Package ‘ThreeWay’

Type Package
Title Three-Way Component Analysis
Version 1.1.3
Date 2015-09-07
Author Maria Antonietta Del Ferraro, Henk A.L. Kiers, Paolo Giordani
Maintainer Paolo Giordani <paolo.giordani@uniroma1.it>
Description Component analysis for three-way data arrays by means of Candecomp/Parafac, Tucker3, Tucker2 and Tucker1 models.
Depends R(>= 2.8.1), base, stats, graphics, grDevices
License GPL (>= 2)
LazyLoad yes
Repository CRAN
NeedsCompilation no
Date/Publication 2015-09-07 10:22:29

R topics documented:

bootstrapCP .. 3
bootstrapT3 .. 5
Bus ... 7
Cc ... 8
ccmat ... 8
cent3 ... 9
CP .. 10
CPdimensionalityplot 13
CPfitpartitioning .. 14
CPfunc .. 15
CPfuncrep .. 17
CPrunsFit .. 20
DimSelector ... 21
jointplotgen ... 22
Kinship ... 23
R topics documented:

LineCon .. 24
meaudret ... 25
norm3 ... 27
normvari .. 28
nrm2 ... 29
ord ... 30
orth ... 30
orthmax2 .. 31
pcamean ... 32
pcasup1 .. 34
pcasup2 .. 36
pcasup3 .. 37
percentile95 .. 39
permnew .. 40
perms ... 41
phi ... 41
rarray ... 42
renormsolCP .. 43
renormsolT3 .. 44
splithalfCP ... 45
splithalfT3 ... 47
SUM .. 49
supermat .. 50
T1 ... 51
T1runsFit .. 53
T2 ... 54
T2func ... 56
T2funcrep .. 58
T2runsApproxFit .. 60
T3 ... 61
T3dimensionalityplot ... 64
T3fitpartitioning .. 66
T3func ... 67
T3funcrep .. 69
T3runsApproxFit .. 71
threewayanova ... 73
tr ... 74
TV ... 74
varim ... 76
varimcoco .. 77

Index 80
Description

Produces percentile intervals for all output parameters. The percentile intervals indicate the instability of the sample solutions.

Usage

```r
bootstrapCP(X, A, B, C, n, m, p, r, ort1, ort2, ort3, conv, centopt, normopt, scaleopt, maxit, laba, labb, labc)
```

Arguments

- `X` Matrix (or data.frame coerced to a matrix) of order \((n \times mp)\) containing the matricized array (frontal slices)
- `A` Component matrix for the A-mode
- `B` Component matrix for the B-mode
- `C` Component matrix for the C-mode
- `n` Number of A-mode entities of \(X\)
- `m` Number of B-mode entities of \(X\)
- `p` Number of C-mode entities of \(X\)
- `r` Number of extracted components
- `ort1` Type of constraints on A (see CP)
- `ort2` Type of constraints on B (see CP)
- `ort3` Type of constraints on C (see CP)
- `conv` Convergence criterion
- `centopt` Centering option (see cent3)
- `normopt` Normalization option (see norm3)
- `scaleopt` Scaling option (see renormsolCP)
- `maxit` Maximal number of iterations
- `laba` Optional vector of length \(n\) containing the labels of the A-mode entities
- `labb` Optional vector of length \(m\) containing the labels of the B-mode entities
- `labc` Optional vector of length \(p\) containing the labels of the C-mode entities
Value

A list including the following components:

- **Bint**: Bootstrap percentile interval of every element of B
- **Cint**: Bootstrap percentile interval of every element of C
- **fpint**: Bootstrap percentile interval for the goodness of fit index expressed as a percentage

Note

The preprocessing must be done in the same way as for sample analysis.
The resampling mode must be the A-mode.
The starting points for every bootstrap solution are two: rational (using SVD) and solution from the observed sample.

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

- `bootstrapT3`, `CP`, `percentile95`

Examples

data(TV)
TVdata = TV[[1]]
labSCALE = TV[[2]]
labPROGRAM = TV[[3]]
labSTUDENT = TV[[4]]
permutation of the modes so that the A-mode refers to students
TVdata <-permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
CP solution
TVcp <- CPfuncrep(TVdata, 30, 16, 15, 2, 1, 1, 1, 0, 1e-6, 10000)
Not run:
Bootstrap analysis on CP solution
boot <- bootstrapCP(TVdata, TVcp$A, TVcp$B, TVcp$C, 30, 16, 15, 2, 1, 1, 1, 1e-6, 0, 0, 0, 10000, labSTUDENT, labSCALE, labPROGRAM)
Bootstrap analysis on CP solution (when labels are not available)
boot <- bootstrapCP(TVdata, TVcp$A, TVcp$B, TVcp$C, 30, 16, 15, 2, 1, 1, 1, 1e-6, 0, 0, 0, 10000)
End(Not run)
Bootstrap percentile intervals for Tucker3

Description

Produces percentile intervals for all output parameters. The percentile intervals indicate the instability of the sample solutions.

Usage

`bootstrapT3(X, A, B, C, G, n, m, p, r1, r2, r3, conv, centopt, normopt, optimalmatch, laba, labb, labc)`

Arguments

- **X**: Matrix (or data.frame coerced to a matrix) of order \((n \times mp)\) containing the matricized array (frontal slices)
- **A**: Component matrix for the A-mode
- **B**: Component matrix for the B-mode
- **C**: Component matrix for the C-mode
- **G**: Matricized core array (frontal slices)
- **n**: Number of A-mode entities of \(X\)
- **m**: Number of B-mode entities of \(X\)
- **p**: Number of C-mode entities of \(X\)
- **r1**: Number of extracted components for the A-mode
- **r2**: Number of extracted components for the B-mode
- **r3**: Number of extracted components for the C-mode
- **conv**: Convergence criterion
- **centopt**: Centering option (see `cent3`)
- **normopt**: Normalization option (see `norm3`)
- **optimalmatch**: Binary indicator (0 if the procedure uses matching via orthogonal rotation towards full solutions, 1 if the procedure uses matching via optimal transformation towards full solutions)
- **laba**: Optional vector of length \(n\) containing the labels of the A-mode entities
- **labb**: Optional vector of length \(m\) containing the labels of the B-mode entities
- **labc**: Optional vector of length \(p\) containing the labels of the C-mode entities
Value

A list including the following components:

- **Bint**: Bootstrap percentile interval of every element of \(B \)
- **Cint**: Bootstrap percentile interval of every element of \(C \)
- **Gint**: Bootstrap percentile interval of matricized core array (frontal slices) \(G \)
- **fpint**: Bootstrap percentile interval for the goodness of fit index expressed as a percentage

Note

The preprocessing must be done in the same way as for sample analysis.

The resampling mode must be the A-mode.

The starting points for every bootstrap solution are two: rational (using SVD) and solution from the observed sample.

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

- bootstrapCP, percentile95,T3

Examples

```r
data(Bus)
# labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5],1,1)
labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)],3,8)
# T3 solution
BusT3 <- T3funcrep(Bus, 7, 5, 37, 2, 2, 2, 0, 1e-6)
## Not run:
# Bootstrap analysis on T3 solution using matching via optimal transformation
boot <- bootstrapT3(Bus, BusT3$A, BusT3$B, BusT3$C, BusT3$H, 7, 5, 37, 2, 2, 2, 1e-6, 0, 0, 1, laba, labb, labc)
# Bootstrap analysis on T3 solution using matching via orthogonal rotation
# (when labels are not available)
boot <- bootstrapT3(Bus, BusT3$A, BusT3$B, BusT3$C, BusT3$H, 7, 5, 37, 2, 2, 2, 1e-6, 0, 0, 0)
## End(Not run)
```
Bus

Bus data

Description

Three-way data about the process of learning to read of seven first-grade children tested weekly (from week 3 to 47, but weeks 10, 19, 20, 29, 35, 36, 39, 43 were holidays and, thus, data on 37 weeks) with five different tests.

Usage

data(Bus)

Format

A matrix with 7 rows and 185 (5x37) columns.
The rows refer to the pupils.
The columns refer to the combinations of tests and weeks with the tests nested within the weeks.
The matrix contains the frontal slices next to each other of the original array.
The meanings and the ranges of the tests are as follows:
l: letter knowledge test (scores in 0-47);
p: regular orthographic short words (scores in 0-10);
q: regular orthographic long words (scores in 0-10);
s: regular orthographic long and short words within context (scores in 0-15);
r: irregular orthographic long and short words (scores in 0-15).

Details

In the literature the Bus data have been analyzed by Tucker3 (see Kroonenberg, 1983; Timmerman, 2001). There is consensus on normalizing the data so to eliminate artificial differences among ranges of tests. Different centering options and numbers of extracted components have been chosen. Specifically, Kroonenberg (1983) suggests averaging over pupils and tests for each time occasions and extracting two components for every mode. Timmerman (2001) suggests to apply Tucker3 to the normalized data with two components for pupils and time occasions and one component for tests.

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

Columnwise centering of a matrix

Description

Computation of a columnwise centered version of a matrix.

Usage

\[Cc(A) \]

Arguments

* A Matrix of any order

Value

\[A_c \]

Matrix columnwise centered

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

See Also

nrm2

Examples

```r
X <- matrix(rnorm(6*3), ncol=3)  
Y <- Cc(X)  
apply(Y, 2, mean)
```

Columns concatenation

Description

Concatenates the columns of two matrices next to each other.

Usage

\[\text{ccmat}(A, B) \]
Arguments
A
Matrix of the same order of B
B
Matrix of the same order of A

Value
mat
Matrix in which the columns of A and B are concatenated next to each other

Author(s)
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

Examples
X <- matrix(rnorm(6*3),ncol=3)
Y <- matrix(rnorm(6*3),ncol=3)
Z <- ccmat(X,Y)

Description
Centering of a matricized array across one mode (modes indicated by 1,2, or 3).

Usage
cent3(X, n, m, p, mode)

Arguments
X
Matrix (or data.frame coerced to a matrix) of order (n x mp) containing the matricized array (frontal slices)
n
Number of A-mode entities
m
Number of B-mode entities
p
Number of C-mode entities
mode
Centering option (1 if X is centered across A-mode, 2 if X is centered across B-mode, 3 if X is centered across C-mode)

Value
Y
Matrix of order (n x mp) containing the centered matricized array (frontal slices)
Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

Cc, norm3

Examples

```r
X <- array(c(rnorm(120)),c(6,5,4))
# matricized array
Y <- supermat(X)
# data centered across A-mode
Z <- cent3(Y$Xa, 6, 5, 4, 1)
apply(Z,2,mean)
# data centered also across B-modes (double centering)
Z <- cent3(Z, 6, 5, 4, 2)
apply(Z,1,mean)
apply(Z,2,mean)
```

Interactive Candecomp/Parafac analysis

Description

Detects the underlying structure of a three-way array according to the Candecomp/Parafac (CP) model.

