimation

quine.C <- quine[lab.C,]
quine.C$f <- 50/nrow(quine) # sampling fraction
svy.qC <- svydesign(~1, fpc=f, data=quine.C)

out.3 <- comb.samples(svy.A=svy.qA.h, svy.B=svy.qB.h,
 svy.C=svy.qC, y.lab="Lrn", z.lab="c.Days",
 form.x=Eth:Sex:Age-1, estimation="synthetic",
 calfun="linear", bounds=c(0.5,Inf), maxit=100)

summary(weights(out.3$cal.C))
out.3$yz.est # estimated table of 'Lrn' vs. 'c.Days'
difference wrt the table of 'Lrn' vs. 'c.Days' under CIA
addmargins(out.3$yz.est)-addmargins(out.3$yz.CIA)
diff wrt the table of 'Lrn' vs. 'c.Days' under incomplete 2ws
addmargins(out.3$yz.est)-addmargins(out.2$yz.CIA)

synthetic two-way stratification
with micro predictions

```r
out.4 <- comb.samples(svy.A=svy.qA.h, svy.B=svy.qB.h,
  svy.C=svy.qC, y.lab="Lrn", z.lab="c.Days",
  form.x=Eth:Sex:Age-1, estimation="synthetic",
  micro=TRUE, calfun="linear", bounds=c(.5,Inf),
  maxit=100)

head(out.4$Z.A)
head(out.4$Y.B)
```

<table>
<thead>
<tr>
<th>comp.prop</th>
<th>Compares two distributions of categorical variables</th>
</tr>
</thead>
</table>

Description

This function compares two distributions of the same categorical variable(s).

Usage

```r
comp.prop(p1, p2, n1, n2=NULL, ref=FALSE)
```

Arguments

- **p1**
 - A vector or an array containing relative or absolute frequencies for one or more categorical variables. Usually it is the output of the function `xtabs` or `table`.

- **p2**
 - A vector or an array containing relative or absolute frequencies for one or more categorical variables. Usually it is the output of the function `xtabs` or `table`. If `ref=FALSE` then `p2` is a further estimate of the distribution of the categorical variable(s) being considered. On the contrary (`ref=FALSE`) it is the 'reference' distribution (the distribution considered true).

- **n1**
 - The sample size of the sample on which `p1` has been estimated.

- **n2**
 - The sample size of the sample on which `p2` has been estimated, required just when `ref=FALSE` (`p2` is estimated on another sample and is not the reference distribution).

- **ref**
 - Logical. Denotes whether `p2` is the reference distribution (true distribution when `ref=TRUE`) or just another estimate (`ref=FALSE`) of the distribution derived from another sample with sample size `n2`.
Details

This function computes some similarity or dissimilarity measures among marginal (joint) distribution of categorical variables(s). The following measures are considered:

Dissimilarity index or total variation distance:

\[
\Delta_{12} = \frac{1}{2} \sum_{j=1}^{J} |p_{1,j} - p_{2,j}|
\]

where \(p_{s,j} \) are the relative frequencies \(0 \leq p_{s,j} \leq 1 \). The dissimilarity index ranges from 0 (minimum dissimilarity) to 1. It can be interpreted as the smallest fraction of units that need to be reclassified in order to make the distributions equal. When \(p_2 \) is the reference distribution (true or expected distribution under a given hypothesis) than, following the Agresti’s rule of thumb (Agresti 2002, pp. 329–330), values of \(\Delta_{12} < 0.03 \) denotes that the estimated distribution \(p_1 \) follow the true or expected pattern quite closely.

Overlap between two distributions:

\[
O_{12} = \sum_{j=1}^{J} \min(p_{1,j}, p_{2,j})
\]

It is a measure of similarity which ranges from 0 to 1 (the distributions are equal). It is worth noting that \(O_{12} = 1 - \Delta_{12} \).

Bhattacharyya coefficient:

\[
B_{12} = \sum_{j=1}^{J} \sqrt{p_{1,j} \times p_{2,j}}
\]

It is a measure of similarity and ranges from 0 to 1 (the distributions are equal).

Hellinger’s distance:

\[
d_{H,12} = \sqrt{1 - B_{12}}
\]

It is a dissimilarity measure which ranges from 0 (distributions are equal) to 1 (max dissimilarity). It satisfies all the properties of a distance measure \(0 \leq d_{H,12} \leq 1 \); symmetry and triangle inequality). Hellinger’s distance is related to the dissimilarity index, and it is possible to show that:

\[
d_{H,12}^2 \leq \Delta_{12} \leq d_{H,12}\sqrt{2}
\]

Alongside with those similarity/dissimilarity measures the Pearson’s Chi-squared is computed. Two formulas are considered. When \(p_2 \) is the reference distribution (true or expected under some hypothesis, ref=TRUE):

\[
\chi^2_p = n_1 \sum_{j=1}^{J} \frac{(p_{1,j} - p_{2,j})^2}{p_{2,j}}
\]
When \(p^2 \) is a distribution estimated on a second sample then:

\[
\chi^2_P = \sum_{i=1}^{2} \sum_{j=1}^{J} n_i \frac{(p_{i,j} - p_{+,j})^2}{p_{+,j}}
\]

where \(p_{+,j} \) is the expected frequency for category \(j \), obtained as follows:

\[
p_{+,j} = \frac{n_1 p_{1,j} + n_2 p_{2,j}}{n_1 + n_2}
\]

The Chi-Square value can be used to test the hypothesis that two distributions are equal (df=J-1). Unfortunately such a test would not be useful when the distribution are estimated from samples selected from finite population using complex selection schemes (stratification, clustering, etc.). In such a case different alternative corrected Chi-square tests are available (cf. Sarndal et al., 1992, Sec. 13.5). One possibility consist in dividing the Pearson’s Chi-square test by the generalised design effect of both the surveys. Its estimation is not simple (sampling design variables need to be available). The generalised design effect is smaller than 1 in the presence of stratified random sampling designs. It exceeds 1 the presence of a two stage cluster sampling design. For the purposes of analysis it is reported the value of the generalised design effect \(g \) that would determine the acceptance of the null hypothesis (equality of distributions) in the case of alpha=0.05 (df=J-1), i.e. values of \(g \) such that

\[
\frac{\chi^2_P}{g} \leq \chi^2_{J-1,0.05}
\]

Value

A list object with two or three components depending on the argument \(\text{ref} \).

- **meas**
 A vector with the measures of similarity/dissimilarity between the distributions: dissimilarity index ("tvd"), overlap ("overlap"), Bhattacharyya coefficient ("Bhatt") and Hellinger’s distance ("Hell").

- **chi.sq**
 A vector with the following values: Pearson’s Chi-square ("Pearson"), the degrees of freedom ("df"), the percentile of a Chi-squared distribution ("q\(0.05\"\)) and the largest admissible value of the generalised design effect that would determine the acceptance of H0 (equality of distributions).

- **p.exp**
 When \(\text{ref}=\text{FALSE} \) it is reported the value of the reference distribution \(p_{+,j} \) estimated used in deriving the Chi-square statistic and also the dissimilarity index. On the contrary (\(\text{ref}=\text{FALSE} \)) it is set equal to the argument \(p^2 \).

Author(s)

Marcello D’Orazio <mdo.statmatch@gmail.com>

References

create.fused

Examples

```r
data(quine, package="MASS") #loads quine from MASS
str(quine)

# split quine in two subsets
set.seed(124)
lab.A <- sample(nrow(quine), 70, replace=TRUE)
quine.A <- quine[lab.A, c("Eth","Sex","Age")]
quine.B <- quine[-lab.A, c("Eth","Sex","Age")]

# compare est. distributions from 2 samples
# 1 variable
tt.A <- xtabs(~Age, data=quine.A)
tt.B <- xtabs(~Age, data=quine.B)
comp.prop(p1=tt.A, p2=tt.B, n1=nrow(quine.A), n2=nrow(quine.B), ref=FALSE)

# joint distr. of more variables
tt.A <- xtabs(~Eth+Sex+Age, data=quine.A)
tt.B <- xtabs(~Eth+Sex+Age, data=quine.B)
comp.prop(p1=tt.A, p2=tt.B, n1=nrow(quine.A), n2=nrow(quine.B), ref=FALSE)

# compare est. distr. with a one considered as reference
tt.A <- xtabs(~Eth+Sex+Age, data=quine.A)
tt.all <- xtabs(~Eth+Sex+Age, data=quine)
comp.prop(p1=tt.A, p2=tt.all, n1=nrow(quine.A), n2=NULL, ref=TRUE)
```

create.fused Creates a matched (synthetic) dataset

Description

Create a synthetic data frame after the statistical matching of two data sources at micro level.

Usage

```r
create.fused(data.rec, data.don, mtc.ids, z.vars, dup.x=FALSE, match.vars=NULL)
```

Arguments

- `data.rec`: A matrix or data frame that plays the role of recipient in the statistical matching application.
- `data.don`: A matrix or data frame that plays the role of donor in the statistical matching application.
create.fused

mtc.ids
A matrix with two columns. Each row must contain the name or the index of
the recipient record (row) in data.don and the name or the index of the corre-
sponding donor record (row) in data.don. Note that this type of matrix is re-
turned by the functions `NND.hotdeck`, `RANDwNND.hotdeck`, `rankNND.hotdeck`,
and `mixed.mtc`.

z.vars
A character vector with the names of the variables available only in data.don
that should be “donated” to data.rec.

dup.x
Logical. When TRUE the values of the matching variables in data.don are also
“donated” to data.rec. The names of the matching variables have to be speci-
ified with the argument match.vars. To avoid confusion, the matching vari-
bles added to data.rec are renamed by adding the suffix “don”. By default
dup.x=FALSE.

match.vars
A character vector with the names of the matching variables. It has to be speci-
fied only when dup.x=TRUE.

Details
This function allows to create the synthetic (or fused) data set after the application of a statistical
matching in a micro framework. For details see D’Orazio et al. (2006).

Value
The data frame data.rec with the z.vars filled in and, when dup.x=TRUE, with the values of the
matching variables match.vars observed on the donor records.

Author(s)
Marcello D’Orazio <mdo.statmatch@gmail.com>

References
Chichester.

See Also
`NND.hotdeck` `RANDwNND.hotdeck` `rankNND.hotdeck`

Examples

```r
lab <- c(1:15, 51:65, 101:115)
iris.rec <- iris[lab, c(1:3,5)]  # recipient data.frame
iris.don <- iris[-lab, c(1:2,4:5)]  # donor data.frame

# Now iris.rec and iris.don have the variables
# "Sepal.Length", "Sepal.Width" and "Species"
# in common.
# "Petal.Length" is available only in iris.rec
# "Petal.Width" is available only in iris.don
```
find the closest donors using NND hot deck;
distances are computed on "Sepal.Length" and "Sepal.Width"

```r
out.NND <- NND.hotdeck(data.rec=iris.rec, data.don=iris.don,
match.vars=c("Sepal.Length", "Sepal.Width"),
don.class="Species")
```

create synthetic data set, without the duplication of the matching variables

```r
fused.0 <- create.fused(data.rec=iris.rec, data.don=iris.don,
                        mtc.ids=out.NND$mtc.ids, z.vars="Petal.Width")
```

create synthetic data set, with the "duplication" of the matching variables

```r
fused.1 <- create.fused(data.rec=iris.rec, data.don=iris.don,
                        mtc.ids=out.NND$mtc.ids, z.vars="Petal.Width",
dup.x=TRUE, match.vars=c("Sepal.Length", "Sepal.Width"))
```

fact2dummy

Transforms a categorical variable in a set of dummy variables

Description

Transforms a factor or more factors contained in a data frame in a set of dummy variables.

Usage

```r
fact2dummy(data, all=TRUE, lab="x")
```

Arguments

- **data**
 A factor or a data frame that contains one or more factors (columns whose class is "factor" or "ordered") that have to be substituted by dummy variables.

- **all**
 Logical. When all=TRUE (default) the output matrix will contain as many dummy variables as the number of the levels of the factor variable. On the contrary, when all=FALSE, the dummy variable related to the last level of the factor is dropped.

