Package ‘StressStrength’

May 1, 2016

Type Package

Title Computation and Estimation of Reliability of Stress-Strength Models

Version 1.0.2

Date 2016-04-29

Author Alessandro Barbiero <alessandro.barbiero@unimi.it>, Riccardo Inchingolo <dott.inchingolo_r@libero.it>

Maintainer Alessandro Barbiero <alessandro.barbiero@unimi.it>

Description Reliability of (normal) stress-strength models and for building two-sided or one-sided confidence intervals according to different approximate procedures.

License GPL

LazyLoad yes

Repository CRAN

Date/Publication 2016-05-01 00:44:38

NeedsCompilation no

R topics documented:

StressStrength-package .. 2
estSSR ... 2
gkf ... 5
SSR ... 6

Index 8
StressStrength-package

Computation and Sample Estimation of Reliability of Stress-Strength Models

Description

Reliability of (normal) stress-strength models and for building two-side or one-side confidence intervals according to different approximate procedures.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>StressStrength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.0.2</td>
</tr>
<tr>
<td>Date:</td>
<td>2016-04-29</td>
</tr>
<tr>
<td>License:</td>
<td>GPL</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>

Author(s)

Alessandro Barbiero, Riccardo Inchingolo

Maintainer: Alessandro Barbiero <alessandro.barbiero@unimi.it>

References

estSSR

Sample estimation of reliability of stress-strength models

Description

The function provides sample estimates of reliability of stress-strength models, where stress and strength are modeled as independent r.v., whose distribution form is known except for the values of its parameters, assumed all unknown
Usage

estSSR(x, y, family="normal", twoside=TRUE, type="RG", alpha=0.05, B=2000)

Arguments

x a random sample from r.v. X modeling strength
y a random sample from r.v. Y modeling stress
family the distribution of both X and Y
twoside if TRUE, the function computes two-side confidence intervals; otherwise, one-side (a lower bound)
type type of confidence interval (CI) to be built. For the normal family, "RG" stands for Reiser-Guttman, "AN" for large sample (asymptotically normal), "LOGIT" or "ARCSIN" for logit or arcsin variance stabilizing tranformations, "B" for percentile bootstrap, "GK" for Guo-Krishnamoorthy (one-sided only).
alpha the complement to one of the nominal confidence level
B number of bootstrap replicates (for type "B")

Details

For more details, please have a look at the references listed below

Value

A list comprising

ML_est the sample value of the maximum likelihood estimator; for normal r.v. \(\hat{R} = \Phi(\bar{x} - \bar{y})/\sqrt{\hat{\sigma}_x^2 + \hat{\sigma}_y^2} \), where \(\bar{x} \) and \(\bar{y} \) are the sample means, and \(\hat{\sigma}_x^2, \hat{\sigma}_y^2 \) the biased maximum likelihood variance estimators
Downton_est (for normal r.v.) the sample value of one of the approximated UMVU estimators proposed by Downton \(\hat{R}' = \Phi(\bar{x} - \bar{y})/\sqrt{s_x^2 + s_y^2} \)
CI the confidence interval
certainty_level the nominal confidence level \(1 - \alpha \)

Author(s)

Alessandro Barbiero, Riccardo Inchingolo

References

See Also

SSR

Examples

distributional parameters of X and Y
parx<-c(1, 1)
pary<-c(0, 2)
sample sizes
n<-10
m<-20
true value of R
SSR(parx,pary)
draw independent random samples from X and Y
x<-rnorm(n, parx[1], parx[2])
y<-rnorm(m, pary[1], pary[2])
build two-sided confidence intervals
estSSR(x, y, type="RG")
estSSR(x, y, type="AN")
estSSR(x, y, type="LOGIT")
estSSR(x, y, type="ARCSIN")
estSSR(x, y, type="B")
estSSR(x, y, type="B", B=1000) # change number of bootstrap replicates
and one-sided
estSSR(x, y, type="RG", twoside=FALSE)
estSSR(x, y, type="AN", twoside=FALSE)
estSSR(x, y, type="LOGIT", twoside=FALSE)
estSSR(x, y, type="ARCSIN", twoside=FALSE)
estSSR(x, y, type="B", twoside=FALSE)
estSSR(x, y, type="GK", twoside=FALSE)
changing sample sizes
n<-20
m<-30
x<-rnorm(n, parx[1], parx[2])
y<-rnorm(m, pary[1], pary[2])
build two-sided confidence intervals
estSSR(x, y, type="RG")
estSSR(x, y, type="AN")
estSSR(x, y, type="LOGIT")
estSSR(x, y, type="ARCSIN")
estSSR(x, y, type="B")
gkf

Description

It provides the solution of the equation \(F_t(q; df, x) = p \), where \(F_t \) is the cdf (calculated in \(q \)) of a non-central Student r.v. with \(df \) degrees of freedom and unknown noncentrality parameter \(x \). In R code, gkf provides the solution of \(pt(q, df, x) = p \).

Usage

```
gkf(p, q, df, eps = 1e-05)
```

Arguments

- \(p \) a probability
- \(q \) a real value
- \(df \) degrees of freedom of noncentral T
- \(eps \) tolerance

Details

This function is used for building Guo-Krishnamoorthy confidence intervals for R

Value

the noncentrality parameter \(x \) satisfying the equation \(F_t(q; df, x) = p \)

Author(s)

Alessandro Barbiero, Riccardo Inchingolo

References

See Also

estSSR
Examples

```r
p <- 0.95
q <- 5
df <- 12
ncp <- gkf(p, q, df)
ncp
# check if the result is correct
pt(q, df, ncp)
# OK
# changing the tolerance
ncp <- gkf(p, q, df, eps = 1e-10)
ncp
pt(q, df, ncp)
```

SSR

Computation of reliability of stress-strength models

Description

For a stress-strength model, with independent r.v. X and Y representing the strength and the stress respectively, the function computes the reliability $R = P(X > Y)$.

Usage

```r
SSR(parx, pary, family = "normal")
```

Arguments

- `parx`: parameters of X distribution (for the normal distribution, mean μ_x and standard deviation σ_x)
- `pary`: parameters of Y distribution (for the normal distribution, mean μ_y and standard deviation σ_y)
- `family`: family distribution for both X and Y (now, only "normal" available)

Details

The function computes $R = P(X > Y)$ where X and Y are independent r.v. following the *family* distribution with distributional parameters `parx` and `pary`.

Value

$R = P(X > Y)$. For normal distributions, $R = \Phi(d)$ with $d = (\mu_x - \mu_y)/\sqrt{\sigma_x^2 + \sigma_y^2}$.

Author(s)

Alessandro Barbiero, Riccardo Inchingolo
References

See Also

estSSR

Examples

let X be a normal r.v. with mean 1 and sd 1;
and Y a normal r.v. with mean 0 and sd 2
X and Y independent
parx<-c(1, 1)
pary<-c(0, 2)
reliability of the stress-strength model (X=strength, Y=stress)
SSR(parx,pary)

changing the parameters of Y
pary<-c(1.5, 2)
reliability of the stress-strength model (X=strength, Y=stress)
SSR(parx,pary)
Index

*Topic **distribution**
 gkf, 5
 SSR, 6
*Topic **htest**
 estSSR, 2
*Topic **models**
 estSSR, 2
 SSR, 6
*Topic **package**
 StressStrength-package, 2
 estSSR, 2, 5, 7
 gkf, 5
SSR, 4, 6
StressStrength
 (StressStrength-package), 2
StressStrength-package, 2