Usage

```r
CP(data, laba, labb, labc)
```

Arguments

data Array of order n by m by p or matrix or data.frame of order (n x mp) containing the matricized array (frontal slices)
laba Optional vector of length n containing the labels of the A-mode entities
labb Optional vector of length m containing the labels of the B-mode entities
labc Optional vector of length p containing the labels of the C-mode entities
Value

A list including the following components:

- **A**: Component matrix for the A-mode
- **B**: Component matrix for the B-mode
- **C**: Component matrix for the C-mode
- **fit**: Fit value expressed as a percentage
- **tripcos**: Matrix of the triple cosines among pairs of components (to inspect degeneracy)
- **fitValues**: Fit values expressed as a percentage upon convergence for all the runs of the CP algorithm (see `CPfunc`)
- **funcValues**: Function values upon convergence for all the runs of the CP algorithm (see `CPfunc`)
- **cputime**: Computation times for all the runs of the CP algorithm (see `CPfunc`)
- **iter**: Numbers of iterations upon convergence for all the runs of the CP algorithm (see `CPfunc`)
- **fitA**: Fit contributions for the A-mode entities (see `CPfitpartitioning`)
- **fitB**: Fit contributions for the B-mode entities (see `CPfitpartitioning`)
- **fitC**: Fit contributions for the C-mode entities (see `CPfitpartitioning`)
- **Bint**: Bootstrap percentile interval of every element of B (see `bootstrapCP`)
- **Cint**: Bootstrap percentile interval of every element of C (see `bootstrapCP`)
- **fpint**: Bootstrap percentile interval for the goodness of fit index expressed as a percentage (see `bootstrapCP`)
- **Afull**: Component matrix for the A-mode (full data) from split-half analysis (see `splithalfCP`)
- **As1**: Component matrix for the A-mode (split n.1) from split-half analysis (see `splithalfCP`)
- **As2**: Component matrix for the A-mode (split n.2) from split-half analysis (see `splithalfCP`)
- **Bfull**: Component matrix for the B-mode (full data) from split-half analysis (see `splithalfCP`)
- **Bs1**: Component matrix for the B-mode (split n.1) from split-half analysis (see `splithalfCP`)
- **Bs2**: Component matrix for the B-mode (split n.2) from split-half analysis (see `splithalfCP`)
- **Cfull**: Component matrix for the C-mode (full data) from split-half analysis (see `splithalfCP`)
- **Cs1**: Component matrix for the C-mode (split n.1) from split-half analysis (see `splithalfCP`)
- **Cs2**: Component matrix for the C-mode (split n.2) from split-half analysis (see `splithalfCP`)
- **A1**: Component matrix for the A-mode from Principal Component Analysis of mean values (see `pcmean`)
- **B1**: Component matrix for the B-mode from Principal Component Analysis of mean values (see `pcmean`)
- **C1**: Component matrix for the C-mode from Principal Component Analysis of mean values (see `pcmean`)
- **A2**: Component matrix for the A-mode from Principal Component Analysis of mean values (see `pcmean`)
Component matrix for the B-mode from Principal Component Analysis of mean values (see `pcamean`)

Component matrix for the C-mode from Principal Component Analysis of mean values (see `pcamean`)

Vector of length n containing the labels of the A-mode entities

Vector of length m containing the labels of the B-mode entities

Vector of length P containing the labels of the C-mode entities

Matrix of order (n x mp) containing the matricized array (frontal slices) after preprocessing used for the analysis

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

T3, T2, T1

Examples

data(TV)
TVdata=TV[[1]]
labSCALE=TV[[2]]
labPROGRAM=TV[[3]]
labSTUDENT=TV[[4]]
permutation of the modes so that the A-mode refers to students
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
Not run:
interactive CP analysis
TVcp <- CP(TVdata, labSTUDENT, labSCALE, labPROGRAM)
interactive CP analysis (when labels are not available)
TVcp <- CP(TVdata)

End(Not run)
Description

Plots fits against numbers of dimensions, with S as labels and fits against number of effective parameters.

Usage

`CPdimensionalityplot(A, n, m, p)`

Arguments

- `A`: A matrix with columns: number of components, goodness of fit (%)
- `n`: Number of A-mode entities
- `m`: Number of B-mode entities
- `p`: Number of C-mode entities

Note

A is usually the first and fourth columns of the output of DimSelector.
The number of effective parameters in a Candecomp/Parafac analysis is discussed in Weesie and Van Houwelingen (1983).

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

`CP`, `DimSelector`
Examples

data(TV)
TVdata=TV[[1]]
permutation of the modes so that the A-mode refers to students
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
Fit values of CP with different numbers of components (from 1 to 5)
FitCP <- CPrunsfit(TVdata, 30, 16, 15, 5)
OutCP <- FitCP[,c(1,4)]
CPdimensionalityplot(OutCP, 30, 16, 15)

CPfitpartitioning Fit of each entity per mode

Description

Computation of fit contributions.

Usage

CPfitpartitioning(Xprep, n, m, p, A, B, C, laba, labb, labc)

Arguments

Xprep Matrix (or data.frame coerced to a matrix) of order (n x mp) containing the matricized array (frontal slices)
n Number of A-mode entities
m Number of B-mode entities
p Number of C-mode entities
A Component matrix for the A-mode
B Component matrix for the B-mode
C Component matrix for the C-mode
laba Optional vector of length n containing the labels of the A-mode entities
labb Optional vector of length m containing the labels of the B-mode entities
labc Optional vector of length p containing the labels of the C-mode entities

Value

A list including the following components:

fitA Fit contribution for the A-mode entities
fitB Fit contribution for the B-mode entities
fitC Fit contribution for the C-mode entities
Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

See Also

CP

Examples

data(TV)
TVdata=TV[[1]]
labSCALE=TV[[2]]
labPROGRAM=TV[[3]]
labSTUDENT=TV[[4]]
permutation of the modes so that the A-mode refers to students
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
CP solution
TVcp <- CPfuncrep(TVdata, 30, 16, 15, 2, 1, 1, 1, 0, 1e-6, 10000)
Fitpartitioning of the CP solution
FitCP <- CPfitpartitioning(TVdata, 30, 16, 15, TVcp$A, TVcp$B, TVcp$C,
labSTUDENT, labSCALE, labPROGRAM)
Fitpartitioning of the CP solution (when labels are not available)
FitCP <- CPfitpartitioning(TVdata, 30, 16, 15, TVcp$A, TVcp$B, TVcp$C)

Description

Alternating Least Squares algorithm for the minimization of the Candecomp/Parafac loss function.

Usage

CPfunc(X, n, m, p, r, ort1, ort2, ort3, start, conv, maxit, A, B, C)

Arguments

- **X**: Matrix (or data.frame coerced to a matrix) of order \((n \times mp)\) containing the matricized array (frontal slices)
- **n**: Number of A-mode entities
- **m**: Number of B-mode entities
- **p**: Number of C-mode entities
- **r**: Number of extracted components
ort1 Type of constraints on A (1 for no constraints, 2 for orthogonality constraints, 3 for zero correlations constraints)
ort2 Type of constraints on B (1 for no constraints, 2 for orthogonality constraints, 3 for zero correlations constraints)
ort3 Type of constraints on C (1 for no constraints, 2 for orthogonality constraints, 3 for zero correlations constraints)
start Starting point (0 for starting point of the algorithm from SVD’s, 1 for random starting point (orthonormalized component matrices), 2 for user specified components)
conv Convergence criterion
maxit Maximal number of iterations
A Optional (necessary if start=2) starting value for A
B Optional (necessary if start=2) starting value for B
C Optional (necessary if start=2) starting value for C

Value

A list including the following components:

A Component matrix for the A-mode
B Component matrix for the B-mode
C Component matrix for the C-mode
f Loss function value
fp Fit value expressed as a percentage
iter Number of iterations
tripcos Minimal triple cosine between two components across three component matrices (to inspect degeneracy)
mintripcos Minimal triple cosine during the iterative algorithm observed at every 10 iterations (to inspect degeneracy)
ftiter Matrix containing in each row the function value and the minimal triple cosine at every 10 iterations
cputime Computation time

Note

The loss function to be minimized is $\sum(k)||X(k) - AD(k)B'||^2$, where $D(k)$ is a diagonal matrix holding the k-th row of C.
CPfunc is the same as CPfuncrep except that all printings are available.

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
References

See Also

CP, CPfuncrep

Examples

data(TV)
TVdata=TV[[1]]
permutation of the modes so that the A-mode refers to students
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
unconstrained cp solution using two components
(rational starting point by SVD [start=0])
TVcp <- CPfunc(TVdata, 30, 16, 15, 2, 1, 1, 1, 0, 1e-6, 10000)
constrained CP solution using two components with orthogonal A-mode
component matrix (rational starting point by SVD [start=0])
TVcp <- CPfunc(TVdata, 30, 16, 15, 2, 1, 1, 1, 0, 1e-6, 10000)
constrained CP solution using two components with orthogonal A-mode
component matrix and zero correlated C-mode component matrix
(rational starting point by SVD [start=0])
TVcp <- CPfunc(TVdata, 30, 16, 15, 2, 2, 1, 3, 0, 1e-6, 10000)
unconstrained CP solution using two components
(random orthonormalized starting point [start=1])
TVcp <- CPfunc(TVdata, 30, 16, 15, 2, 1, 1, 1, 1, 0, 1e-6, 10000)
unconstrained CP solution using two components (user starting point [start=2])
TVcp <- CPfunc(TVdata, 30, 16, 15, 2, 1, 1, 1, 2, 1e-6, 10000,
matrix(rnorm(30*2),nrow=30), matrix(rnorm(16*2),nrow=16),
matrix(rnorm(15*2),nrow=15))

Algorithm for the Candecomp/Parafac (CP) model

Description

Alternating Least Squares algorithm for the minimization of the Candecomp/Parafac loss function.