- **lab**
 A character string with the name of the variable to be pasted with its levels. This is used only when data is a factor. By default it is set to "x".

Details

This function substitutes categorical variables in the input data frame (columns whose class is “factor” or “ordered”) with the corresponding dummy variables.
Value

A matrix with the dummy variables instead of initial factor variables.

Author(s)

Marcello D’Orazio <mdo.statmatch@gmail.com>

See Also

gower.dist

Examples

```r
x <- runif(5)
y <- factor(c(1,2,1,2,2))
z <- ordered(c(1,2,3,2,2))
xyz <- data.frame(x,y,z)
fact2dummy(xyz)

fact2dummy(xyz, all=FALSE)
```

#example with iris data frame
str(iris)
ir.mat <- fact2dummy(iris)
```

---

`Fbwidths.by.x` Computes the Frechet bounds of cells in a contingency table by considering all the possible subsets of the common variables.

Description

This function permits to compute the bounds for cell probabilities in the contingency table Y vs. Z starting from the marginal tables (X vs. Y), (X vs. Z) and the joint distribution of the X variables, by considering all the possible subsets of the X variables. In this manner it is possible to identify which subset of the X variables produces the major reduction of the uncertainty.

Usage

`Fbwidths.by.x(tab.x, tab.xy, tab.xz, compress.sum=FALSE)`
Arguments

- **tab.x**: A R table crossing the \( X \) variables. This table must be obtained by using the function `xtabs` or `table`, e.g.,
  ```r
tab.x <- xtabs(~x1+x2+x3, data=data.all).
```

- **tab.xy**: A R table of \( X \) vs. \( Y \) variable. This table must be obtained by using the function `xtabs` or `table`, e.g.,
  ```r
table.xy <- xtabs(~x1+x2+x3+y, data=data.A).
```
  A single categorical \( Y \) variables is allowed. One or more categorical variables can be considered as \( X \) variables (common variables). The same \( X \) variables in `tab.x` must be available in `tab.xy`. Moreover, it is assumed that the joint distribution of the \( X \) variables computed from `tab.xy` is equal to `tab.x`; a warning is produced if this is not true.

- **tab.xz**: A R table of \( X \) vs. \( Z \) variable. This table must be obtained by using the function `xtabs` or `table`, e.g.,
  ```r
tab.xz <- xtabs(~x1+x2+x3+z, data=data.B).
```
  A single categorical \( Z \) variable is allowed. One or more categorical variables can be considered as \( X \) variables (common variables). The same \( X \) variables in `tab.x` must be available in `tab.xz`. Moreover, it is assumed that the joint distribution of the \( X \) variables computed from `tab.xz` is equal to `tab.x`; a warning is produced if this is not true.

- **compress.sum**: Logical (default `FALSE`). If `TRUE` reduces the information saved in `sum.unc`. See `Value` for further information.

Details

This function permits to compute the Frechet bounds for the frequencies in the contingency table of \( Y \) vs. \( Z \), starting from the conditional distributions \( P(Y|X) \) and \( P(Z|X) \) (for details see `frechet.bounds.cat`), by considering all the possible subsets of the \( X \) variables. In this manner it is possible to identify the subset of the \( X \) variables, with highest association with both \( Y \) and \( Z \), that permits to reduce the uncertainty concerning the distribution of \( Y \) vs. \( Z \).

The uncertainty is measured by the average of the widths of the bounds for the cells in the table \( Y \) vs. \( Z \):

\[
d = \frac{1}{J \times K} \sum_{j,k} (p^{(up)}_{Y=j,Z=k} - p^{(low)}_{Y=j,Z=k})
\]

For details see `frechet.bounds.cat`.

Value

A list with the estimated bounds for the cells in the table of \( Y \) vs. \( Z \) for each possible subset of the \( X \) variables. The final component `sum.unc` is a data.frame that summarizes the main findings. In particular it reports the number of \( X \) variables (`"x.vars"`), the number of cells in the each of the input tables and the corresponding number of cells with frequency equal to 0 (columns ending with `freq0`). Then it is provided the average width of the uncertainty intervals (`"av.width"`) and its relative value (`"rel.av.width"`) when compared with the average widths of the uncertainty.
intervals when no $X$ variables are considered (i.e. unconditioned "av. width", reported in the first row of the data.frame).

When `compress.sum = TRUE` the data.frame `sum.unc` will show a combination of the $X$ variables only if it determines a reduction of the ("av. width") when compared to the preceding one.

Note that in the presence of too many cells with 0s in the input contingency tables is an indication of sparseness; this is an unappealing situation when estimating the cells’ relative frequencies needed to derive the bounds; in such cases the corresponding results may be unreliable. A possible alternative way of working consists in estimating the required parameters by considering a pseudo-Bayes estimator (see `pBayes`); in practice the input `tab.x`, `tab.xy` and `tab.xz` should be the ones provided by the `pBayes` function.

**Author(s)**

Marcello D’Orazio <mdo.statmatch@gmail.com>

**References**


**See Also**

`Frechet.bounds.cat`, `harmonize.x`

**Examples**

data(quine, package="MASS") # loads quine from MASS
str(quine)
quine$c.Days <- cut(quine$Days, c(-1, seq(0,50,10),100))
table(quine$c.Days)

# split quine in two subsets
set.seed(4567)
lab.A <- sample(nrow(quine), 70, replace=TRUE)
quine.B <- quine[-lab.A, c(1:3,6)]

# compute the tables required by fbwidths.by.x()
freq.x <- xtabs(~Eth+Sex+Age, data=quine.A)
freq.xy <- xtabs(~Eth+Sex+Age+Lrn, data=quine.A)
freq.xz <- xtabs(~Eth+Sex+Age+c.Days, data=quine.B)

# apply fbwidths.by.x()
bounds.yz <- fbwidths.by.x(tab.x=freq.x, tab.xy=freq.xy, tab.xz=freq.xz)
bounds.yz$sum.unc

# input tables estimated with pBayes()

pf.x <- pBayes(x=freq.x)
pf.xy <- pBayes(x=freq.xy)
pf.xz <- pBayes(x=freq.xz)

bounds.yz.p <- Fbwidths.by.x(tab.x = pf.x$pseudoB,
   tab.xy = pf.xy$pseudoB,
   tab.xz = pf.xz$pseudoB)

### Frechet.bounds.cat  Frechet bounds of cells in a contingency table

#### Description

This function permits to derive the bounds for cell probabilities of the table Y vs. Z starting from the marginal tables (X vs. Y), (X vs. Z) and the joint distribution of the X variables.

#### Usage

Frechet.bounds.cat(tab.x, tab.xy, tab.xz, print.f="tables", tol= 0.001)

#### Arguments

- **tab.x**
  - A R table crossing the X variables. This table must be obtained by using the function `xtabs` or `table`, e.g.
  ```r
tab.x <- xtabs(~x1+x2+x3, data=data.all).
```
  - When `tab.x = NULL` then only `tab.xy` and `tab.xz` must be supplied.

- **tab.xy**
  - A R table of X vs. Y variable. This table must be obtained by using the function `xtabs` or `table`, e.g.
  ```r
table.xy <- xtabs(~x1+x2+x3+y, data=data.A).
```
  - A single categorical Y variable is allowed. One or more categorical variables can be considered as X variables (common variables). Obviously, the same X variables in `tab.x` must be available in `tab.xy`. Moreover, it is assumed that the joint distribution of the X variables computed from `tab.xy` is equal to `tab.x`; a warning appears if this is not true (see argument `tol`).
  - When `tab.x = NULL` then `tab.xy` should be a one–dimensional table providing the marginal distribution of the Y variable.

- **tab.xz**
  - A R table of X vs. Z variable. This table must be obtained by using the function `xtabs` or `table`, e.g.
  ```r
tab.xz <- xtabs(~x1+x2+x3+z, data=data.B).
```
  - A single categorical Z variable is allowed. One or more categorical variables can be considered as X variables (common variables). The same X variables in
tab.x must be available in tab.xz. Moreover, it is assumed that the joint distribution of the \(X\) variables computed from tab.xz is equal to tab.x; a warning appears if this is not true (see argument tol).

When tab.x = NULL then tab.xz should be a one-dimensional table providing the marginal distribution of the Z variable.

print.f
A string: when print.f="tables" (default) all the cells’ estimates will be saved as tables in a list. On the contrary, if print.f="data.frame", they will be saved as columns of a data.frame.

tol
Tolerance used in comparing joint distributions as far as \(X\) variables are considered (default tol = 0.001); the joint distribution of the \(X\) variables computed from tab.xy and tab.xz should be equal to that in tab.x.

Details
This function permits to compute the Frechet bounds for the relative frequencies in the contingency table of Y vs. Z, starting from the distributions \(P(Y|X)\), \(P(Z|X)\) and \(P(X)\). The bounds for the relative frequencies \(p_{j,k}\) in the table Y vs. Z are:

\[ p_{Y=j,Z=k}^{(low)} = \sum_i p_{X=i} \max(0; p_{Y=j|X=i} + p_{Z=k|X=i} - 1) \]

\[ p_{Y=j,Z=k}^{(up)} = \sum_i p_{X=i} \min(p_{Y=j|X=i}; p_{Z=k|X=i}) \]

The relative frequencies \(p_{X=i} = n_i/n\) are computed from the frequencies in tab.x; the relative frequencies \(p_{Y=j|X=i} = n_{ij}/n_i\) are computed from the tab.xy, finally, \(p_{Z=k|X=i} = n_{ik}/n_k\) are derived from tab.xy.

It is assumed that the marginal distribution of the \(X\) variables is the same in all the input tables: tab.x, tab.xy and tab.xz. If this is not true a warning message will appear.

Note that the cells bounds for the relative frequencies in the contingency table of Y vs. Z are computed also without considering the \(X\) variables:

\[ \max\{0; p_{Y=j} + p_{Z=k} - 1\} \leq p_{Y=j,Z=k} \leq \min\{p_{Y=j}; p_{Z=k}\} \]

These bounds represent the unique output when tab.x = NULL.

Finally, the contingency table of Y vs. Z estimated under the Conditional Independence Assumption (CIA) is obtained by considering:

\[ p_{Y=j,Z=k} = p_{Y=j|X=i} \times p_{Z=k|X=i} \times p_{X=i}. \]

When tab.x = NULL then it is also provided the expected table under the assumption of independence between Y and Z:

\[ p_{Y=j,Z=k} = p_{Y=j} \times p_{Z=k}. \]
Note that in the presence of too many cells with 0s in the input contingency tables is an indication of sparseness; this is an unappealing situation when estimating the cells’ relative frequencies needed to derive the bounds; in such cases the corresponding results may be unreliable. A possible alternative way of working consists in estimating the required parameters by considering a pseudo-Bayes estimator (see `pbayes`); in practice the input `tab.x`, `tab.xy` and `tab.xz` should be the ones provided by the `pbayes` function.

**Value**

When `print.f="tables"` (default) a list with the following components:

- **low.u**: The estimated lower bounds for the relative frequencies in the table Y vs. Z without conditioning on the X variables.
- **up.u**: The estimated upper bounds for the relative frequencies in the table Y vs. Z without conditioning on the X variables.
- **CIA**: The estimated relative frequencies in the table Y vs. Z under the Conditional Independence Assumption (CIA).
- **low.cx**: The estimated lower bounds for the relative frequencies in the table Y vs. Z when conditioning on the X variables.
- **up.cx**: The estimated upper bounds for the relative frequencies in the table Y vs. Z when conditioning on the X variables.
- **uncertainty**: The uncertainty associated to input data, summarized in terms of average width of uncertainty bounds with and without conditioning on the X variables.

When `print.f="data.frame"` the output list contains just two components:

- **bounds**: A data.frame whose columns reports the estimated uncertainty bounds.
- **uncertainty**: The uncertainty associated to input data, summarized in terms of average width of uncertainty bounds with and without conditioning on the X variables.

**Author(s)**

Marcello D’Orazio <mdo.statmatch@gmail.com>

**References**


**See Also**

`fbwidths.by.x`, `harmonize.x`
Examples

data(quine, package="MASS") #loads quine from MASS
str(quine)

# split quine in two subsets
set.seed(7654)
lab.A <- sample(nrow(quine), 70, replace=TRUE)
quine.A <- quine[lab.A, 1:3]

# compute the tables required by Frechet.bounds.cat()
freq.x <- xtabs(~Sex+Age, data=quine.A)
freq.xy <- xtabs(~Sex+Age+Eth, data=quine.A)
freq.xyz <- xtabs(~Sex+Age+Lrn, data=quine.B)

# apply Frechet.bounds.cat()
bounds.yz <- Frechet.bounds.cat(tab.x=freq.x, tab.xy=freq.xy,
                                tab.xyz=freq.xyz, print.f="data.frame")

bounds.yz

# compare marg. distribution of xs in A and B
comp.prop(p1=margin.table(freq.xy,c(1,2)), p2=margin.table(freq.xyz,c(1,2)),
n1=nrow(quine.A), n2=nrow(quine.B))

# harmonize distr. of Sex vs. Age before applying
# Frechet.bounds.cat()
N <- nrow(quine)
quine.A$pop <- N/70 # reciprocal sampling fraction
quine.B$pop <- N
quine.B$pop <- N/(N-70)

tot.sex.age <- colSums(model.matrix(~Sex+Age-1, data=quine))

# use harmonize.x() to harmonize the Sex vs. Age between
# quine.A and quine.B

# create svydesign objects
require(survey)
svy.qA <- svydesign(~1, weights=~f, fpc=~pop, data=quine.A)
svy.qB <- svydesign(~1, weights=~f, fpc=~pop, data=quine.B)

# apply harmonize.x
out.hz <- harmonize.x(svy.A=svy.qA, svy.B=svy.qB, form.x=~Sex+Age-1, x.tot=tot.sex.age)

# compute the new tables required by Frechet.bounds.cat()
freq.x <- xtabs(out.hz$weights.A~Sex+Age, data=quine.A)
freq.xy <- xtabs(out.hz$weights.A~Sex+Age+Eth, data=quine.A)
gower.dist

computes the Gower's Distance

Description

This function computes the Gower's distance (dissimilarity) among units in a dataset or among observations in two distinct datasets.

Usage

gower.dist(data.x, data.y=data.x, rngs=NULL, KR.corr=TRUE)

Arguments

data.x A matrix or a data frame containing variables that should be used in the computation of the distance. Columns of mode numeric will be considered as interval scaled variables; columns of mode character or class factor will be considered as categorical nominal variables; columns of class ordered will be considered as categorical ordinal variables and, columns of mode logical will be considered as binary asymmetric variables (see Details for further information). Missing values (NA) are allowed. If only data.x is supplied, the dissimilarities between rows of data.x will be computed.

data.y A numeric matrix or data frame with the same variables, of the same type, as those in data.x. Dissimilarities between rows of data.x and rows of data.y will be computed. If not provided, by default it is assumed equal to data.x and only dissimilarities between rows of data.x will be computed.

rngs A vector with the ranges to scale the variables. Its length must be equal to number of variables in data.x. In correspondence of nonnumeric variables, just put 1 or NA. When rngs=NULL (default) the range of a numeric variable is estimated by jointly considering the values for the variable in data.x and those in data.y. Therefore, assuming rngs=NULL, if a variable "X1" is considered:

rngs["X1"] <- max(data.x[,"X1"], data.y[,"X1"])) - min(data.x[,"X1"], data.y[,"X1"])

freq.xz <- xtabs(out.hz$weights.B~Sex+Age+Lrn, data=quine.B)

# compare marg. distribution of Xs in A and B
comp.prop(p1=margin.table(freq.xz,c(1,2)), p2=margin.table(freq.xz,c(1,2)),
 n1=nrow(quine.A), n2=nrow(quine.B))

# apply Frechet.bounds.cat()
bounds.yz <- Frechet.bounds.cat(tab.x=freq.x, tab.xy=freq.xy,
 tab.xz=freq.xz, print.f="data.frame")
bounds.yz
The final dissimilarity between the $i$th and $j$th unit is obtained as a weighted sum of dissimilarities for each variable:

$$d(i, j) = \frac{\sum_k \delta_{ijk} d_{ijk}}{\sum_k \delta_{ijk}}$$

In particular, $d_{ijk}$ represents the distance between the $i$th and $j$th unit computed considering the $k$th variable. It depends on the nature of the variable:

- logical columns are considered as asymmetric binary variables, for such case $d_{ijk} = 0$ if $x_{ik} = x_{jk} = \text{TRUE}$, 1 otherwise;
- factor or character columns are considered as categorical nominal variables and $d_{ijk} = 0$ if $x_{ik} = x_{jk}$, 1 otherwise;
- numeric columns are considered as interval-scaled variables and

$$d_{ijk} = \frac{|x_{ik} - x_{jk}|}{R_k}$$

being $R_k$ the range of the $k$th variable. The range is the one supplied with the argument `rngs` (`rngs[k]`) or the one computed on available data (when `rngs=\text{NULL}`);
- ordered columns are considered as categorical ordinal variables and the values are substituted with the corresponding position index, $r_{ik}$ in the factor levels. When `KR.corr=\text{FALSE}` these position indexes (that are different from the output of the R function `rank`) are transformed in the following manner

$$z_{ik} = \frac{(r_{ik} - 1)}{\max(r_{ik}) - 1}$$

These new values, $z_{ik}$, are treated as observations of an interval scaled variable.

As far as the weight $\delta_{ijk}$ is concerned:

- $\delta_{ijk} = 0$ if $x_{ik} = \text{NA}$ or $x_{jk} = \text{NA}$;
- $\delta_{ijk} = 0$ if the variable is asymmetric binary and $x_{ik} = x_{jk} = 0$ or $x_{ik} = x_{jk} = \text{FALSE}$;
- $\delta_{ijk} = 1$ in all the other cases.

In practice, NAs and couple of cases with $x_{ik} = x_{jk} = \text{FALSE}$ do not contribute to distance computation.

Value

A matrix object with distances among rows of data$x$ and those of data$y$. 
harmonize.x

Author(s)
Marcello D’Orazio <mdo.statmatch@gmail.com>

References

See Also
daisy, dist

Examples