Usage

CPfuncrep(X, n, m, p, r, ort1, ort2, ort3, start, conv, maxit, A, B, C)
Arguments

- **X**: Matrix (or data.frame coerced to a matrix) of order \((n \times mp)\) containing the matrixized array (frontal slices)
- **n**: Number of A-mode entities
- **m**: Number of B-mode entities
- **p**: Number of C-mode entities
- **r**: Number of extracted components
- **ort1**: Type of constraints on A (1 for no constraints, 2 for orthogonality constraints, 3 for zero correlations constraints)
- **ort2**: Type of constraints on B (1 for no constraints, 2 for orthogonality constraints, 3 for zero correlations constraints)
- **ort3**: Type of constraints on C (1 for no constraints, 2 for orthogonality constraints, 3 for zero correlations constraints)
- **start**: Starting point (0 for starting point of the algorithm from SVD’s, 1 for random starting point (orthonormalized component matrices), 2 for user specified components)
- **conv**: Convergence criterion
- **maxit**: Maximal number of iterations
- **A**: Optional (necessary if start=2) starting value for A
- **B**: Optional (necessary if start=2) starting value for B
- **C**: Optional (necessary if start=2) starting value for C

Value

A list including the following components:

- **A**: Component matrix for the A-mode
- **B**: Component matrix for the B-mode
- **C**: Component matrix for the C-mode
- **f**: Loss function value
- **fp**: Fit value expressed as a percentage
- **iter**: Number of iterations
- **tripcos**: Minimal triple cosine between two components across three component matrices (to inspect degeneracy)
- **mintripcos**: Minimal triple cosine during the iterative algorithm observed at every 10 iterations (to inspect degeneracy)
- **ftiter**: Matrix containing in each row the function value and the minimal triple cosine at every 10 iterations
- **cputime**: Computation time
Note

The loss function to be minimized is \(\sum(k) ||X(k) - AD(k)B'||^2 \), where \(D(k) \) is a diagonal matrix holding the \(k \)-th row of \(C \).

\texttt{CPfuncrep} is the same as \texttt{CPfunc} except that all printings are suppressed. Thus, \texttt{CPfuncrep} can be helpful for simulation experiments.

Author(s)

Maria Antonietta Del Ferraro \texttt{<mariaantonietta.delferraro@yahoo.it>}
Henk A.L. Kiers \texttt{<h.a.l.kiers@rug.nl>}
Paolo Giordani \texttt{<paolo.giordani@uniroma1.it>}

References

See Also

\texttt{CP, CPfunc}

Examples

data(TV)
TVdata=TV[[1]]
permutation of the modes so that the A-mode refers to students
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
unconstrained CP solution using two components
(rational starting point by SVD \{start=0\})
TVcp <- CPfuncrep(TVdata, 30, 16, 15, 2, 1, 1, 1, 0, 1e-6, 1e-00)
constrained CP solution using two components with orthogonal A-mode
component matrix (rational starting point by SVD \{start=0\})
TVcp <- CPfuncrep(TVdata, 30, 16, 15, 2, 2, 1, 1, 0, 1e-6, 1e-00)
constrained CP solution using two components with orthogonal A-mode
component matrix and zero correlated C-mode component matrix
(rational starting point by SVD \{start=0\})
TVcp <- CPfuncrep(TVdata, 30, 16, 15, 2, 2, 1, 3, 0, 1e-6, 1e-00)
unconstrained CP solution using two components
(random orthonormalized starting point \{start=1\})
TVcp <- CPfuncrep(TVdata, 30, 16, 15, 2, 1, 1, 1, 1, 1e-6, 1e-00)
unconstrained CP solution using two components (user starting point \{start=2\})
TVcp <- CPfuncrep(TVdata, 30, 16, 15, 2, 1, 1, 1, 1, 1, 2, 1e-6, 1e-00, matrix(rnorm(30*2),nrow=30), matrix(rnorm(16*2),nrow=16), matrix(rnorm(15*2),nrow=15))
CPrunsFit

Candecomp/Parafac solutions

Description
Computes all the Candecomp/Parafac solutions (CP) with \(r \) (from 1 to \(\text{maxC} \)) components.

Usage

```r
CPrunsFit(X, n, m, p, maxc)
```

Arguments

- **X**: Matrix (or data.frame coerced to a matrix) of order \((n \times mp)\) containing the matricized array (frontal slices)
- **n**: Number of A-mode entities
- **m**: Number of B-mode entities
- **p**: Number of C-mode entities
- **maxC**: Maximum dimensionality for the A-mode

Value

- **out**: Matrix with columns: number of components for the A-mode, number of components for the B-mode, number of components for the C-mode, goodness of fit (%), total number of components

Note
The structure of `out` is consistent with Tucker models. In CP, the first and forth columns are sufficient for choosing the optimal number of components.

Author(s)

Maria Antonietta Del Ferraro <mariaantonetta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

`DimSelector`, `LineCon`, `CP`
DimSelector

Examples

data(TV)
TVdata=TV[,1]
permutation of the modes so that the A-mode refers to students
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
Fit values of CP with different numbers of components (from 1 to 5)
FitCP <- CPrunsfit(TVdata, 30, 16, 15, 5)

DimSelector Convex Hull procedure

Description

Selects among three-mode principal component models of different complexities.

Usage

DimSelector(out, n, m, p, model)

Arguments

out Matrix with columns: number of components for the A-mode, number of components for the B-mode, number of components for the C-mode, goodness of fit (%), total number of components
n Number of A-mode entities
m Number of B-mode entities
p Number of C-mode entities
model Kind of model (1 for Candecomp/Parafac, 2 for Tucke3, 3 for Tucker2, 4 for Tucker1

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

LineCon, T3runsApproxFit T2runsApproxFit T1runsFit CPRunsFit

Examples

data(Bus)
 # Analysis on T3 with different numbers of components (from 1 to 4 for the A-mode,
 # from 1 to 3 for the B-mode, from 1 to 5 for the C-mode)
 FitT3 <- T3runsApproxFit(Bus,7,5,37,4,4,4)
 T3opt <- DimSelector(FitT3,5,37,2)

jointplotgen

Description

Program for producing jointplots in general.

Usage

 jointplotgen(K, A, B, C, fixmode, fixunit, laba, labb, labc)

Arguments

 K Matricized core array (frontal slices)
 A Component matrix for the A-mode
 B Component matrix for the B-mode
 C Component matrix for the C-mode
 fixmode Mode for which one unit is to be chosen (1 for A-mode, 2 for B-mode, 3 for
 C-mode)
 fixunit Number of component for which joint plot is desired
 laba Vector of length n containing the labels of the A-mode entities
 labb Vector of length m containing the labels of the B-mode entities
 labc Vector of length p containing the labels of the C-mode entities

Value

 fit Percentage of info for component at hand, explained by two-dimensional plot

Author(s)

 Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
 Henk A.L. Kiers <h.a.l.kiers@rug.nl>
 Paolo Giordani <paolo.giordani@uniroma1.it>
Kinship

References

Examples

data(Bus)
labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5], 1, 1)
labc <- substr(colnames(Bus)[seq(1, ncol(Bus), 5)], 3, 8)
<- T3 solution
BusT3 <- T3funcrep(Bus, 7, 5, 37, 2, 2, 0, 1e-6)
Joint plot for mode C and component 2
jointplotgen(BusT3$H, BusT3$A, BusT3$B, BusT3$C, 3, 2, laba, labb, labc)

Kinship

Kinship terms data

Description

Three-way proximity data about 15 kinship terms produced by 6 groups of subjects.

Usage

data(Kinship)

Format

An array of order 15 x 15 x 6.
The A-mode and B-mode entities are the kinship terms (Aunt, Brother, Cousin, Daughter, Father, Granddaughter, Grandfather, Grandmother, Grandson, Mother, Nephew, Niece, Sister, Son, Uncle). The C-mode entities are groups of subjects (First female, Second female, First male, Second male, Single female, Single male).

Details

The original data have been introduced by Rosenborg \& Kim (1975). The data were collected by asking to 6 groups of subjects to produce a partition of 15 kinship terms. Two groups (Single female and Single male) were composed by 85 male and 85 female college students, respectively, and provided a single partition. Two additional groups of, respectively, 80 male and 80 female students produced two partitions each (First female, Second female, First male, Second male). In fact, they were informed in advance that, after making the first partition, they should give a new partition of the kinship terms using a different basis of meaning. The array contains similarities. For every group of subjects, the numbers of times in which the kinship terms were grouped together are given.
Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

Examples

data(Kinship)
The labels are in the data array
laba <- dimnames(Kinship)[[1]]
labb <- dimnames(Kinship)[[2]]
labc <- dimnames(Kinship)[[3]]
Candecomp/Parafac analysis
Not run:
CP(Kinship, laba, labb, labc)

End(Not run)

LineCon

Middle point location

Description

Checks whether the middle point is located below or on the line connecting its neighbors.

Usage

`LineCon(f1, f2, f3, fp1, fp2, fp3)`

Arguments

- `f1` Goodness-of-fit value for the first point
- `f2` Goodness-of-fit value for the second point
- `f3` Goodness-of-fit value for the third point
- `fp1` Number of effective parameters for the first point
- `fp2` Number of effective parameters for the second point
- `fp3` Number of effective parameters for the third point
Value

ret

Value that indicates if the middle point is located below or on the line connecting its neighbors (0 if the middle point is not located below the line connecting its neighbors, 1 if the middle point is not located on the line connecting its neighbors)

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

DimSelector

Examples

data(Bus)
T2-AB with 1 component for the A- and B-mode
FitBusT2AB11 <- T2funcrep(Bus, 7, 5, 37, 1, 1, 37, 0, 1e-6, 1)$fp
T2-AB with 2 components for the A-mode and 1 component for the B-mode
FitBusT2AB21 <- T2funcrep(Bus, 7, 5, 37, 2, 1, 37, 0, 1e-6, 1)$fp
T2-AB with 1 component for the A-mode and 2 components for the B-mode
T2-AB with 1 component for the A-mode and 2 components for the B-mode
FitBusT2AB21 FitBusT2AB12
T2-AB with 2 components for the A- and B-mode
FitBusT2AB22 <- T2funcrep(Bus, 7, 5, 37, 2, 2, 37, 0, 1e-6, 1)$fp
number of effective parameters n x r1 + m x r2 + r1 x r2 x p - r1^2 - r2^2
neptT2AB11 <- 47
neptT2AB21 <- 88
neptT2AB22 <- 164
ret <- LineCon(FitBusT2AB11, FitBusT2AB21, FitBusT2AB22, neptT2AB11, neptT2AB21, neptT2AB22)

meaudret

Meaudret data

Description

Three-way data about six sampling sites along a small French stream (the Meaudret) on which ten biological and chemical variables are collected four times.
Usage

data(meaudret)

Format

An array of order 6 x 10 x 4.
The A-mode entities are sampling sites (Site1, ..., Site6).
The B-mode entities are biological and chemical variables (Temp, Debi, PH, Cond, Oxyg, Biod, Chem, NH4, NO3, PO4).
The C-mode entities are months (June, August, November, February).