```r
x1 <- as.logical(rbinom(10,1,0.5))
x2 <- sample(letters, 10, replace=TRUE)
x3 <- rnorm(10)
x4 <- ordered(cut(x3, -4:4, include.lowest=TRUE))
xx <- data.frame(x1, x2, x3, x4, stringsAsFactors = FALSE)

matrix of distances among observations in xx
dx <- gower.dist(xx)
head(dx)

matrix of distances among first obs. in xx
and the remaining ones
gower.dist(data.x=xx[1:6,], data.y=xx[7:10,])
```

harmonize.x Harmonizes the marginal (joint) distribution of a set of variables observed independently in two sample surveys referred to the same target population.

Description
This function permits to harmonize the marginal or the joint distribution of a set of variables observed independently in two sample surveys carried out on the same target population. This harmonization is carried out by using the calibration of the survey weights of the sample units in both the surveys according to the procedure suggested by Renssen (1998).

Usage
```r
harmonize.x(svy.A, svy.B, form.x, x.tot=NULL, cal.method="linear", ...)
```
Arguments

\textit{svy.A}  
A \texttt{svydesign} \texttt{R} object that stores the data collected in the the survey A and all the information concerning the sampling design. This object can be created by using the function \texttt{svydesign} in the package \texttt{survey}.

\textit{svy.B}  
A \texttt{svydesign} \texttt{R} object that stores the data collected in the the survey B and all the information concerning the sampling design. This object can be created by using the function \texttt{svydesign} in the package \texttt{survey}.

\textit{form.x}  
A \texttt{R} formula specifying which of the variables, common to both the surveys, have to be considered, and how have to be considered. For instance \texttt{form.x=x1+x2} means that the marginal distribution of the variables x1 and x2 have to be harmonized and there is also an ‘Intercept’. In order to skip the intercept the formula has to be written in the following manner \texttt{form.x=x1+x2-1}.

When dealing with categorical variables, if the formula is written in the following manner \texttt{form.x=x1:x2} it means that the harmonization has to be carried out by considering the joint distribution of the two variables (x1 vs. x2). To better understand how \texttt{form.x} works see \texttt{model.matrix} (see also \texttt{formula}).

Due to weights calibration features, it is preferable to work with categorical \texttt{X} variables. In some cases, the procedure may be successful when a single continuous variable is considered jointly with one or more categorical variables. When dealing with several continuous variable it may be preferable to categorize them.

\textit{x.tot}  
A vector or table with known population totals for the \texttt{X} variables. A vector is required when \texttt{cal.method}="linear" or \texttt{cal.method}="raking". The names and the length of the vector depends on the way it is specified the argument \texttt{form.x} (see \texttt{model.matrix}). A contingency table is required when \texttt{cal.method}="poststratify" (for details see \texttt{postStratify}).

When \texttt{x.tot} is not provided (i.e. \texttt{x.tot=NULL}) then the vector of totals is estimated as a weighted average of the totals estimated on the two surveys. The weight assigned to the totals estimated from A is \(\lambda = n_A/(n_A + n_B)\); 1 – \(\lambda\) is the weight assigned to \texttt{X} totals estimated from survey B (\(n_A\) and \(n_B\) are the number of units in A and B respectively).

\textit{cal.method}  
A string that specifies how the calibration of the weights in \texttt{svy.A} and \texttt{svy.B} has to be carried out. By default \texttt{cal.method}="linear" linear calibration is performed. In particular, the calibration is carried out by mean of the function \texttt{calibrate} in the package \texttt{survey}.

Alternatively, it is possible to rake the origin survey weights by specifying \texttt{cal.method}="raking". Finally, it is possible to perform a simple post-stratification by setting \texttt{cal.method}="poststratify". Note that in this case the weights adjustments are carried out by considering the function \texttt{postStratify} in the package \texttt{survey}.

Further arguments that may be necessary for calibration or post-stratification. In particular, when \texttt{cal.method}="linear" there is the chance of having negative weights. This drawback can be avoided by requiring that the final weights lie in a given interval specified via \texttt{bounds} argument (an argument of \texttt{calibrate}).
In sample surveys one expects that weights are greater than or equal to 1, i.e. bounds=c(1, Inf).
The number of iterations used in calibration can be modified too by using the argument maxit (by default maxit=50).
See calibrate for further details.

Details
This function harmonizes the totals of the $X$ variables, observed in both survey A and survey B, to be equal to given known totals specified via x.tot. When these totals are not known (x.tot=NULL) they are estimated by combining the estimates derived from the two separate surveys. The harmonization is carried out according to a procedure suggested by Renssen (1998) based on calibration of survey weights (for major details on calibration see Sarndal and Lundstrom, 2005). The procedure is particularly suited to deal with categorical $X$ variables, in this case it permits to harmonize the joint or the marginal distribution of the categorical variables being considered. Note that an incomplete crossing of the $X$ variables can be considered: i.e. harmonisation wrt to the joint distribution of $X_1 \times X_2$ and the marginal distribution of $X_3$.
The calibration procedure may not produce the final result due to convergence problems. In this case an error message appears. In order to reach convergence it may be necessary to launch the procedure with less constraints (i.e a reduced number of population totals) by joining adjacent categories or by discarding some variables.
In some limited cases it could be possible to consider both categorical and continuous variables. In this situation it may happen that calibration is not successful. In order to reach convergence it may be necessary to categorize the continuous $X$ variables.
Post-stratification is a special case of calibration; all the weights of the units in a given post-stratum are modified so the reproduce the known total for that post-stratum. Post-stratification avoids problems of convergence but, on the other hand it may produce final weights with a higher variability than those derived from the calibration.

Value
A R with list the results of calibration procedures carried out on survey A and survey B, respectively. In particular the following components will be provided:

- cal.A: The survey object svy.A after the calibration; in particular, the weights now are calibrated with respect to the totals of the $X$ variables.
- cal.B: The survey object svy.B after the calibration; in particular, the weights now are calibrated with respect to the totals of the $X$ variables.
- weights.A: The new calibrated weights associated to the the units in svy.A.
- weights.B: The new calibrated weights associated to the the units in svy.B.
- call: Stores the call to this function with all the values specified for the various arguments (call=match.call()).

Author(s)
Marcello D’Orazio <mdo.statmatch@gmail.com>
References


See Also

combNsamples, calibrate, svydesign, postStratify.

Examples

data(quine, package="MASS") #loads quine from MASS
str(quine)

# split quine in two subsets
set.seed(7654)
lab.A <- sample(nrow(quine), 70, replace=TRUE)
quine.A <- quine[lab.A, c("Eth","Sex","Age","Lrn")]
quine.B <- quine[-lab.A, c("Eth","Sex","Age","Days")]

# create svydesign objects
require(survey)
quine.A$f <- 70/nrow(quine) # sampling fraction
quine.B$f <- (nrow(quine)-70)/nrow(quine)
svy.qA <- svydesign(~1, fpc=f, data=quine.A)
svy.qB <- svydesign(~1, fpc=f, data=quine.B)

# Harmonizazion of the distr. of Sex vs. Age
# usign poststratification

# (1.a) known population totals
# the population toatal are computed on the full data frame
tot.sex.age <- xtabs(~Sex+Age, data=quine)
tot.sex.age

out.hz <- harmonize.x(svy.A=svy.qA, svy.B=svy.qB, form.x="Sex+Age,
  x.tot=tot.sex.age, cal.method="poststratify")

tot.A <- xtabs(out.hz$weights.A~Sex+Age, data=quine.A)
tot.B <- xtabs(out.hz$weights.B~Sex+Age, data=quine.B)

tot.sex.age=tot.A
tot.sex.age=tot.B

# (1.b) unknown population totals (x.tot=NULL)
# the population total is estimated by combining totals from the
# two surveys

```r
out.hz <- harmonize.x(svY.A=svy.qA, svY.B=svy.qB, form.x="Sex+Age, x.tot=NULL, cal.method="poststratify")

tot.A <- xtabs(out.hz$weights.A~Sex+Age, data=quine.A)
tot.B <- xtabs(out.hz$weights.B~Sex+Age, data=quine.B)

tot.A
tot.A-tot.B
```

# example HRI
# harmonization wrt the marginal distribution
#
# using linear calibration
#
# (2.a) vector of population total known
# estimated from the full data set
# note the formula! only marginal distribution of the
# variables are considered

```r
tot.m <- colSums(model.matrix(~Eth+Sex+Age-1, data=quine))
out.hz <- harmonize.x(svY.A=svy.qA, svY.B=svy.qB, x.tot=tot.m, form.x="Eth+Sex+Age-1, cal.method="linear")

summary(out.hz$weights.A) # check for negative weights
summary(out.hz$weights.B) # check for negative weights

tot.m
svytable(formula=~Eth, design=out.hz$cal.A)
svytable(formula=~Eth, design=out.hz$cal.B)

svytable(formula=~Sex, design=out.hz$cal.A)
svytable(formula=~Sex, design=out.hz$cal.B)

svytable(formula=~Sex+Age, design=out.hz$cal.A)
svytable(formula=~Sex+Age, design=out.hz$cal.B)

Note: margins are equal but joint distributions are not!
```

# example HSI
# harmonization wrt the joint distribution of 'Sex' vs. 'Age'

```r
(2.b) vector of population total unknown

out.hz <- harmonize.x(svY.A=svy.qA, svY.B=svy.qB, x.tot=NULL, form.x="Eth+Sex+Age-1, cal.method="linear")
svytable(formula=~Eth, design=out.hz$cal.A)
svytable(formula=~Eth, design=out.hz$cal.B)

svytable(formula=~Sex, design=out.hz$cal.A)
svytable(formula=~Sex, design=out.hz$cal.B)
```

# example (3)
# Harmonization wrt the joint distribution of 'Sex' vs. 'Age'
mahanalanobis.dist Computes the Mahalanobis Distance

Description

This function computes the Mahalanobis distance among units in a dataset or among observations in two distinct datasets.

Usage

mahanalanobis.dist(data.x, data.y=NULL, vc=NULL)
Arguments

data.x  A matrix or a data frame containing variables that should be used in the computation of the distance. Only continuous variables are allowed. Missing values (NA) are not allowed.

When only data.x is supplied, the distances between rows of data.x is computed.

data.y  A numeric matrix or data frame with the same variables, of the same type, as those in data.x (only continuous variables are allowed). Dissimilarities between rows of data.x and rows of data.y will be computed. If not provided, by default it is assumed data.y=data.x and only dissimilarities between rows of data.x will be computed.

vc  Covariance matrix that should be used in distance computation. If it is not supplied (vc=NULL) it is estimated from the input data. In particular, when vc=NULL and only data.x is supplied then the covariance matrix is estimated from data.x (var(data.x)). On the contrary when vc=NULL and both data.x and data.y are available then the covariance matrix is estimated on the joined data sets (i.e. var(rbind(data.x, data.y))).

Details

This function computes the Mahalanobis distance:

\[ d(i,j) = \sqrt{(x_i - x_j)^T S^{-1} (x_i - x_j)} \]

When vc=NULL the covariance matrix S is estimated from the available data (see argument vc for details) otherwise the one supplied via the argument vc is used.

Value

A matrix object with distances among rows of data.x and those of data.y.

Author(s)

Marcello D’Orazio <mdo.statmatch@gmail.com>

References


See Also

mahalanobis
Examples

```r
md1 <- mahalanobis(dist(iris[1:6, 1:4]))
md2 <- mahalanobis(dist(data.x=iris[1:6, 1:4], data.y=iris[51:60, 1:4]))

vv <- var(iris[, 1:4])
md1a <- mahalanobis(dist(data.x=iris[1:6, 1:4], vc=vv)
md2a <- mahalanobis.dist(data.x=iris[1:6, 1:4], data.y=iris[51:60, 1:4], vc=vv)
```

**maximum.dist**  
*Computes the Maximum Distance*

**Description**

This function computes the Maximum distance (or $L^\infty$ norm) among units in a dataset or among observations in two distinct datasets.

**Usage**

```r
maximum.dist(data.x, data.y=data.x, rank=FALSE)
```

**Arguments**

- `data.x`: A matrix or a data frame containing variables that should be used in the computation of the distance. Only continuous variables are allowed. Missing values (NA) are not allowed. When only `data.x` is supplied, the distances between rows of `data.x` is computed.
- `data.y`: A numeric matrix or data frame with the same variables, of the same type, as those in `data.x` (only continuous variables are allowed). Dissimilarities between rows of `data.x` and rows of `data.y` will be computed. If not provided, by default it is assumed `data.y=data.x` and only dissimilarities between rows of `data.x` will be computed.
- `rank`: Logical, when TRUE the original values are substituted by their ranks divided by the number of values plus one (following suggestion in Kovar et al. 1988). This rank transformation permits to remove the effect of different scales on the distance computation. When computing ranks the tied observations assume the average of their position (ties.method = "average" in calling the rank function).

**Details**

This function computes the $L^\infty$ distance also know as minimax distance. In practice the distance among two records is the maximum of the absolute differences among the observed variables:

$$d(i,j) = \max (|x_{1i} - x_{1j}|, |x_{2i} - x_{2j}|, \ldots, |x_{Ki} - x_{Kj}|)$$
When `rank=TRUE` the original values are substituted by their ranks divided by the number of values plus one (following suggestion in Kovar et al. 1988).

**Value**

A matrix object with distances among rows of `data.x` and those of `data.y`.

**Author(s)**

Marcello D’Orazio &lt;mdo.statmatch@gmail.com&gt;

**References**


**See Also**

`rank`,

**Examples**

```r
md1 <- maximum.dist(iris[1:10,1:4])
md2 <- maximum.dist(iris[1:10,1:4], rank=TRUE)

md3 <- maximum.dist(data.x=iris[1:50,1:4], data.y=iris[51:100,1:4])
md4 <- maximum.dist(data.x=iris[1:50,1:4], data.y=iris[51:100,1:4], rank=TRUE)
```

**Description**

This function implements some mixed methods to perform statistical matching between two data sources.

**Usage**

```r
mixed.mtc(data.rec, data.don, match.vars, y.rec, z.don, method="ML",
 rho.yz=NULL, micro=FALSE, constr.alg="Hungarian")
```
**Arguments**

- **data.rec**
  A matrix or data frame that plays the role of *recipient* in the statistical matching application. This data set must contain all variables (columns) that should be used in statistical matching, i.e. the variables called by the arguments `match.vars` and `y.rec`. Note that continuous variables are expected, if there are some categorical variables they are recoded into dummies. Missing values (NA) are not allowed.

- **data.don**
  A matrix or data frame that plays the role of *donor* in the statistical matching application. This data set must contain all the numeric variables (columns) that should be used in statistical matching, i.e. the variables called by the arguments `match.vars` and `z.don`. Note that continuous variables are expected, if there are some categorical variables they are recoded into dummies. Missing values (NA) are not allowed.

- **match.vars**
  A character vector with the names of the common variables (the columns in both the data frames) to be used as matching variables (X).

- **y.rec**
  A character vector with the name of the target variable Y that is observed only for units in `data.rec`. Only one continuous variable is allowed.

- **z.don**
  A character vector with the name of the target variable Z that is observed only for units in `data.don`. Only one continuous variable is allowed.

- **method**
  A character vector that identifies the method that should be used to estimate the parameters of the regression models: Y vs. X and Z vs. X. Maximum Likelihood method is used when `method="ML"` (default); on the contrary, when `method="MS"` the parameters are estimated according to approach proposed by Moriarity and Scheuren (2001 and 2003). See Details for further information.

- **rho.yz**
  A numeric value representing a guess for the correlation among the Y (y.rec) and the Z variable (z.don) that are not jointly observed. When `method="MS"` then the argument `cor.yz` must specify the value of the correlation coefficient \( \rho_{YZ} \); on the contrary, when `method="ML"`, it must specify the partial correlation coefficient among Y and Z given X \( \rho_{YZ|X} \).

  By default (`rho.yz=NULL`). In practice, in absence of auxiliary information concerning the correlation coefficient or the partial correlation coefficient, the statistical matching is carried out under the assumption of independence among Y and Z given X (Conditional Independence Assumption, CIA), i.e. \( \rho_{YZ|X} = 0 \).

- **micro**
  Logical. When `micro=FALSE` (default) only the parameter estimates are returned. On the contrary, when `micro=TRUE` the function returns also `data.rec` filled in with the values for the variable Z. The donors for filling in Z in `data.rec` are identified using a constrained distance hot deck method. In this case, the number of units (rows) in `data.don` must be greater or equal to the number of units (rows) in `data.rec`. See next argument and Details for further information.

- **constr.alg**
  A string that has to be specified when `micro=TRUE`, in order to solve the transportation problem involved by the constrained distance hot deck method. Two choices are available: “lpSolve” and “Hungarian”. In the first case, `constr.alg="lpSolve"`, the transportation problem is solved by means of the function `lp.transport` available in the package `lpSolve`. When
constr.alg="Hungarian" (default) the transportation problem is solved using the Hungarian method implemented in the function solve_LSAP available in the package clue (Hornik, 2012). Note that Hungarian algorithm is more efficient and requires less processing time.

Details

This function implements some mixed methods to perform statistical matching. A mixed method consists of two steps:

(1) adoption of a parametric model for the joint distribution of \((X, Y, Z)\) and estimation of its parameters;

(2) derivation of a complete “synthetic” data set (recipient data set filled in with values for the \(Z\) variable) using a nonparametric approach.

In this case, as far as (1) is concerned, it is assumed that \((X, Y, Z)\) follows a multivariate normal distribution. Please note that if some of the \(X\) are categorical, then they are recoded into dummies before starting with the estimation. In such a case the assumption of multivariate normal distribution may be questionable.

The whole procedure is based on the imputation method known as predictive mean matching. The procedure consists of three steps:

**step 1a) Regression step:** the two linear regression models \(Y\) vs. \(X\) and \(Z\) vs. \(X\) are considered and their parameters are estimated.

**step 1b) Computation of intermediate values.** For the units in \(\text{data.rec}\) the following intermediate values are derived:

\[
\tilde{z}_a = \hat{\alpha}_Z + \hat{\beta}_Z X x_a + e_a
\]

for each \(a = 1, \ldots, n_A\), being \(n_A\) the number of units in \(\text{data.rec}\) (rows of \(\text{data.rec}\)). Note that, \(e_a\) is a random draw from the multivariate normal distribution with zero mean and estimated residual variance \(\hat{\sigma}_Z^2|X\).

Similarly, for the units in \(\text{data.don}\) the following intermediate values are derived:

\[
\tilde{y}_b = \hat{\alpha}_Y + \hat{\beta}_Y X x_b + e_b
\]

for each \(b = 1, \ldots, n_B\), being \(n_B\) the number of units in \(\text{data.don}\) (rows of \(\text{data.don}\)). \(e_b\) is a random draw from the multivariate normal distribution with zero mean and estimated residual variance \(\hat{\sigma}_Y^2|X\).

**step 2) Matching step.** For each observation (row) in \(\text{data.rec}\) a donor is chosen in \(\text{data.don}\) through a nearest neighbor constrained distance hot deck procedure. The distances are computed between \((y_a, z_a)\) and \((\tilde{y}_b, z_b)\) using Mahalanobis distance.

For further details see Sections 2.5.1 and 3.6.1 in D’Orazio et al. (2006).

In step 1a) the parameters of the regression model can be estimated by means of the Maximum Likelihood method (method="ML") (see D’Orazio et al., 2006, pp. 19–23,73–75) or, using the Moriarity and Scheuren (2001 and 2003) approach (method="MS") (see also D’Orazio et al., 2006, pp. 75–76). The two estimation methods are compared in D’Orazio et al. (2005).
When method="MS", if the value specified for the argument rho.yz is not compatible with the other correlation coefficients estimated from the data, then it is substituted with the closest value compatible with the other estimated coefficients.

When micro=FALSE only the estimation of the parameters is performed (step 1a). Otherwise, (micro=TRUE) the whole procedure is carried out.

**Value**

A list with a varying number of components depending on the values of the arguments method and rho.yz.

- **mu**: The estimated mean vector.
- **vc**: The estimated variance–covariance matrix.
- **cor**: The estimated correlation matrix.
- **res.var**: A vector with estimates of the residual variances \( \sigma_{Y|Z,X} \) and \( \sigma_{Z|Y,X} \).
- **start.prho.yz**: It is the initial guess for the partial correlation coefficient \( \rho_{Y,Z|X} \) passed in input via the rho.yz argument when method="ML".
- **rho.yz**: Returned in output only when method="MS". It is a vector with four values: the initial guess for \( \rho_{Y,Z} \); the lower and upper bounds for \( \hat{\rho}_{Y,Z} \) in the statistical matching framework given the correlation coefficients among Y and X and the correlation coefficients among Z and X estimated from the available data; and, finally, the closest admissible value used in computations instead of the initial rho.yz that resulted not coherent with the others correlation coefficients estimated from the available data.
- **phi**: When method="MS". Estimates of the \( \phi \) terms introduced by Moriarity and Scheuren (2001 and 2003).
- **filled.rec**: The data.rec filled in with the values of Z. It is returned only when micro=TRUE.
- **mtc.ids**: when micro=TRUE. This is a matrix with the same number of rows of data.rec and two columns. The first column contains the row names of the data.rec and the second column contains the row names of the corresponding donors selected from the data.don. When the input matrices do not contain row names, a numeric matrix with the indexes of the rows is provided.
- **dist.rd**: A vector with the distances among each recipient unit and the corresponding donor, returned only in case micro=TRUE.
- **call**: How the function has been called.

**Author(s)**

Marcello D’Orazio <mdo.statmatch@gmail.com>

**References**

mixed.mtc


See Also

NND.hotdeck, mahalanobis.dist

Examples