Details

The ranges of the variables are very different and, therefore, normalization of the raw data is recommended. The data have been used by Kiers (1991) in order to show the existing relations among three-way methods.

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

Examples

data(meaudret)
The labels are in the data array
laba <- dimnames(meaudret)[[1]]
labb <- dimnames(meaudret)[[2]]
labc <- dimnames(meaudret)[[3]]
Candecomp/Parafac analysis
Not run:
CP(meaudret,laba,labb,labc)
Tucker3 analysis
T3(meaudret,laba,labb,labc)
Tucker2 analysis
T2(meaudret,laba,labb,labc)
Tucker1 analysis
T1(meaudret,laba,labb,labc)

End(Not run)
Normalization of a matricized array

Description

Normalization of a matricized array within one mode (modes indicated by 1, 2, or 3) to sum of squares equal to product of size of other modes.

Usage

norm3(x, n, m, p, mode)

Arguments

x Matrix (or data.frame coerced to a matrix) of order (n x mp) containing the matricized array (frontal slices)
n Number of A-mode entities
m Number of B-mode entities
p Number of C-mode entities
mode Normalization option (1 if x is normalized within A-mode, 2 if x is normalized within B-mode, 3 if x is normalized within C-mode)

Value

y Matrix of order (n x mp) containing the normalized matricized array (frontal slices)

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

cent3, nrm2
Examples

```r
X <- array(c(rnorm(120), c(6,5,4)))
# matricized array
Y <- supermat(X)
# data normalized within A-mode
Z <- norm3(Y$x, 6, 5, 4, 1)
apply(Z, 1, sum)
# data normalized within C-mode
Z <- norm3(Y$x, 6, 5, 4, 3)
Z <- permnew(Z, 6, 5, 4)
Z <- permnew(Z, 5, 4, 3)
apply(Z, 1, sum)
```

normvari

Normalized varimax rotation

Description

Produces normalized varimax rotated version of A and rotation matrix T.

Usage

```r
normvari(A)
```

Arguments

- **A**
 - Matrix to be to be rotated

Value

A list including the following components:

- **B**
 - Rotated version of A (B=AT)
- **T**
 - Rotation matrix
- **f**
 - Varimax function value

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferrar@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

\section*{nrm2}

\textbf{See Also}

\texttt{varim}

\textbf{Examples}

\begin{verbatim}
X <- matrix(rnorm(6*3),ncol=3)
Y <- normvari(X)
 # normalized varimax rotated version of X
Y$B
 # rotation matrix
Y$T
\end{verbatim}

\begin{verbatim}
X <- matrix(rnorm(6*3),ncol=3)
Y <- nrm2(X)
apply(Y^2, 2, sum)
\end{verbatim}

\section*{Description}

Computation of a columnwise normalized version of a matrix.

\section*{Usage}

\begin{verbatim}
nrm2(A)
\end{verbatim}

\section*{Arguments}

\begin{verbatim}
A Matrix of any order
\end{verbatim}

\section*{Value}

\begin{verbatim}
N Matrix columnwise normalized
\end{verbatim}

\section*{Author(s)}

Maria Antonietta Del Ferraro \texttt{<mariaantonietta.delferraro@yahoo.it>}
Henk A.L. Kiers \texttt{<h.a.l.kiers@rug.nl>}
Paolo Giordani \texttt{<paolo.giordani@uniroma1.it>}

\section*{See Also}

\texttt{Cc}

\section*{Examples}

\begin{verbatim}
X <- matrix(rnorm(6*3),ncol=3)
Y <- nrm2(X)
apply(Y^2, 2, sum)
\end{verbatim}
ord

Order

Description

In case of vectors, an ordering of its elements in ascending order is produced; in case of matrices, the ordering in ascending order refers to every column.

Usage

ord(X)

Arguments

X Vector or matrix to be ordered

Value

A Vector or matrix with the elements sorted in ascending order
a Vector or matrix with the ordering indices

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

Examples

vector
x <- rnorm(6)
y <- ord(x)
matrix
X <- matrix(rnorm(6*3),ncol=3)
Y <- ord(X)

orth

Orthonormalization of a matrix

Description

Returns an orthonormal basis for the range of A.

Usage

orth(A)
Orthomax Rotation

Description

Produces a simultaneous orthomax rotation of two matrices (using one rotation matrix).

Usage

orthmax2(A1, A2, gam1, gam2, conv)

Arguments

A1 First matrix to be rotated with the same number of columns of A2
A2 Second matrix to be rotated with the same number of columns of A1
gam1 orthmax parameter for A1
gam2 orthmax parameter for A2
conv Optional convergence value (default 1e-6)
Value

A list including the following components:

- \(B1 \) Rotated version of \(A1 \)
- \(B2 \) Rotated version of \(A2 \)
- \(T \) Rotation matrix
- \(f \) Orthomax function value

Note

The function to be maximized is

\[
f = \text{sum}((A1^2) - 1/m1 * \text{gam}1 * \text{sum}((\text{sum}(A1^2))^2)) + \text{sum}((A2^2) - 1/m2 * \text{gam}2 * \text{sum}((\text{sum}(A2^2))^2))^2.
\]

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

- varim

Examples

```r
X <- matrix(rnorm(8*3),ncol=3)
Y <- matrix(rnorm(6*3),ncol=3)
orthXY <- orthmax2(X,Y,1,2)
# rotated version of X
orthXY$B1
# rotated version of Y
orthXY$B2
# rotation matrix
orthXY$T
```

pcamean

PCA of the mean matrix

Description

Performs Principal Component Analysis (PCA) of the mean matrix aggregated over mode number indicated by `aggregmode`.
Usage

pcamean(X, n, m, p, laba, labb, labc)

Arguments

X Matrix (or data.frame coerced to a matrix) of order (n x mp) containing the matricized array (frontal slices)
n Number of A-mode entities
m Number of B-mode entities
p Number of C-mode entities
laba Optional vector of length n containing the labels of the A-mode entities
labb Optional vector of length m containing the labels of the B-mode entities
labc Optional vector of length p containing the labels of the C-mode entities

Value

A list including the following components:

Y An object of class matrix containing the mean matrix
ev A vector containing the eigenvalues of Y
A1 Component matrix for the A mode based on varimax rotation of loadings
B1 Component matrix for the B mode based on varimax rotation of loadings
C1 Component matrix for the C mode based on varimax rotation of loadings
A2 Component matrix for the A mode based on oblique ‘HKIC’ (Harris-Kaiser Independent Cluster) orthomax rotation of loadings
B2 Component matrix for the B mode based on oblique ‘HKIC’ (Harris-Kaiser Independent Cluster) orthomax rotation of loadings
C2 Component matrix for the C mode based on oblique ‘HKIC’ (Harris-Kaiser Independent Cluster) orthomax rotation of loadings

Note

aggregmode denotes the mode over which means are computed (1 for A-mode, 2 for B-mode, 3 for C-mode),
aggregmode is provided interactively.

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
References

Examples

data(TV)
TVdata=TV[[1]]
labSCALE=TV[[2]]
labPROGRAM=TV[[3]]
labSTUDENT=TV[[4]]

permutation of the modes so that the A-mode refers to students
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)

Not run
PCA on the mean matrix
TVpcamean <- pcamean(TVdata, 30, 16, 15, labSTUDENT, labSCALE, labPROGRAM)

PCA on the mean matrix (when labels are not available)
TVpcamean <- pcamean(TVdata, 30, 16, 15)

End(Not run)

pcasup1

PCASup Analysis

Description

Computes PCASup analysis for the direction concerning the reduced mode.

Usage

`pcasup1(X, n, m, p, model)`

Arguments

- **X**: Matrix (or data.frame coerced to a matrix) of order \((n \times mp)\) containing the matricized array (frontal slices)
- **n**: Number of A-mode entities
- **m**: Number of B-mode entities
- **p**: Number of C-mode entities
- **model**: Tucker1 model choice (1 for T1-A, 2 for T1-B, 3 for T2-C)
Value

A list including the following components:

A Matrix of the eingenvectors of the supermatrix containing the frontal slices of the array (A-mode)
B Matrix of the eingenvectors of the supermatrix containing the horizontal slices of the array (B-mode)
C Matrix of the eingenvectors of the supermatrix containing the lateral slices of the array (C-mode)
1a Vector of the eigenvalues of the supermatrix containing the frontal slices of the array (A-mode)
1b Vector of the eigenvalues of the supermatrix containing the horizontal slices of the array (B-mode)
1c Vector of the eigenvalues of the supermatrix containing the lateral slices of the array (C-mode)

Note

pcasup1 computes the Tucker1 solution.
Cumulative sum of eigenvalues and fits from PCAsup applied to the reduced mode are automatically printed.

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

T1

Examples

data(Bus)
PCA-sup for T1-B
pcasupBus <- pcasup1(Bus, 7, 5, 37, 2)
PCASup Analysis

Description
Computes PCASup analysis for the directions concerning the reduced modes.

Usage
pcasup2(X, n, m, p, model)

Arguments
X Matrix (or data.frame coerced to a matrix) of order \((n \times mp)\) containing the matricized array (frontal slices)
n Number of A-mode entities
m Number of B-mode entities
p Number of C-mode entities
model Tucker2 model choice (1 for T2-AB, 2 for T2-AC, 3 for T2-BC)

Value
A list including the following components:
A Matrix of the eigenvectors of the supermatrix containing the frontal slices of the array (A-mode)
B Matrix of the eigenvectors of the supermatrix containing the horizontal slices of the array (B-mode)
C Matrix of the eigenvectors of the supermatrix containing the lateral slices of the array (C-mode)
la Vector of the eigenvalues of the supermatrix containing the frontal slices of the array (A-mode)
lb Vector of the eigenvalues of the supermatrix containing the horizontal slices of the array (B-mode)
lc Vector of the eigenvalues of the supermatrix containing the lateral slices of the array (C-mode)

Note
Cumulative sum of eigenvalues and fits from PCAsup applied to the reduced modes are automatically printed.
pcasup3

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

T2

Examples

data(Bus)
PCA-sup for T2-AB
pcasupBus <- pcasup2(Bus, 7, 5, 37)

pcasup3 PCASup Analysis

Description

Computes PCASup analysis in all the three directions.