```r
reproduce the statistical matching framework
starting from the iris data.frame
set.seed(98765)
pos <- sample(1:150, 50, replace=FALSE)
ir.A <- iris[pos, c(1,3:5)]
ir.B <- iris[-pos, 2:5]

xx <- intersect(colnames(ir.A), colnames(ir.B))
xx # common variables

ML estimation method under CIA ((rho_YZ|X)=0));
only parameter estimates (micro=FALSE)
only continuous matching variables
xx.mtc <- c("Petal.Length", "Petal.Width")
mtc.1 <- mixed.mtc(data.rec=ir.A, data.don=ir.B, match.vars=xx.mtc,
y.rec="Sepal.Length", z.don="Sepal.Width")

estimated correlation matrix
mtc.1$cor

ML estimation method under CIA ((rho_YZ|X)=0));
only parameter estimates (micro=FALSE)
categorical variable 'Species' used as matching variable
xx.mtc <- xx
mtc.2 <- mixed.mtc(data.rec=ir.A, data.don=ir.B, match.vars=xx.mtc,
y.rec="Sepal.Length", z.don="Sepal.Width")

estimated correlation matrix
mtc.2$cor

ML estimation method with partial correlation coefficient
```
# set equal to 0.5 (rho_{YZ}|X=0.5)
# only parameter estimates (micro=False)

mtc.3 <- mixed.mtc(data.rec=ir.A, data.don=ir.B, match.vars=xx.mtc,
y.rec="Sepal.Length", z.don="Sepal.Width",
rho.yz=0.5)

# estimated correlation matrix
mtc.3$cor

# ML estimation method with partial correlation coefficient
# set equal to 0.5 (rho_{YZ}|X=0.5)
# with imputation step (micro=TRUE)

mtc.4 <- mixed.mtc(data.rec=ir.A, data.don=ir.B, match.vars=xx.mtc,
y.rec="Sepal.Length", z.don="Sepal.Width",
rho.yz=0.5, micro=TRUE, constr.alg="Hungarian")

# first rows of data.rec filled in with z
head(mtc.4$filled.rec)

#
# Moriaity and Scheuren estimation method under CIA;
# only with parameter estimates (micro=False)
mtc.5 <- mixed.mtc(data.rec=ir.A, data.don=ir.B, match.vars=xx.mtc,
y.rec="Sepal.Length", z.don="Sepal.Width",
method="MS")

# the starting value of rho.yz and the value used
# in computations
mtc.5$rho.yz

# estimated correlation matrix
mtc.5$cor

# Moriaity and Scheuren estimation method
# with correlation coefficient set equal to -0.15 (rho_{YZ}=-0.15)
# with imputation step (micro=TRUE)

mtc.6 <- mixed.mtc(data.rec=ir.A, data.don=ir.B, match.vars=xx.mtc,
y.rec="Sepal.Length", z.don="Sepal.Width",
method="MS", rho.yz=-0.15,
micro=TRUE, constr.alg="lpSolve")

# the starting value of rho.yz and the value used
# in computations
mtc.6$rho.yz

# estimated correlation matrix
mtc.6$cor

# first rows of data.rec filled in with z imputed values
head(mtc.6$filled.rec)
**NND.hotdeck**

*Distance Hot Deck method.*

**Description**

This function implements the distance hot deck method to match the records of two data sources that share some variables.

**Usage**

```r
NND.hotdeck(data.rec, data.don, match.vars,
 don.class=NULL, dist.fun="Manhattan",
 constrained=FALSE, constr.alg="Hungarian",
 k=1, keep.t=FALSE, ...)
```

**Arguments**

- **data.rec**  
  A matrix or data frame that plays the role of *recipient*. This data frame must contain the variables (columns) that should be used, directly or indirectly, in the matching application (specified via *match.vars* and eventually *don.class*). Missing values (NA) are allowed.

- **data.don**  
  A matrix or data frame that plays the role of *donor*. The variables (columns) involved, directly or indirectly, in the computation of distance must be the same and of the same type as those in *data.rec* (specified via *match.vars* and eventually *don.class*).

- **match.vars**  
  A character vector with the names of the matching variables (the columns in both the data frames) that have to be used to compute distances among records (rows) in *data.rec* and those in *data.don*. The variables used in computing distances may contain missing values but in this case a limited number of distance functions can be used (see Details for clarifications).

- **don.class**  
  A character vector with the names of the variables (columns in both the data frames) that have to be used to identify the donation classes. In this case the computation of distances is limited to those units of *data.rec* and *data.don* that belong to the same donation class. The case of empty donation classes should be avoided. It would be preferable that variables used to form donation classes are defined as *factor*. The variables chosen for the creation of the donation classes should not contain missing values (NAs).

  When not specified (default) no donation classes are used. This choice may require more memory to store a larger distance matrix and a higher computational effort.
dist.fun A string with the name of the distance function that has to be used. The following distances are allowed: "Manhattan" (aka "City block"; default), "Euclidean", "Mahalanobis", "exact" or "exact matching", "Gower", "minimax" or one of the distance functions available in the package proxy. Note that the distance is computed using the function dist of the package proxy with the exception of the "Gower" (see function gower.dist for details), "Mahalanobis" (function mahalanobis.dist) and "minimax" (see maximum.dist) cases. When dist.fun="Manhattan", "Euclidean", "Mahalanobis" or "minimax" all the non numeric variables in data.rec and data.don will be converted to numeric. On the contrary, when dist.fun="exact" or dist.fun="exact matching", all the variables in data.rec and data.don will be converted to character and, as far as the distance computation is concerned, they will be treated as categorical nominal variables, i.e. distance is 0 if a couple of units presents the same response category and 1 otherwise.

constrained Logical. When constrained=FALSE (default) each record in data.don can be used as a donor more than once. On the contrary, when constrained=TRUE each record in data.don can be used as a donor only k times. In this case, the set of donors is selected by solving an optimization problem, in order to minimize the overall matching distance. See description of the argument constr.alg for details.

constr.alg A string that has to be specified when constrained=TRUE. Two choices are available: “lpSolve” and “hungarian”. In the first case, constr.alg="lpSolve", the optimization problem is solved by means of the function lp.transport available in the package lpSolve. When constr.alg="hungarian" (default) the problem is solved using the Hungarian method, implemented in function solve_LSAP available in the package clue. Note that Hungarian algorithm is faster and more efficient if compared to constr.alg="lpSolve" but it allows selecting a donor just once, i.e. k = 1.

k The number of times that a unit in data.don can be selected as a donor when constrained=TRUE (default k = 1). When k>1 then optimization problem can be solved by setting constr.alg="lpSolve". Hungarian algorithm (constr.alg="hungarian") can be used only when k = 1.

keep.t Logical, when donation classes are used by setting keep.t=TRUE prints information on the donation classes being processed (by default keep.t=FALSE).

Details

This function finds a donor record in data.don for each record in data.rec. In the unconstrained case, it searches for the closest donor record in data.don for each record in the recipient data set, according to the chosen distance function. When for a given recipient record there are more donors available at the minimum distance, one of them is picked at random.

In the constrained case a donor can be used just a fixed number of times, as specified by the k argument, but the whole set of donors is chosen in order to minimize the overall matching distance. When k=1 the number of units (rows) in the donor data set has to be larger or equal to the number of units of the recipient data set; when the donation classes are used, this condition must be satisfied.
in each donation class. For further details on nearest neighbor distance hot deck refer to Chapter 2 in D’Orazio et al. (2006).

This function can also be used to impute missing values in a data set using the nearest neighbor distance hot deck. In this case data.rec is the part of the initial data set that contains missing values; on the contrary, data.don is the part of the data set without missing values. See R code in the Examples for details.

Please note that only “Gower” and “minimax” distance functions allow for the presence of missing values (NAs) in the variables used in computing distances. In both the cases when one of the of the observations presents a variable showing an NA, then this variable is excluded from the computation of distance.

Value

A R list with the following components:

- `mtc.ids` A matrix with the same number of rows of data.rec and two columns. The first column contains the row names of the data.rec and the second column contains the row names of the corresponding donors selected from the data.don. When the input matrices do not contain row names, a numeric matrix with the indexes of the rows is provided.
- `dist.rd` A vector with the distances among each recipient unit and the corresponding donor.
- `noad` When constrained=FALSE, it reports the number of available donors at the minimum distance for each recipient unit.
- `call` How the function has been called.

Author(s)

Marcello D’Orazio <mdo.statmatch@gmail.com>

References


See Also

RANDwNND.hotdeck
Examples

```r
reproduce the classical matching framework
lab <- c(1:15, 51:65, 101:115)
iris.rec <- iris[lab, c(1:3,5)] # recipient data.frame
iris.don <- iris[-lab, c(1:2,4:5)] # donor data.frame

Now iris.rec and iris.don have the variables
"Sepal.Length", "Sepal.Width" and "Species"
in common.
"Petal.Length" is available only in iris.rec
"Petal.Width" is available only in iris.don

Find the closest donors donors computing distance
on "Sepal.Length" and "Sepal.Width"
unconstrained case, Euclidean distance
out.NND.1 <- NND.hotdeck(data.rec=iris.rec, data.don=iris.don,
 match.vars=c("Sepal.Length", "Sepal.Width"))

create the synthetic data.set:
fill in "Petal.Width" in iris.rec
fused.1 <- create.fused(data.rec=iris.rec, data.don=iris.don,
 mtc.ids=out.NND.1$mtc.ids, z.vars="Petal.Width")

Find the closest donors computing distance
on "Sepal.Length", "Sepal.Width" and Species;
unconstrained case, Gower's distance
out.NND.2 <- NND.hotdeck(data.rec=iris.rec, data.don=iris.don,
 match.vars=c("Sepal.Length", "Sepal.Width", "Species"),
 dist.fun="Gower")

find the closest donors using "Species" to form donation classes
and "Sepal.Length" and "Sepal.Width" to compute distance;
unconstrained case.
out.NND.3 <- NND.hotdeck(data.rec=iris.rec, data.don=iris.don,
 match.vars=c("Sepal.Length", "Sepal.Width"),
 don.class="Species")

find the donors using "Species" to form donation classes
and "Sepal.Length" and "Sepal.Width" to compute distance;
constrained case, "Hungarian" algorithm
library(clue)
out.NND.4 <- NND.hotdeck(data.rec=iris.rec, data.don=iris.don,
 don.class="Species", match.fun="Gower")
```

# Example of imputation of missing values.
# Introducing missing values in iris
ir.mat <- iris
miss <- rbinom(nrow(iris), 1, 0.3)
ir.mat[miss==1,"Sepal.Length"] <- NA
iris.rec <- ir.mat[miss==1,-1]
iris.don <- ir.mat[miss==0,]

# search for NND donors
imp.NND <- NND.hotdeck(data.rec=iris.rec, data.don=iris.don,
                         match.vars=c("Sepal.Width","Petal.Length", "Petal.Width"),
                         don.class="Species")

# imputing missing values
iris.rec.imp <- create.fused(data.rec=iris.rec, data.don=iris.don,
                              mtc.ids=imp.NND$mtc.ids, z.vars="Sepal.Length")

# rebuild the imputed data.frame
final <- rbind(iris.rec.imp, iris.don)

---

**pBayes**

**Pseudo-Bayes estimates of cell probabilities**

**Description**

Estimation of cells counts using the pseudo-Bayes estimator.

**Usage**

pBayes(x, method="m.ind", const=NULL)

**Arguments**

- **x**
  - A contingency table with observed cell counts. Typically the output of `table` or `xtabs`. More in general an R array with the counts.

- **method**
  - The method for estimating the final cell frequencies. The following options are available:
    - `method = "Jeffreys"`, consists in adding 0.5 to each cell before estimation of the relative frequencies, in particular the final relative frequencies are derived by means of $\hat{p}_i = (n_i + 0.5)/(n + c/2)$, being $n$ the sum of all the counts and $c$ the number of cells in the table. The final estimated cell frequencies are obtained as $n_i = n \times \hat{p}_i$. 

method = "minimax", consists in adding $\sqrt{(n)/c}$ to each cell before estimation of the relative frequencies, in particular the final relative frequencies are derived by means of $
olinebreak \hat{p}_i = (n_i + \sqrt{n)/c})/(n + \sqrt{n})$.

method = "invcat", consists in adding $1/c$ to each cell before estimation of the relative frequencies, in particular the final relative frequencies are derived by means of $\hat{p}_i = (n_i + 1/c)/(n + 1)$.

method = "user", consists in adding a used defined constant $a$ ($a > 0$) to each cell before estimation of the relative frequencies with $\hat{p}_i = (n_i + a/c)/(n + a \times c)$. The constant $a$ should be passed via the argument const.

method = "m.ind", the prior guess for the unknown cell probabilities is obtained by considering estimated probabilities under the mutual independence hypothesis. In such a case a data driven $K$ is considered (see Details). This option is available when dealing with at least two-way contingency tables (length(dim(x))>=2).

method = "h.assoc", the prior guess for the unknown cell probabilities is obtained by considering estimated probabilities under the homogeneous association hypothesis. In such a case a data driven $K$ is considered (see Details). This option is available when dealing with at least two-way contingency tables (length(dim(x))>=2).

const Numeric value, a user defined constant $a$ ($a > 0$) added to each cell before estimation of the relative frequencies when method = "user". As a general rule of thumb it is preferable to avoid that the sum of constant over all the cells in table is greater than $0.20 \times n$.

Details

This function estimates the frequencies in a contingency table by using the pseudo-Bayes approach. In practice the estimator being considered is a weighted average of the observed cell counts $n_h$ and a suitable prior guess for cell probabilities $\gamma_h$:

$$\hat{p}_h = \frac{n_h}{n + K} \hat{p}_h + \frac{K}{n + K} \gamma_h$$

$K$ depends on the parameters of Dirichilet prior distribution being considered (for major details see Chapter 12 in Bishop et al., 1974). It is worth noting that with a constant prior guess $\gamma_h = 1/c$ ($h = 1, 2, \ldots, c$), setting $K = 1$ corresponds to adding $1/c$ to each cell before estimation of the relative frequencies (method = "invcat"); with $K = c/2$ the constant 0.5 is added to each cell (method = "Jeffreys"); finally when $K = \sqrt{n}$ the quantity $\sqrt{n}/c$ is added to each cell (method = "minimax"). All these cases corresponds to adding a flattening constant; the higher is the value of $K$ the more the estimates will be shrinked towards $\gamma_h = 1/c$ (flattening).

When method = "m.ind" the prior guess $\gamma_h$ is estimated under the hypothesis of mutual independence between the variables crossed in the initial contingency table $x$, supposed to be at least a two-way table. In this case the value of $K$ is estimated via a data driven approach by considering

$$\tilde{K} = \frac{1 - \sum_h \hat{p}_h^2}{\sum_h (\gamma_h - \hat{p}_h)^2}$$
On the contrary, when `method = "h.assoc"` the prior guess $\gamma_h$ is estimated under the hypothesis of homogeneous association between the variables crossed in the initial contingency table $x$.

Please note that when the input table is estimated from sample data where a weight is assigned to each unit, the weights should be used in estimation of the input table but it is suggested to rescale them so that they sum up to $n$, the sample size.

Value

A list object with three components.

- `invo` A vector with the sample size "n", the number of cells ("no.cells") in $x$, the average cell frequency ("av.cfr"), the number of cells showing frequencies equal to zero ("no.0s"), the const input argument, the chosen/estimated $K$ ("K") and the relative size of $K$, i.e. $K/(n + K)$ ("rel.K").
- `prior` A table having the same dimension as $x$ with the considered prior values for the cell frequencies.
- `pseudob` A table with having the same dimension as $x$ providing the pseudo-Bayes estimates for the cell frequencies in $x$.

Author(s)

Marcello D’Orazio <mdo.statmatch@gmail.com>

References


Examples

data(samp.A, package="StatMatch")
tab <- xtabs(~ area5 + urb + c.age + sex + edu7, data = samp.A)
out.pb <- pBayes(x=tab, method="m.ind")
out.pb$info

out.pb <- pBayes(x=tab, method="h.assoc")
out.pb$info

out.pb <- pBayes(x=tab, method="Jeffreys")
out.pb$info

# usage of weights in estimating the input table
n <- nrow(samp.A)
r.w <- samp.A$ww / sum(samp.A$ww) * n  # rescale weights to sum up to n
tab.w <- xtabs(r.w ~ area5 + urb + c.age + sex + edu7, data = samp.A)
out.pbw <- pBayes(x=tab.w, method="m.ind")
out.pbw$info
**pw.assoc**  
*Pairwise association measure between categorical variables*

**Description**

This function computes some association measures between a categorical nominal variable and each of the other available predictors (also categorical variables).

**Usage**