Usage

pcasup3(X, n, m, p)

Arguments

X Matrix (or data.frame coerced to a matrix) of order (n x mp) containing the matricized array (frontal slices)
n Number of A-mode entities
m Number of B-mode entities
p Number of C-mode entities
Value

A list including the following components:

- Matrix of the eingenectors of the supermatrix containing the frontal slices of the array (A-mode)
- Matrix of the eingenectors of the supermatrix containing the horizontal slices of the array (B-mode)
- Matrix of the eingenectors of the supermatrix containing the lateral slices of the array (C-mode)
- Vector of the eigenvalues of the supermatrix containing the frontal slices of the array (A-mode)
- Vector of the eigenvalues of the supermatrix containing the horizontal slices of the array (B-mode)
- Vector of the eigenvalues of the supermatrix containing the lateral slices of the array (C-mode)

Note

`pcasup3` computes the Tucker3 solution according to Tucker (1966). Cumulative sum of eigenvalues and fits from PCAAsup applied to the A-, B- and C-modes are automatically printed.

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

T3

Examples

data(Bus)
Not run:
PCA-sup
pcasupBus <- pcasup3(Bus, 7, 5, 37)

End(Not run)
percentile95 95% percentile intervals

Description

Computes 2.5% and 97.5% percentiles for all columns of X.

Usage

percentile95(x)

Arguments

x Matrix

Value

A list including the following components:

lo Vector of the 2.5% percentiles of the values in the columns of X
up Vector of the 97.5% percentiles of the values in the columns of X

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

See Also

bootstrapCP, bootstrapT3

Examples

x <- matrix(rnorm(50*3),ncol=3)
perc95X <- percentile95(x)
Permnew

Permutation of a matricized array

Description

Permutes the matricized \((n \times m \times p)\) array \(X\) to the matricized array \(Y\) of order \((m \times p \times n)\).

Usage

\[
\text{permnew}(X, n, m, p)
\]

Arguments

- \(X\): Matrix (or data.frame coerced to a matrix) containing the matricized array
- \(n\): Number of A-mode entities of the array \(X\)
- \(m\): Number of B-mode entities of the array \(X\)
- \(p\): Number of C-mode entities of the array \(X\)

Value

- \(Y\): Matrix containing the permuted matricized array

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

Examples

\[
\begin{align*}
X & \leftarrow \text{array(c(rnorm(120)),c(6,5,4))} \\
\text{dim}(X) & \\
& \text{# matricized array} \\
Xa & \leftarrow \text{supermat}(X)$Xa} \\
& \text{# matricized } X \text{ with the A-mode entities in its rows} \\
\text{dim}(Xa) & \\
& \text{# matricized } X \text{ with the B-mode entities in its rows} \\
Xb & \leftarrow \text{permnew}(Xa, 6, 5, 4) \\
\text{dim}(Xb) & \\
& \text{# matricized } X \text{ with the C-mode entities in its rows} \\
Xc & \leftarrow \text{permnew}(Xb, 5, 4, 6) \\
\text{dim}(Xc) &
\end{align*}
\]
perms

<table>
<thead>
<tr>
<th>perms</th>
<th>Permutation</th>
</tr>
</thead>
</table>

Description

Gives all the permutations of the first integer numbers.

Usage

```r
perms(n)
```

Arguments

- `n` Integer

Value

- `z` Matrix containing in its rows all the permutation of the first `n` integer numbers

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

Examples

```r
P <- perms(4)
```

phi

<table>
<thead>
<tr>
<th>phi</th>
<th>Phi coefficient</th>
</tr>
</thead>
</table>

Description

Computes the phi coefficients among columns of two matrices.

Usage

```r
phi(a, b)
```
Arguments

- `a`: Vector or matrix of the same order of `b`
- `b`: Vector or matrix of the same order of `a`

Value

- `p`: Matrix containing the phi coefficients

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

Examples

```r
X <- matrix(rnorm(6*3), ncol=3)
Y <- matrix(rnorm(6*3), ncol=3)
P <- phi(X, Y)
```

Description

Produces an array starting from its matricization with all the frontal slices of the array next to each other.

Usage

```r
rarray(Xa, n, m, p)
```

Arguments

- `Xa`: Matrix (or data.frame coerced to a matrix) containing the elements of the frontal slices of an array
- `n`: Number of A-mode entities
- `m`: Number of B-mode entities
- `p`: Number of C-mode entities
renormsolCP

Value
X Array leading to Xa

Author(s)
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo giordani@uniroma1.it>

References

Examples
matricized array (frontal slice)
Xa <- matrix(1:8, nrow=2)
X <- rarray(Xa, 2, 2, 2)
original array
X

renormsolCP Scaling of the Candecomp/Parafac solution

Description
Scales the Candecomp/Parafac solution producing two component matrices normalized to unit sum of squares (and compensating this scaling in the remaining component matrix).

Usage
renormsolCP(A, B, C, mode)

Arguments
A Component matrix for the A-mode
B Component matrix for the B-mode
C Component matrix for the C-mode
mode Scaling option (1 if scaling for B- and C-modes, 2 if scaling for A- and C-modes, 3 if scaling for A- and B-modes)

Value
A list including the following components:
A Component matrix for the A-mode after normalization
B Component matrix for the B-mode after normalization
C Component matrix for the C-mode after normalization
Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

Examples

data(TV)
TVdata=TV[[1]]
permutation of the modes so that the A-mode refers to students
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
CP solution
TVcp <- CPfuncrep(TVdata, 30, 16, 15, 2, 1, 1, 1, 0, 1e-6, 10000)
sums of squares of A, B and C
sum(TVcp$A^2)
sum(TVcp$B^2)
sum(TVcp$C^2)
Renormalization by scaling B- and C-modes
TVcpScalBC <- renormsolCP(TVcp$A, TVcp$B, TVcp$C, 1)
sums of squares of A, B and C after renormalization
sum(TVcpScalBC$A^2)
sum(TVcpScalBC$B^2)
sum(TVcpScalBC$C^2)

renormsolT3 Renormalization of the Tucker3 (and Tucker2) solution

Description

Renormalizes the Tucker3 solution producing a core normalized to unit sum of squares (and compensating the core normalization in the component matrices).

Usage

renormsolT3(A, B, C, G, mode)

Arguments

A Component matrix for the A-mode
B Component matrix for the B-mode
C Component matrix for the C-mode
G Matricized core array (frontal slices)
mode Renormalization option (1 if renormalization with respect to A-mode, 2 if renormalization with respect to B-mode, 3 if renormalization with respect to C-mode)
Value

A list including the following components:

- **A**: Component matrix for the \(A \)-mode after normalization of the core
- **B**: Component matrix for the \(B \)-mode after normalization of the core
- **C**: Component matrix for the \(C \)-mode after normalization of the core
- **H**: Normalized matricized core array (frontal slices)

Author(s)

- Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
- Henk A.L. Kiers <h.a.l.kiers@rug.nl>
- Paolo Giordani <paolo.giordani@uniroma1.it>

Examples

data(Bus)
labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5], 1, 1)
labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)], 3, 8)
T3 solution
BusT3 <- T3funcrep(Bus, 7, 5, 37, 2, 2, 2, 0, 1e-6)
sums of squares of A and core
sum(BusT3$A^2)
sum(BusT3$H^2)
Renormalization with respect to the \(A \)-mode
BusT3rA <- renormsolt3(BusT3$A, BusT3$B, BusT3$C, BusT3$H, 1)
sums of squares of A and core after renormalization
sum(BusT3rA$A^2)
sum(BusT3rA$H^2)

splithalfCP
Split-Half Analysis

Description

Performs split-half analysis for Candecomp/Parafac.

Usage

`splithalfCP(X, n, m, p, r, centopt, normopt, scaleopt, addanal, conv, maxit, ort1, ort2, ort3, laba, labb, labc)`
Arguments

- **X**: Matrix (or data.frame coerced to a matrix) of order \((n \times mp)\) containing the matrixized array (frontal slices)
- **n**: Number of A-mode entities
- **m**: Number of B-mode entities
- **p**: Number of C-mode entities
- **r**: Number of extracted components
- **centopt**: Centering option (see `cent3`)
- **normopt**: Normalization option (see `norm3`)
- **scaleopt**: Scaling option (see `renormsolCP`)
- **addanal**: Number of additional runs
- **conv**: Convergence criterion
- **maxit**: Maximal number of iterations
- **ort1**: Type of constraints on A (see `CP`)
- **ort2**: Type of constraints on B (see `CP`)
- **ort3**: Type of constraints on C (see `CP`)
- **laba**: Optional vector of length \(n\) containing the labels of the A-mode entities
- **labb**: Optional vector of length \(m\) containing the labels of the B-mode entities
- **labc**: Optional vector of length \(p\) containing the labels of the C-mode entities

Value

- **Afull**: Component matrix for the A-mode (full data)
- **As1**: Component matrix for the A-mode (split n.1)
- **As2**: Component matrix for the A-mode (split n.2)
- **Bfull**: Component matrix for the B-mode (full data)
- **Bs1**: Component matrix for the B-mode (split n.1)
- **Bs2**: Component matrix for the B-mode (split n.2)
- **Cfull**: Component matrix for the C-mode (full data)
- **Cs1**: Component matrix for the C-mode (split n.1)
- **Cs2**: Component matrix for the C-mode (split n.2)

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

CP

Examples

data(TV)
TVdata=TV[[1]]
labSCALE=TV[[2]]
labPROGRAM=TV[[3]]
labSTUDENT=TV[[4]]
permutation of the modes so that the A-mode refers to students
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
Not run:
Split-half analysis on CP solution
splitCP <- splithalfCP(TVdata, 30, 16, 15, 2, 0, 0, 0, 5, 1e-6, 10000, 1, 1, 1, labSTUDENT, labSCALE, labPROGRAM)
Split-half analysis on CP solution (when labels are not available)
splitCP <- splithalfCP(TVdata, 30, 16, 15, 2, 0, 0, 0, 5, 1e-6, 10000, 1, 1, 1)
End(Not run)

splithalfT3 Split-Half Analysis

Description

Performs split-half analysis for Tucker3.