```r
pw.assoc(formula, data, weights=NULL, freqPc=NULL)
```

**Arguments**

- `formula`: A formula of the type `y~x1+x2` where `y` denotes the name of the categorical variable (a `factor` in `R`) which plays the role of the dependent variable while `x1` and `x2` are the name of the predictors (both categorical variables). Numeric variables are not allowed; eventual numerical variables should be categorized (see function `cut`) before being passed to `pw.assoc`.
- `data`: The data frame which contains the variables called by `formula`.
- `weights`: The name of the eventual variable in `data` which provides the units’ weights. Weights are used to estimate frequencies (a cell frequency is estimated by summing the weights of the units which present the given characteristics). Default is `NULL` (no weights available, each unit counts 1).
- `freqPc`: A small number which is substituted to eventual cells with zero frequencies in order to avoid computation failures. When `NULL` (default) a cell with zero frequency is substitutes with `1/N^2`, being `N` the sample size.

**Details**

This function computes some association measures among the response variable and each of the predictors specified in the `formula`. The following association measure are considered:

- **Cramer’s V**: 
  
  \[ V = \sqrt{\frac{\chi^2}{N \times \min(I - 1, J - 1)}} \]

  *N* is the sample size, *I* is the number of rows and *J* is the number of columns. Cramer’s *V* ranges from 0 to 1.

- **Goodman–Kruskal \( \lambda(R|C) \)**:
  
  \[ \lambda(R|C) = \frac{\sum_{j=1}^{J} max_i(p_{ij}) - max_i(p_{ij})}{1 - max_i(p_{ij})} \]
It ranges from 0 to 1, and denotes how much the knowledge of the column variable (predictor) helps in reducing the prediction error of the values of the row variable.

Goodman–Kruskal $\tau(R|C)$:

$$\tau(R|C) = \frac{\sum_{i=1}^{I} \sum_{j=1}^{J} p_{ij}^2/p_{+j} - \sum_{i=1}^{I} p_{i+}^2}{1 - \sum_{i=1}^{I} p_{i+}^2}$$

It takes values in the interval $[0,1]$ and has the same PRE meaning of the lambda.

Theil’s Uncertainty coefficient:

$$U(R|C) = \frac{\sum_{i=1}^{I} \sum_{j=1}^{J} p_{ij} \log(p_{ij}/p_{+j}) - \sum_{i=1}^{I} p_{i+} \log p_{i+}}{-\sum_{i=1}^{I} p_{i+} \log p_{i+}}$$

It takes values in the interval $[0,1]$ and measure the reduction of uncertainty in the row variable due to knowing the column variable.

It is worth noting that $\lambda$, $\tau$ and $U$ are asymmetric measures of the proportional reduction of the variance of the row column when passing from its marginal distribution to its conditional distribution given the column variable obtained starting from the general expression (cf. Agresti, 2002, p. 56):

$$\frac{V(R) - E[V(R|C)]}{V(R)}$$

They differ in the way of measuring variance, in fact it does not exist a general accepted definition of the variance of a categorical variable.

Value

A list object with four components.

- $V$ A vector with the estimated Cramer’s V for each couple response-predictor.
- $\lambda$ A vector with the values of Goodman-Kruscal $\lambda(R|C)$ for each couple response-predictor.
- $\tau$ A vector with the values of Goodman-Kruscal $\tau(R|C)$ for each couple response-predictor.
- $U$ A vector with the values of Theil’s uncertainty coefficient $U(R|C)$ for each couple response-predictor.

Author(s)

Marcello D’Orazio <mdo.statmatch@gmail.com>

References

Examples

data(quine, package="MASS") # loads quine from MASS
str(quine)

# how Lrn is response variable
pw.assoc(Lrn~Age+Sex+Eth, data=quine)

# usage of units' weights
quine$ww <- runif(nrow(quine), 1,4) # random gen 1<=weights<=4
pw.assoc(Lrn~Age+Sex+Eth, data=quine, weights="ww")

RANDwNND.hotdeck Random Distance hot deck.

Description

This function implements a variant of the distance hot deck method. For each recipient record a subset of of the closest donors is retained and then a donor is selected.

Usage

RANDwNND.hotdeck(data.rec, data.don, match.vars=NULL,
don.class=NULL, dist.fun="Manhattan",
cut.don="rot", k=NULL, weight.don=NULL,
keep.t=FALSE, ...)

Arguments

data.rec A numeric matrix or data frame that plays the role of recipient. This data frame must contain the variables (columns), specified via match.vars and don.class, that should be used in the matching.
  Missing values (NA) are allowed.

data.don A matrix or data frame that plays the role of donor. This data frame must contain the variables (columns), specified via match.vars and don.class, that should be used in the matching.

match.vars A character vector with the names of the variables (the columns in both the data frames) that have to be used to compute distances among records (rows) in data.rec and those in data.don. When no matching variables are considered (match.vars=NULL) then all the units in the same donation class are considered as possible donors. Hence one of them is selected at random or with probability proportional to its weight (see argument weight.don). When match.vars=NULL and the donation classes are not created (don.class=NULL) then all the available records in the data.don are considered as potential donors.
A character vector with the names of the variables (columns in both the data frames) that have to be used to identify donation classes. In this case the computation of distances is limited to those units in data.rec and data.doc that belong to the same donation class. The case of empty donation classes should be avoided. It would be preferable that variables used to form donation classes are defined as factor.

When not specified (default), no donation classes are used. This may result in a heavy computational effort.

dist.fun

A string with the name of the distance function that has to be used. The following distances can be used: “Manhattan” (aka “City block”; default), “Euclidean”, “Mahalanobis”, “exact” or “exact matching”, “Gower”, “minimax”, “difference”, or one of the distance functions available in the package proxy. Note that the distances are computed using the function dist of the package proxy with the exception of the “Gower” (see function gower.dist for details), “Mahalanobis” (function mahalanobis.dist), “minimax” (see maximum.dist) “difference” case. Note that dist.fun="difference" computes just the difference between the values of the unique numeric matching variable considered; in practice, it should be used when the subset of the donation classes should be formed by comparing the values of the unique matching variable (for further details see the argument cut.don).

By setting dist.fun="ANN" or dist.fun="RANN" it is possible to search for the k nearest neighbours for each recipient record by using the Artificial Neural Network (ANN) implemented in the package ANN. The search is done via the function nn2 provided by the package RANN.

When dist.fun="Manhattan", "Euclidean", "Mahalanobis" or "minimax" all the non numeric variables in data.rec and data.doc will be converted to numeric. On the contrary, when dist.fun="exact" or dist.fun="exact matching", all the variables in data.rec and data.doc will be converted to character and, as far as the distance computation is concerned, they will be treated as categorical nominal variables, i.e. distance is 0 if a couple of units shows the same response category and 1 otherwise.

cut.don

A character string that, jointly with the argument k, identifies the rule to be used to form the subset of the closest donor records.

- cut.don="rot": (default) then the number of the closest donors to retain is given by $\lceil \sqrt{n_D} \rceil + 1$; being $n_D$ the total number of available donors. In this case k must not to be specified.
- cut.don="span": the number of closest donors is determined as the proportion k of all the available donors, i.e. $n_D \times k$. Note that, in this case, $0 < k \leq 1$
- cut.don="exact": the kth closest donors out of the $n_D$ are retained. In this case, $0 < k \leq n_D$
- cut.don="min": the donors at the minimum distance from the recipient are retained.
- cut.don="k.dist": only the donors whose distance from the recipient is less or equal to the value specified with the argument k. Note that in this case it is not possible to use dist.fun="ANN"
• cutдон = "lt" or cutдон = "<": only the donors whose value of the matching variable is smaller than the value of the recipient Note that in this case it is has to be set dist.fun="difference".

• cutдон = "le" or cutдон = "<=": only the donors whose value of the matching variable is smaller or equal to the value of the recipient Note that in this case it is has to be set dist.fun="difference".

• cutдон = "ge" or cutдон = ">=": only the donors whose value of the matching variable is greater or equal to the value of the recipient Note that in this case it is has to be set dist.fun="difference".

• cutдон = "gt" or cutдон = ">": only the donors whose value of the matching variable is greater than the value of the recipient Note that in this case it is has to be set dist.fun="difference".

k
Depends on the cutдон argument.

weightдон
A character string providing the name of the variable with the weights associated to the donor units in dataдон. When this variable is specified, then the selection of a donor among those in the subset of the closest donors is done with probability proportional to its weight (units with larger weight will have a higher chance of being selected). When weightдон=NULL (default) all the units in the subset of the closest donors will have the same probability of being selected.

keep.t
Logical, when donation classes are used by setting keep.t=TRUE prints information on the donation classes being processed (by default keep.t=FALSE).

... Additional arguments that may be required by gower.dist, by maximum.dist, by dist or by nn2.

Details
This function finds a donor record for each record in the recipient data set. The donor is chosen at random in the subset of available donors. This procedure is known as random hot deck (cf. Andridge and Little, 2010). In RANDwNND.hotdeck, the number of closest donors retained to form the subset is determined according to criterion specified with the argument cutдон. The selection of the donor among those in the subset is carried out with equal probability (weightдон=NULL) or with probability proportional to a weight associated to the donors (specified via the weightдон argument). This procedure is is known as weighted random hot deck (cf. Andridge and Little, 2010).

The search for the subset of the closest donors can be speed up by using the Artificial Neural Network as implemented in the package ANN that is called by the function nn2 provided by the package RANN. Note that this search can be used in all the cases with the exception of cutдон="k.dist". The search of the closest donors can be exact or approximate (for details see nn2).

Note that the same donor can be used more than once.

This function can also be used to impute missing values in a data set. In this case data.rec is the part of the initial data set that contains missing values; on the contrary, data.don is the part of the data set without missing values. See R code in the Examples for details.

Value
A R list with the following components:
**mtc.ids**

A matrix with the same number of rows of `data.rec` and two columns. The first column contains the row names of the `data.rec` and the second column contains the row names of the corresponding donors selected from the `data.don`. When the input matrices do not contain row names, then a numeric matrix with the indexes of the rows is provided.

**sum.dist**

A matrix with summary statistics concerning the subset of the closest donors. The first three columns report the minimum, the maximum and the standard deviation of the distances among the recipient record and the donors in the subset of the closest donors, respectively. The 4th column reports the cutting distance, i.e. the value of the distance such that donors at a higher distance are discarded. The 5th column reports the distance between the recipient and the donor chosen at random in the subset of the donors.

**noad**

For each recipient unit, reports the number of donor records in the subset of closest donors.

**call**

How the function has been called.

**Author(s)**

Marcello D’Orazio <mdo.statmatch@gmail.com>

**References**


**See Also**

`NND.hotdeck`

**Examples**

```r
data(samp.A, samp.B, package="StatMatch") # loads data sets
?samp.A
?samp.B

samp.A plays the role of recipient
samp.B plays the role of donor
find a donor in the in the same region ("area5") and with the same
gender ("sex"), then only the closest k=20 donors in terms of
```
# "age" are considered and one of them is picked up at random

```r
out.NND.1 <- RANDwNND.hotdeck(data.rec=samp.A, data.don=samp.B,
 don.class=c("area5", "sex"), dist.fun="ANN",
 match.vars="age", cut.don="exact", k=20)
```

# create the synthetic (or fused) data.frame:
# fill in "labour5" in A
```r
fused.1 <- create.fused(data.rec=samp.A, data.don=samp.B,
 mtc.ids=out.NND.1$mtc.ids, z.vars="labour5")
```

head(fused.1)

# weights ("ww") are used in selecting the donor in the final step
```r
out.NND.2 <- RANDwNND.hotdeck(data.rec=samp.A, data.don=samp.B,
 don.class=c("area5", "sex"), dist.fun="ANN",
 match.vars="age", cut.don="exact",
 k=20, weight.don="ww")
```

```r
fused.2 <- create.fused(data.rec=samp.A, data.don=samp.B,
 mtc.ids=out.NND.2$mtc.ids, z.vars="labour5")
```

head(fused.2)

# find a donor in the in the same region ("area5") and with the same
# gender ("sex"), then only the donors with "age" <= to the age of the
# recipient are considered,
# then one of them is picked up at random
```r
out.NND.3 <- RANDwNND.hotdeck(data.rec=samp.A, data.don=samp.B,
 don.class=c("area5", "sex"), dist.fun="diff",
 match.vars="age", cut.don="<=")
```

# create the synthetic (or fused) data.frame:
# fill in "labour5" in A
```r
fused.3 <- create.fused(data.rec=samp.A, data.don=samp.B,
 mtc.ids=out.NND.3$mtc.ids, z.vars="labour5")
```

head(fused.3)

# Example of Imputation of missing values
# introducing missing values in iris
```r
ir.mat <- iris
miss <- rbinom(nrow(iris), 1, 0.3)
ir.mat[miss==1, "Sepal.Length"] <- NA
iris.rec <- ir.mat[miss==1,-1]
iris.don <- ir.mat[miss==0,]
```

# search for NND donors
```r
imp.NND <- RANDwNND.hotdeck(data.rec=iris.rec, data.don=iris.don,
 match.vars=c("Sepal.Width", "Petal.Length", "Petal.Width"),
 don.class="Species")
```

# imputing missing values
```r
iris.rec.imp <- create.fused(data.rec=iris.rec, data.don=iris.don,
 mtc.ids=imp.NND$mtc.ids, z.vars="Sepal.Length")
```
```
rebuild the imputed data.frame
final <- rbind(iris.rec.imp, iris.don)
```

---

**rankNND.hotdeck**

*Rank distance hot deck method.*

**Description**

This function implements rank hot deck distance method. For each recipient record the closest donors is chosen by considering the distance among the percentage points of the empirical cumulative distribution function.

**Usage**