Usage

splithalfT3(X, n, m, p, r1, r2, r3, centopt, normopt, renormmode,
 wa_rel, wb_rel, wc_rel, addanal, conv, laba, labb, labc)

Arguments

X Matrix (or data.frame coerced to a matrix) of order (n x mp) containing the matricized array (frontal slices)
n Number of A-mode entities
m Number of B-mode entities
p Number of C-mode entities
r1 Number of extracted components for the A-mode
r2 Number of extracted components for the B-mode
r3 Number of extracted components for the C-mode
centopt Centering option (see cent3)
normopt Normalization option (see norm3)
renormmode Renormalization option (see renormsolT3)
wa_rel Relative weight for simplicity of A-mode
wb_rel Relative weight for simplicity of B-mode
wc_rel Relative weight for simplicity of C-mode
addanal Number of additional runs
conv Convergence criterion
laba Optional vector of length \(n \) containing the labels of the A-mode entities
labb Optional vector of length \(m \) containing the labels of the B-mode entities
labc Optional vector of length \(p \) containing the labels of the C-mode entities

Value

\(A_{\text{full}} \) Component matrix for the A-mode (full data)
\(A_{\text{s1}} \) Component matrix for the A-mode (split n.1)
\(A_{\text{s2}} \) Component matrix for the A-mode (split n.2)
\(B_{\text{full}} \) Component matrix for the B-mode (full data)
\(B_{\text{s1}} \) Component matrix for the B-mode (split n.1)
\(B_{\text{s2}} \) Component matrix for the B-mode (split n.2)
\(C_{\text{full}} \) Component matrix for the C-mode (full data)
\(C_{\text{s1}} \) Component matrix for the C-mode (split n.1)
\(C_{\text{s2}} \) Component matrix for the C-mode (split n.2)
\(K_{\text{full}} \) Matricized core array (frontal slices) (full data)
\(K_{\text{s1}} \) Matricized core array (frontal slices) (split n.1)
\(K_{\text{s2}} \) Matricized core array (frontal slices) (split n.2)
\(K_{\text{ss1}} \) Matricized core array (frontal slices) (using full data solutions for A,B and C for split n.1)
\(K_{\text{ss2}} \) Matricized core array (frontal slices) (using full data solutions for A,B and C for split n.2)

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

T3
Examples

```r
data(Bus)
# labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5],1,1)
labc <- substr(colnames(Bus)[seq(1,ncol(Bus)),3,8])
## Not run:
# Split-half analysis on T3 solution
splitT3 <- splithalfT3(Bus, 7, 5, 37, 2, 2, 0, 0, 3, 3, 0, 5, 1e-6, laba, labb, labc)
# Split-half analysis on T3 solution (when labels are not available)
splitT3 <- splithalfT3(Bus, 7, 5, 37, 2, 2, 0, 0, 3, 3, 0, 5, 1e-6)
## End(Not run)
```

Summary

Description

Summary of the elements of a matrix.

Usage

`SUM(A)`

Arguments

`A` Matrix or data.frame (coerced to a matrix)

Value

A list including the following components:

- `row` Vector containing the sum of squares of every row
- `col` Vector containing the sum of squares of every column
- `mr` Vector containing the mean of every row
- `mc` Vector containing the mean of every column
- `minc` Vector containing the minimum of every column
- `maxc` Vector containing the maximum of every for column
- `valueMinr` Vector containing the columns corresponding to the minimum values of every row
- `valueMinc` Vector containing the rows corresponding to the minimum values of every column
- `valueMaxr` Vector containing the columns corresponding to the maximum values of every row
supermat

valueMaxc Vector containing the rows corresponding to the maximum values of every column
ssq Sum of squares of the matrix
cumsumr Matrix containing the cumulative sums of every row
cumsumc Matrix containing the cumulative sums of every column

Author(s)
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

Examples

x <- matrix(rnorm(6*3), ncol=3)
summary <- sum(x)

supermat supermat Matrix unfolding

Description

Produces matricizations of a three-way array into matrices denoted as super-matrices.

Usage

supermat(X)

Arguments

X Array to be unfolded

Value

A list including the following components:

Xa Super-matrix with B-mode entities nested within C-mode entities (all the frontal slices of the array next to each other)

Xb Super-matrix with C-mode entities nested within A-mode entities (all the horizontal slices of the array next to each other)

Xc Super-matrix with A-mode entities nested within B-mode entities (all the lateral slices of the array next to each other)

Author(s)
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
References

Examples

```r
# array (2x2x2) with integers from 1 to 8
X <- array(1:8,c(2,2,2))
Y <- supermat(X)
# matricized arrays
Y$Xa
Y$Xb
Y$Xc
```

Tl

Interactive Tucker1 analysis

Description

Detects the underlying structure of a three-way array according to the Tucker1 (T1) model.

Usage

```r
T1(dati, laba, labb, labc)
```

Arguments

- `dati`: Array of order \(n \) by \(m \) by \(p \) or matrix or data.frame of order \((n \times mp) \) containing the matricized array (frontal slices)
- `laba`: Optional vector of length \(n \) containing the labels of the \(A \)-mode entities
- `labb`: Optional vector of length \(m \) containing the labels of the \(B \)-mode entities
- `labc`: Optional vector of length \(p \) containing the labels of the \(C \)-mode entities

Value

A list including the following components:

- `A`: Component matrix for the \(A \)-mode
- `B`: Component matrix for the \(B \)-mode
- `C`: Component matrix for the \(C \)-mode
- `core`: Matricized core array (frontal slices)
- `fit`: Fit value expressed as a percentage
- `fitA`: Fit contributions for the \(A \)-mode entities (see `T3fitpartitioning`)
- `fitB`: Fit contributions for the \(B \)-mode entities (see `T3fitpartitioning`
fitC Fit contributions for the C-mode entities (see T3fitpartitioning)

laba Vector of length n containing the labels of the A-mode entities

labb Vector of length m containing the labels of the B-mode entities

labc Vector of length p containing the labels of the C-mode entities

xprep Matrix of order (n x mp) containing the matricized array (frontal slices) after preprocessing used for the analysis

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

CP,T3,T2

Examples

data(Bus)
labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5],1,1)
labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)],3,8)
Not run:
interactive T1 analysis
BusT1 <- T1(Bus, laba, labb, labc)
interactive T1 analysis (when labels are not available)
BusT1 <- T1(Bus)

End(Not run)
T1runsFit

Tucker1 solutions

Description

Computes all the Tucker1 solutions using PCASup results with r1 (from 1 to maxa, if A-mode reduced), r2 (from 1 to maxb, if B-mode reduced) and r3 (from 1 to maxc, if C-mode reduced) components.

Usage

T1runsFit(X, n, m, p, maxa, maxb, maxc, model)

Arguments

- **X** Matrix (or data.frame coerced to a matrix) of order \((n \times mp)\) containing the matricized array (frontal slices)
- **n** Number of A-mode entities
- **m** Number of B-mode entities
- **p** Number of C-mode entities
- **maxa** Maximum dimensionality for the A-mode
- **maxb** Maximum dimensionality for the B-mode
- **maxc** Maximum dimensionality for the C-mode
- **model** Tucker1 model choice (1 for T1-A, 2 for T1-B, 3 for T2-C)

Value

- **out** Matrix with columns: number of components for the A-mode, number of components for the B-mode, number of components for the C-mode, goodness of fit (%), total number of components

Note

Cumulative sum of eigenvalues and fits from PCAsup applied to the reduced mode are automatically printed.

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

DimSelector, LineCon, pcasup1, T1

Examples

```r
data(Bus)
# Fit values of T1-A with different numbers of components (from 1 to 5)
FitT1 <- T1runsFit(Bus, 7, 5, 37, 5, 37, 1)
```

Description

Detects the underlying structure of a three-way array according to the Tucker2 (T2) model.

Usage

```r
T2(dati, laba, labb, labc)
```

Arguments

- `dati`: Array of order $n \times m \times p$ or matrix or data.frame of order $(n \times mp)$ containing the matricized array (frontal slices)
- `laba`: Optional vector of length n containing the labels of the A-mode entities
- `labb`: Optional vector of length m containing the labels of the B-mode entities
- `labc`: Optional vector of length p containing the labels of the C-mode entities

Value

A list including the following components:

- `A`: Component matrix for the A-mode
- `B`: Component matrix for the B-mode
- `C`: Component matrix for the C-mode
- `core`: Matricized core array (frontal slices)
- `fit`: Fit value expressed as a percentage
- `fitValues`: Fit values expressed as a percentage upon convergence for all the runs of the CP algorithm (see T2func)
- `funcValues`: Function values upon convergence for all the runs of the CP algorithm (see T2func)
- `cputime`: Computation times for all the runs of the CP algorithm (see T2func)
- `iter`: Numbers of iterations upon convergence for all the runs of the CP algorithm (see T2func)
fitA Fit contributions for the A-mode entities (see T3fitpartitioning)
fitB Fit contributions for the B-mode entities (see T3fitpartitioning)
fitC Fit contributions for the C-mode entities (see T3fitpartitioning)
fitAB Fit contributions for the A-and mode B component combinations (see T3fitpartitioning)
fitAC Fit contributions for the A-and mode C component combinations (see T3fitpartitioning)
fitBC Fit contributions for the B-and mode C component combinations (see T3fitpartitioning)
laba Vector of length n containing the labels of the A-mode entities
labb Vector of length m containing the labels of the B-mode entities
labc Vector of length p containing the labels of the C-mode entities
Xprep Matrix of order (n x mp) containing the matricized array (frontal slices) after preprocessing used for the analysis

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

CP, T3, T1

Examples

data(Bus)
labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5], 1, 1)
labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)], 3, 8)
Not run:
interactive T2 analysis
BusT2 <- T2(Bus, laba, labb, labc)
interactive T2 analysis (when labels are not available)
BusT2 <- T2(Bus)

End(Not run)
Algorithm for the Tucker2 model

Description

Alternating Least Squares algorithm for the minimization of the Tucker2 loss function.