```r
classNhotdeck(dataNrec, dataNdon, varNrec, varNdon=varNrec,
 donNclass=NULL, weightNrec=NULL, weightNdon=NULL,
 constrained=FALSE, constrNalg="Hungarian",
 keep.t=FALSE)
```

**Arguments**

- `dataNrec`: A numeric matrix or data frame that plays the role of recipient. This data frame must contain the variable `varNrec` to be used in computing the percentage points of the empirical cumulative distribution function and eventually the variables that should be used to identify the donation classes (see argument `donNclass`) and the case weights (see argument `weightNrec`). Missing values (NA) are not allowed.

- `dataNdon`: A matrix or data frame that plays the role of donor. This data frame must contain the variable `varNdon` to be used in computing percentage points of the empirical cumulative distribution function and eventually the variables that should be used to identify the donation classes (see argument `donNclass`) and the case weights (see argument `weightNdon`).

- `varNrec`: A character vector with the name of the variable in `dataNrec` that should be ranked.

- `varNdon`: A character vector with the name of the variable in `dataNdon` that should be ranked. If not specified, by default `varNdon=varNrec`.

- `donNclass`: A character vector with the names of the variables (columns in both the data frames) that have to be used to identify donation classes. In each donation class the computation of percentage points is carried out independently. Then only distances among percentage points of the units in the same donation class are computed. The case of empty donation classes should be avoided. It would be preferable the variables used to form donation classes are defined as factor. When not specified (default), no donation classes are used.
weight.rec  Eventual name of the variable in data.rec that provides the weights that should be used in computing the empirical cumulative distribution function for var.rec (see Details).

weight.don Eventual name of the variable in data.don that provides the weights that should be used in computing the empirical cumulative distribution function for var.don (see Details).

constrained Logical. When constrained=FALSE (default) each record in data.don can be used as a donor more than once. On the contrary, when constrained=TRUE each record in data.don can be used as a donor only once. In this case, the set of donors is selected by solving a transportation problem, in order to minimize the overall matching distance. See description of the argument constr.alg for details.

constr.alg A string that has to be specified when constrained=TRUE. Two choices are available: “lpSolve” and “Hungarian”. In the first case, constr.alg=“lpSolve”, the transportation problem is solved by means of the function lp.transport available in the package lpSolve. When constr.alg=“Hungarian” (default) the transportation problem is solved using the Hungarian method, implemented in function solve_LSAP available in the package clue. Note that constr.alg=“Hungarian” is faster and more efficient.

keep.t Logical, when donation classes are used by setting keep.t=TRUE prints information on the donation classes being processed (by default keep.t=FALSE).

**Details**

This function finds a donor record for each record in the recipient data set. The chosen donor is the one at the closest distance in terms of empirical cumulative distribution (Singh et al., 1990). In practice the distance is computed by considering the estimated empirical cumulative distribution for the reference variable (var.rec and var.don) in data.rec and data.don. The empirical cumulative distribution function is estimated by:

$$\hat{F}(y) = \frac{1}{n} \sum_{i=1}^{n} I(y_i \leq y)$$

being \(I() = 1\) if \(y_i \leq y\) and 0 otherwise.

In the presence of weights the empirical cumulative distribution function is estimated by:

$$\hat{F}(y) = \frac{\sum_{i=1}^{n} w_i I(y_i \leq y)}{\sum_{i=1}^{n} w_i}$$

In the unconstrained case, when there are more donors at the same distance, one of them is chosen at random.

Note that when the donation classes are introduced then empirical cumulative distribution function is estimated independently in each donation classes and the search of a recipient is restricted to donors in the same donation class.

A donor can be chosen more than once. To avoid this set constrained=TRUE. In such a case a donor can be chosen just once and the selection of the donors is carried out by solving a transportation problem with the objective of minimizing the overall matching distance (sum of the distances recipient-donor).
Value

A R list with the following components:

- **mtc.ids**
  A matrix with the same number of rows of `data.rec` and two columns. The first column contains the row names of the `data.rec` and the second column contains the row names of the corresponding donors selected from the `data.don`. When the input matrices do not contain row names, then a numeric matrix with the indexes of the rows is provided.

- **dist.rd**
  A vector with the distances among each recipient unit and the corresponding donor.

- **noad**
  The number of available donors at the minimum distance for each recipient unit (only in unconstrained case)

- **call**
  How the function has been called.

Author(s)

Marcello D'Orazio <mdo.statmatch@gmail.com>

References


See Also

- `NND.hotdeck`

Examples

```r
data(samp.A, samp.B, package="StatMatch") # loads data sets

samp.A plays the role of recipient
?samp.A

samp.B plays the role of donor
?samp.B

rankNND.hotdeck()
donation classes formed using "area5"
ecdf computed on "age"
unconstrained case
out.1 <- rankNND.hotdeck(data.rec=samp.A, data.don=samp.B, var.rec="age",
 don.class="area5")
fused.1 <- create.fused(data.rec=samp.A, data.don=samp.B,)
```
mtc.ids = out.1$mtc.ids, z.vars = "labour5")

head(fused.1)

# as before but ecdf estimated using weights
# UNCONSTRAINED case
out.2 <- rankNN@hotdeck(data.rec = samp.A, data.don = samp.B, var.rec = "age",
                don.class = "area5",
                weight.rec = "ww", weight.don = "ww")
fused.2 <- create.fused(data.rec = samp.A, data.don = samp.B,
                mtc.ids = out.2$mtc.ids, z.vars = "labour5")
head(fused.2)

---

**samp.A**

*Artificial data set resembling EU–SILC survey*

**Description**

This data set provides a limited number of variables observed at persons levels among those usually collected in the European Union Statistics on Income and Living Conditions Survey (EU–SILC). The data are artificially generated, just to show the application of the statistical matching techniques implemented in *StatMatch*.

**Usage**

`data(samp.A)`

**Format**

A data frame with 3009 observations and the following variables:

- **HH.P.id**: unique unit identifier of the type `aa.bb` where `aa` identifies the Household while `bb` identifies the household member
- **area5**: large geographic area, factor with 5 levels: ‘NE’=North–East, ‘NO’=North–West, ‘C’=center, ‘S’=South, ‘I’=islands
- **urb**: Degree of urbanization, factor with 3 levels: ‘1’=densely populated area, ‘2’=intermediate area, ‘3’=thinly populated area
- **hsize**: integer, size of the household in which the person lives
- **hsize5**: factor with 5 levels derived from `hsize`, where the 5th level ‘>=5’ denotes 5 and more people in the household
- **age**: integer, the person’s age
- **c.age**: factor, age categorized in 5 classes
- **sex**: factor, the person’s gender: ‘1’=male, ‘2’=female
- **marital**: factor, the person’s marital status: ‘1’=never married, ‘2’=married, ‘3’=other (separated, widowed, divorced)
edua factor, the person’s highest education level attained, follows the ISCED-97 categories: ‘0’=pre-primary education, ‘1’=primary education, ‘2’=lower secondary education, ‘3’=(upper) secondary education, ‘4’=post-secondary non tertiary education, ‘5’=first stage of tertiary education (not leading directly to an advanced research qualification), ‘6’=second stage of tertiary education (leading to an advanced research qualification)

c.income numeric, the person’s net income in Euros

c.neti factor, the person’s net income categorized in 7 classes of thousand of Euros

ww numeric, the unit’s weight

Details

Please note that this data set is just for illustrative purposes. The unit’s weight do not reflect the Italian population size. The variables included are derived starting from the those usually observed in the EU–SILC survey.

Source

This data set is artificially created starting from the EU–SILC survey structure.

References

http://ec.europa.eu/eurostat/web/income-and-living-conditions/overview

---

samp.B Artificial data set resembling EU–SILC survey

Description

This data set provides a limited number of variables observed at persons levels among those usually collected in the European Union Statistics on Income and Living Conditions Survey (EU–SILC). The data are artificially generated, just to show the application of the statistical matching techniques implemented in StatMatch.

Usage

data(samp.B)

Format

A data frame with 6686 observations and the following variables:

HH.P.id unique unit identifier of the type aa.bb where aa identifies the Household while bb identifies the household member


urb Degree of urbanization, factor with 3 levels: ‘1’=densely populated area, ‘2’=intermediate area, ‘3’= thinly populated area
**hsize** integer, size of the household in which the person lives

**hsiz5** factor with 5 levels derived from hsize, where the 5th level ‘>=5’ denotes 5 and more people in the household

**age** integer, the person’s age

**c.age** factor, age categorized in 5 classes

**sex** factor, the person’s gender: ‘1’=male, ‘2’=female

**marital** factor, the person’s marital status: ‘1’=never married, ‘2’=married, ‘3’=other (separated, widowed, divorced)

**edu7** factor, the person’s highest education level attained, follows the ISCED-97 categories: ‘0’=pre–primary education, ‘1’=primary education, ‘2’=lower secondary education, ‘3’=(upper) secondary education, ‘4’=post–secondary non tertiary education, ‘5’=first stage of tertiary education (not leading directly to an advanced research qualification), ‘6’=second stage of tertiary education (leading to an advanced research qualification)

**labour5** the person’s self–defined economic status, factor with 5 levels: ‘1’=employee working full–time or part–time, ‘2’=self–employed working full–time or part–time, ‘3’=unemployed, ‘4’=in retirement or in early retirement or has given up business, ‘5’=other status (student, permanent disabled, in compulsory military service, fulfilling domestic tasks, etc.)

**ww** numeric, the unit’s weight

**Details**

Please note that this data set is just for illustrative purposes. The unit’s weight do not reflect the Italian population size. The variables included are derived starting from the those usually observed in the EU–SILC survey.

**Source**

This data set is artificially created starting from the EU–SILC survey structure.

**References**


---

**samp.C**  
*Artificial data set resembling EU–SILC survey*

**Description**

This data set provides a limited number of variables observed at persons levels among those usually collected in the European Union Statistics on Income and Living Conditions Survey (EU–SILC). The data are artificially generated, just to show the application of the statistical matching techniques implemented in StatMatch.

**Usage**

`data(samp.C)`
Format

A data frame with 980 observations and the following variables:

- **HH.Pid** unique unit identifier of the type aa.bb where aa identifies the Household while bb identifies the household member
- **area** large geographic area, factor with 5 levels: ‘NE’=North-East, ‘NO’=North-West, ‘C’=center, ‘S’=South, ‘I’=islands
- **urb** Degree of urbanization, factor with 3 levels: ‘1’=densely populated area, ‘2’=intermediate area, ‘3’=thinly populated area
- **hsizen** integer, size of the household in which the person lives
- **hsize5** factor with 5 levels derived from hsize, where the 5th level ‘>=5’ denotes 5 and more people in the household
- **age** integer, the person’s age
- **c.age** factor, age categorized in 5 classes
- **sex** factor, the person’s gender: ‘1’=male, ‘2’=female
- **marital** factor, the person’s marital status: ‘1’=never married, ‘2’=married, ‘3’=other (separated, widowed, divorced)
- **edu7** factor, the person’s highest education level attained, follows the ISCED-97 categories: ‘0’=pre-primary education, ‘1’=primary education, ‘2’=lower secondary education, ‘3’=(upper) secondary education, ‘4’=post-secondary non tertiary education, ‘5’=first stage of tertiary education (not leading directly to an advanced research qualification), ‘6’=second stage of tertiary education (leading to an advanced research qualification)
- **labour5** the person’s self-defined economic status, factor with 5 levels: ‘1’=employee working full–time or part–time, ‘2’=self–employed working full–time or part–time, ‘3’=unemployed, ‘4’=in retirement or in early retirement or has given up business, ‘5’=other status (student, permanent disabled, in compulsory military service, fulfilling domestic tasks, etc.)
- **n.income** numeric, the person’s net income in Euros
- **c.neti** factor, the person’s net income categorized in 7 classes of thousand of Euros
- **ww** numeric, the unit’s weight

Details

Please note that this data set is just for illustrative purposes. The unit’s weight do not reflect the Italian population size. The variables included are derived starting from the those usually observed in the EU–SILC survey.

Source

This data set is artificially created starting from the EU–SILC survey structure.

References

Index

*Topic **cluster**
  fact2dummy, 13
  gower.dist, 21

*Topic **datasets**
  samp.A, 54
  samp.B, 55
  samp.C, 56

*Topic **manip**
  create.fused, 11

*Topic **multivariate**
  comp.prop, 8
  fact2dummy, 13
  Fbwidths.by.x, 14
  Frechet.bounds.cat, 17
  gower.dist, 21
  mahalanobis.dist, 28
  maximum.dist, 30
  pBayes, 41
  pw.assoc, 44

*Topic **nonparametric**
  mixed.mtc, 12
  NND.hotdeck, 37
  RANDWNNND.hotdeck, 46
  rankNND.hotdeck, 51

*Topic **regression**
  mixed.mtc, 12

*Topic **survey**
  comb.samples, 3
  harmonize.x, 23

  calibrate, 4, 6, 24–26
  comb.samples, 3, 26
  comp.prop, 8
  create.fused, 11
  cut, 44

  daisy, 23
  dist, 23, 38, 47, 48

  fact2dummy, 13

  Fbwidths.by.x, 14, 19
  formula, 4, 24
  Frechet.bounds.cat, 15, 16, 17
  gower.dist, 14, 21, 38, 47, 48
  harmonize.x, 5, 6, 16, 19, 23
  lp.transport, 32, 38, 52
  mahalanobis, 29
  mahalanobis.dist, 28, 35, 38, 47
  maximum.dist, 30, 38, 47, 48
  mixed.mtc, 12, 31
  model.matrix, 4, 24
  nn2, 47, 48
  NND.hotdeck, 12, 35, 37, 49, 53
  pBayes, 16, 19, 41
  postStratify, 24, 26
  pw.assoc, 44
  RANDWNNND.hotdeck, 12, 39, 46
  rank, 22, 30, 31
  rankNND.hotdeck, 12, 51
  samp.A, 54
  samp.B, 55
  samp.C, 56
  solve_LSAP, 33, 38, 52
  StatMatch (StatMatch-package), 2
  StatMatch-package, 2
  svydesign, 3, 6, 24, 26

  table, 8, 15, 17, 41
  xtabs, 8, 15, 17, 41