Usage

\[\text{T2func}(X, n, m, p, r1, r2, r3, \text{start}, \text{conv}, \text{model}, A, B, C, H) \]

Arguments

- **X**: Matrix (or data.frame coerced to a matrix) of order \((n \times mp)\) containing the matricized array (frontal slices)
- **n**: Number of \(a\)-mode entities
- **m**: Number of \(b\)-mode entities
- **p**: Number of \(c\)-mode entities
- **r1**: Number of extracted components for the \(a\)-mode
- **r2**: Number of extracted components for the \(b\)-mode
- **r3**: Number of extracted components for the \(c\)-mode
- **start**: Starting point: 0 starting point of the algorithm from generalized eigenvalue decomposition, 1 random starting point (orthonormalized component matrices), 2 if users specified component matrices
- **conv**: Convergence criterion
- **model**: Tucker2 model choice (1 for T2-AB, 2 for T2-AC, 3 for T2-BC)
- **A**: Optional (necessary if start=2) starting value for \(A\)
- **B**: Optional (necessary if start=2) starting value for \(B\)
- **C**: Optional (necessary if start=2) starting value for \(C\)
- **H**: Optional (necessary if start=2) starting value for the matricized core array (frontal slices)

Value

A list including the following components:

- **A**: Orthonormal component matrix for the \(a\)-mode
- **B**: Orthonormal component matrix for the \(b\)-mode
- **C**: Orthonormal component matrix for the \(c\)-mode
- **H**: Matricized core array (frontal slices)
- **f**: Loss function value
T2func

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fp</td>
<td>Fit percentage</td>
</tr>
<tr>
<td>iter</td>
<td>Number of iterations</td>
</tr>
<tr>
<td>cputime</td>
<td>Computation time</td>
</tr>
<tr>
<td>La</td>
<td>Matrix which should be diagonal, and if so, contain 'intrinsic eigenvalues' for A-mode</td>
</tr>
<tr>
<td>Lb</td>
<td>Matrix which should be diagonal, and if so, contain 'intrinsic eigenvalues' for B-mode</td>
</tr>
<tr>
<td>Lc</td>
<td>Matrix which should be diagonal, and if so, contain 'intrinsic eigenvalues' for C-mode</td>
</tr>
</tbody>
</table>

Note

The loss function to be minimized is \(\| X_A - AG_A kron(C', B') \|^2 \) where \(X_A \) and \(G_A \) denote the matricized (frontal slices) data array and core array, respectively, and \(kron \) stands for the Kronecker product. T2func is the same as T2funcrep except that all printings are available.

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

T2, T2funcrep

Examples

data(Bus)
labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5], 1, 1)
labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)], 3, 8)
T2-AC solution using two components for the A- and B-modes
(rational starting point by SVD [start=0])
BusT2 <- T2func(Bus, 7, 5, 37, 2, 2, 37, 0, 1e-6, 1)
T2-AC solution using two components for the A- and C-modes
(random orthonormalized starting point [start=1])
BusT2 <- T2func(Bus, 7, 5, 37, 2, 5, 2, 1, 1e-6, 2)
T2-BC solution using two components for the B- and C- modes
(user starting point [start=2])
Algorithm for the Tucker2 model

Description

Alternating Least Squares algorithm for the minimization of the Tucker2 loss function.

Usage

T2funcrep(X, n, m, p, r1, r2, r3, start, conv, model, A, B, C, H)

Arguments

X Matrix (or data.frame coerced to a matrix) of order \((n \times mp)\) containing the matricized array (frontal slices)

n Number of A-mode entities

m Number of B-mode entities

p Number of C-mode entities

r1 Number of extracted components for the A-mode

r2 Number of extracted components for the B-mode

r3 Number of extracted components for the C-mode

start Starting point: 0 starting point of the algorithm from generalized eigenvalue decomposition, 1 random starting point (orthonormalized component matrices), 2 if users specified component matrices

conv Convergence criterion

model Tucker2 model choice (1 for T2-AB, 2 for T2-AC, 3 for T2-BC)

A Optional (necessary if start=2) starting value for A

B Optional (necessary if start=2) starting value for B

C Optional (necessary if start=2) starting value for C

H Optional (necessary if start=2) starting value for the matricized core array (frontal slices)

BusT2 <- T2funcrep(Bus, 7, 5, 37, 7, 2, 2, 1, 1e-6, 3, diag(7),
matrix(rnorm(5*2), nrow=5), matrix(rnorm(37*2), nrow=37),
matrix(rnorm(7*4), nrow=7))
Value

A list including the following components:

- A: Orthonormal component matrix for the A-mode
- B: Orthonormal component matrix for the B-mode
- C: Orthonormal component matrix for the C-mode
- H: Matricized core array (frontal slices)
- f: Loss function value
- fp: Fit percentage
- iter: Number of iterations
- cputime: Computation time
- La: Matrix which should be diagonal, and if so, contain ‘intrinsic eigenvalues’ for A-mode
- Lb: Matrix which should be diagonal, and if so, contain ‘intrinsic eigenvalues’ for B-mode
- Lc: Matrix which should be diagonal, and if so, contain ‘intrinsic eigenvalues’ for C-mode

Note

The loss function to be minimized is \(||X_A - AG_A kron(C', B')||^2 \) where \(X_A \) and \(G_A \) denote the matricized (frontal slices) data array and core array, respectively, and \(kron \) stands for the Kronecker product.

\(T2funcrep \) is the same as \(T2func \) except that all printings are suppressed. Thus, \(T2funcrep \) can be helpful for simulation experiments.

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

\(T2, T2func \)
Examples

```r
data(Bus)
# labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5], 1, 1)
labc <- substr(colnames(Bus)[seq(1, ncol(Bus), 5)], 3, 8)
# T2-AB solution using two components for the A- and B-modes
# (rational starting point by SVD [start=0])
BusT2 <- T2funcrep(Bus, 7, 5, 37, 2, 2, 37, 0, 1e-6, 1)
# T2-AC solution using two components for the A- and C-modes
# (random orthonormalized starting point [start=1])
BusT2 <- T2funcrep(Bus, 7, 5, 37, 2, 5, 2, 1, 1e-6, 2)
# T2-BC solution using two components for the B- and C-modes
# (user starting point [start=2])
BusT2 <- T2funcrep(Bus, 7, 5, 37, 7, 2, 2, 1, 1e-6, 3, diag(7),
  matrix(rnorm(5*2), nrow=5), matrix(rnorm(37*2), nrow=37),
  matrix(rnorm(7*4), nrow=7))
```

T2runApproxFit

Approximated Tucker2 solutions

Description

Computes all the approximated Tucker2 solutions using PCASup results with \(r_1 \) (from 1 to \(\text{maxa} \), if A-mode reduced), \(r_2 \) (from 1 to \(\text{maxb} \), if B-mode reduced) and \(r_3 \) (from 1 to \(\text{maxc} \), if C-mode reduced) components.

Usage

```
T2runApproxFit(X, n, m, p, maxa, maxb, maxc, model)
```

Arguments

- **X**: Matrix (or data.frame coerced to a matrix) of order \((n \times mp)\) containing the matricized array (frontal slices)
- **n**: Number of A-mode entities
- **m**: Number of B-mode entities
- **p**: Number of C-mode entities
- **maxa**: Maximum dimensionality for the A-mode
- **maxb**: Maximum dimensionality for the B-mode
- **maxc**: Maximum dimensionality for the C-mode
- **model**: Tucker2 model choice (1 for T2-AB, 2 for T2-AC, 3 for T2-BC)
Value

Matrix with columns: number of components for the A-mode, number of components for the B-mode, number of components for the C-mode, goodness of fit (%), total number of components

Note

Cumulative sum of eigenvalues and fits from PCAsup applied to the reduced modes are automatically printed.

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

DimSelector, LineCon, pcasup2, T2

Examples

data(Bus)
Fit values of T2-AB with different numbers of components
(from 1 to 3 for the B-mode, from 1 to 5 for the C-mode)
FitT2 <- T2runsApproxFit(Bus, 7, 5, 37, 7, 3, 5, 3)

T3

Interactive Tucker3 analysis

Description

Detects the underlying structure of a three-way array according to the Tucker3 (T3) model.

Usage

T3(data, laba, labb, labc)
Arguments

data Array of order n x m x p or matrix or data.frame of order (n x mp) containing the matricized array (frontal slices)
labaa Optional vector of length n containing the labels of the A-mode entities
labbb Optional vector of length m containing the labels of the B-mode entities
labcc Optional vector of length p containing the labels of the C-mode entities

Value

A list including the following components:

A Component matrix for the A-mode
B Component matrix for the B-mode
C Component matrix for the C-mode
core Matricized core array (frontal slices)
fit Fit value expressed as a percentage
fitValues Fit values expressed as a percentage upon convergence for all the runs of the CP algorithm (see T3func)
funcValues Function values upon convergence for all the runs of the CP algorithm (see T3func)
cputime Computation times for all the runs of the CP algorithm (see T3func)
iter Numbers of iterations upon convergence for all the runs of the CP algorithm (see T3func)
fitA Fit contributions for the A-mode entities (see T3fitpartitioning)
fitB Fit contributions for the B-mode entities (see T3fitpartitioning)
fitC Fit contributions for the C-mode entities (see T3fitpartitioning)
fitAB Fit contributions for the A-and mode B component combinations (see T3fitpartitioning)
fitAC Fit contributions for the A-and mode C component combinations (see T3fitpartitioning)
fitBC Fit contributions for the B-and mode C component combinations (see T3fitpartitioning)
bint Bootstrap percentile interval of every element of B (see bootstrapT3)
cint Bootstrap percentile interval of every element of C (see bootstrapT3)
kint Bootstrap percentile interval of every element of core (see bootstrapT3)
fpint Bootstrap percentile interval for the goodness of fit index expressed as a percentage (see bootstrapT3)
Afull Component matrix for the A-mode (full data) from split-half analysis (see splithalfT3)
As1 Component matrix for the A-mode (split n.1) from split-half analysis (see splithalfT3)
As2 Component matrix for the A-mode (split n.2) from split-half analysis (see splithalfT3)
Bfull Component matrix for the B-mode (full data) from split-half analysis (see splithalfT3)
Bs1 Component matrix for the B-mode (split n.1) from split-half analysis (see splithalfT3)
Bs2 Component matrix for the B-mode (split n.2) from split-half analysis (see splithalfT3)
Component matrix for the C-mode (full data) from split-half analysis (see *splithalfT3*)

Component matrix for the C-mode (split n.1) from split-half analysis (see *splithalfT3*)

Component matrix for the C-mode (split n.2) from split-half analysis (see *splithalfT3*)

Matricized core array (frontal slices) (full data) from split-half analysis (see *splithalfT3*)

Matricized core array (frontal slices) (split n.1) from split-half analysis (see *splithalfT3*)

Matricized core array (frontal slices) (split n.2) from split-half analysis (see *splithalfT3*)

Matricized core array (frontal slices) (using full data solutions for A,B and C for split n.1) from split-half analysis (see *splithalfT3*)

Matricized core array (frontal slices) (using full data solutions for A,B and C for split n.2) from split-half analysis (see *splithalfT3*)

Coordinates for plots of the A-mode entities

Coordinates for plots of the B-mode entities

Coordinates for plots of the C-mode entities

Coordinates for plots of the C and B-mode entities using the A-mode projected in it as axes (to be added in plot, i.e. coordinates in (C_{plot},A))

Coordinates for plots of the A and C-mode entities using the B-mode projected in it as axes (to be added in plot, i.e. coordinates in (A_{plot},B))

Coordinates for plots of the B and A-mode entities using the C-mode projected in it as axes (to be added in plot, i.e. coordinates in (B_{plot},C))

Component matrix for the A-mode from Principal Component Analysis of mean values (see *pcamean*)

Component matrix for the B-mode from Principal Component Analysis of mean values (see *pcamean*)

Component matrix for the C-mode from Principal Component Analysis of mean values (see *pcamean*)

Component matrix for the A-mode from Principal Component Analysis of mean values (see *pcamean*)

Component matrix for the B-mode from Principal Component Analysis of mean values (see *pcamean*)

Component matrix for the C-mode from Principal Component Analysis of mean values (see *pcamean*)

Vector of length *n* containing the labels of the A-mode entities

Vector of length *m* containing the labels of the B-mode entities

Vector of length *p* containing the labels of the C-mode entities

Matrix of order (*n* x *mp*) containing the matricized array (frontal slices) after preprocessing used for the analysis
T3dimensionalityplot

Plot fit of Tucker3

Description

Plots fits against numbers of dimensions, with PQR as labels and fits against number of effective parameters.

Usage

T3dimensionalityplot(A, n, m, p)
Arguments

A Matrix with columns: number of components for the A-mode, number of components for the B-mode, number of components for the C-mode, goodness of fit (%), total number of components

n Number of A-mode entities

m Number of B-mode entities

p Number of C-mode entities

Note

A is usually the output of DimSelector.
The number of effective parameters in a Candecomp/Parafac analysis is discussed in Weesie and Van Houwelingen (1983).

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

T3, DimSelector

Examples

data(Bus)
Fit values of T3 with different numbers of components (from 1 to 4 for the A-mode, # from 1 to 3 for the B-mode, from 1 to 5 for the C-mode)
FitT3 <- T3runsApproxFit(Bus,7,5,37,4,3,5)
T3dimensionalityplot(FitT3,7,5,37)
Description

Computation of fit contributions by combinations of modes in case of ‘renormalization’.

Usage

T3fitpartitioning(Xprep, n, m, p, AS, BT, CU, K, renormmode, laba, labb, labc)

Arguments

- *Xprep*: Matrix (or data.frame coerced to a matrix) of order (n x mp) containing the matricized array (frontal slices)
- *n*: Number of A-mode entities
- *m*: Number of B-mode entities
- *p*: Number of C-mode entities
- *AS*: Component matrix for the A-mode
- *BT*: Component matrix for the B-mode
- *CU*: Component matrix for the C-mode
- *K*: Matricized core array (frontal slices)
- *renormmode*: Renormalization option (0 for no renormalization, 1 for fit contribution to total fit of each B- and C-mode component combination, 2 for fit contribution to total fit of each A- and C-mode component combination, 3 for fit contribution to total fit of each A- and B-mode component combination)
- *laba*: Optional vector of length n containing the labels of the A-mode entities
- *labb*: Optional vector of length m containing the labels of the B-mode entities
- *labc*: Optional vector of length p containing the labels of the C-mode entities

Value

A list including the following components:

- *fitA*: Fit contribution for the A-mode entities
- *fitB*: Fit contribution for the B-mode entities
- *fitC*: Fit contribution for the C-mode entities
- *ABcontr*: Contribution to the goodness of fit contributions by combinations of A- and B-modes in case of ‘renormalization’
- *BCcontr*: Contribution to the goodness of fit contributions by combinations of B- and C-modes in case of ‘renormalization’
- *ACcontr*: Contribution to the goodness of fit contributions by combinations of A- and C-modes in case of ‘renormalization’
Note

The computation of the fit contributions by combinations of modes is done in case of ‘renormalization’.

In Tucker1, renormmode must be equal to 0.

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

See Also

T3, T2, T1

Examples

```r
data(Bus)
# labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5], 1, 1)
labc <- substr(colnames(Bus)[seq(1, ncol(Bus), 5)], 3, 8)
# T3 solution
BusT3 <- T3funcrep(Bus, 7, 5, 37, 2, 2, 2, 0, 1e-6)
# Fitpartitioning of the T3 solution
FitT3 <- T3fitpartitioning(Bus, 7, 5, 37, BusT3$A, BusT3$B, BusT3$C, BusT3$H, 0, laba, labb, labc)
# Fitpartitioning of the T3 solution (when labels are not available)
FitT3 <- T3fitpartitioning(Bus, 7, 5, 37, BusT3$A, BusT3$B, BusT3$C, BusT3$H, 0)
```

Algortihm for the Tucker3 model

Alternating Least Squares algorithm for the minimization of the Tucker3 loss function.

Usage

```r
T3func(X, n, m, p, r1, r2, r3, start, conv, A, B, C, H)
```

Arguments

- `X` Matrix (or data.frame coerced to a matrix) of order \((n \times mp)\) containing the matricized array (frontal slices)
- `n` Number of A-mode entities
- `m` Number of B-mode entities
p Number of C-mode entities
r1 Number of extracted components for the A-mode
r2 Number of extracted components for the B-mode
r3 Number of extracted components for the C-mode
start Starting point (0 starting point of the algorithm from generalized eigenvalue
decomposition, 1 random starting point (orthonormalized component matrices),
2 if users specified component matrices
conv Convergence criterion
A Optional (necessary if start=2) starting value for A
B Optional (necessary if start=2) starting value for B
C Optional (necessary if start=2) starting value for C
H Optional (necessary if start=2) starting value for the matricized core array (frontal
slices)

Value

A list including the following components:
A Orthonormal component matrix for the A-mode
B Orthonormal component matrix for the B-mode
C Orthonormal component matrix for the C-mode
H Matricized core array (frontal slices)
f Loss function value
fp Fit percentage
iter Number of iterations
cputime Computation time
La Matrix which should be diagonal, and if so, contain ‘intrinsic eigenvalues’ for
 A-mode
Lb Matrix which should be diagonal, and if so, contain ‘intrinsic eigenvalues’ for
 B-mode
Lc Matrix which should be diagonal, and if so, contain ‘intrinsic eigenvalues’ for
 C-mode

Note

The loss function to be minimized is \(||X_A - AG_A kron(C', B')||^2\) where \(X_A\) and \(G_A\) denote the
matricized (frontal slices) data array and core array, respectively, and \(kron\) stands for the Kronecker
product.
T3f unc is the same as T3funcrep except that all printings are available.

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>
References

See Also

T3, T3funcrep

Examples

data(Bus)
labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5], 1, 1)
labc <- substr(colnames(Bus)[seq(1, ncol(Bus), 5)], 3, 8)
T3 solution using two components for all the modes
(rational starting point by SVD [start=0])
Bust3 <- T3func(Bus, 7, 5, 37, 2, 2, 2, 0, 1e-6)
T3 solution using two components for all the modes
(random orthonormalized starting point [start=1])
Bust3 <- T3func(Bus, 7, 5, 37, 2, 2, 2, 1, 1e-6)
T3 solution using two components for all the modes
(user starting point [start=2])
Bust3 <- T3func(Bus, 7, 5, 37, 2, 2, 2, 1, 1e-6, matrix(rnorm(7*2), nrow=7),
 matrix(rnorm(5*2), nrow=5), matrix(rnorm(37*2), nrow=37),
 matrix(rnorm(2*4), nrow=2))

T3funcrep

Algorithm for the Tucker3 model

Description

Alternating Least Squares algorithm for the minimization of the Tucker3 loss function.

Usage

T3funcrep(X, n, m, p, r1, r2, r3, start, conv, A, B, C, H)

Arguments

X Matrix (or data.frame coerced to a matrix) of order (n x mp) containing the matricized array (frontal slices)
n Number of A-mode entities
m Number of B-mode entities
p Number of C-mode entities
r1 Number of extracted components for the A-mode
r2 Number of extracted components for the B-mode
r3 Number of extracted components for the C-mode
start Starting point (0 starting point of the algorithm from generalized eigenvalue decomposition, 1 random starting point (orthonormalized component matrices), 2 if users specified component matrices
conv Convergence criterion
A Optional (necessary if start=2) starting value for A
B Optional (necessary if start=2) starting value for B
C Optional (necessary if start=2) starting value for C
H Optional (necessary if start=2) starting value for the matricized core array (frontal slices)

Value
A list including the following components:
A Orthonormal component matrix for the A-mode
B Orthonormal component matrix for the B-mode
C Orthonormal component matrix for the C-mode
H Matricized core array (frontal slices)
f Loss function value
fp Fit percentage
iter Number of iterations
cputime Computation time
La Matrix which should be diagonal, and if so, contain ‘intrinsic eigenvalues’ for A-mode
Lb Matrix which should be diagonal, and if so, contain ‘intrinsic eigenvalues’ for B-mode
Lc Matrix which should be diagonal, and if so, contain ‘intrinsic eigenvalues’ for C-mode

Note
The loss function to be minimized is \(\| X_A - AG_A kron(C', B') \|^2 \) where \(X_A \) and \(G_A \) denote the matricized (frontal slices) data array and core array, respectively, and \(kron \) stands for the Kronecker product.
T3funcrep is the same as T3func except that all printings are suppressed. Thus, T3funcrep can be helpful for simulation experiments.
T3runsApproxFit

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

T3, T3func

Examples

data(Bus)
labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5], 1, 1)
labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)], 3, 8)
T3 solution using two components for all the modes
(rational starting point by SVD [start=0])
bust3 <- T3funcrep(Bus, 7, 5, 37, 2, 2, 0, 1e-6)
T3 solution using two components for all the modes
(random orthonormalized starting point [start=1])
bust3 <- T3funcrep(Bus, 7, 5, 37, 2, 2, 1, 1e-6)
T3 solution using two components for all the modes
(user starting point [start=2])
bust3 <- T3funcrep(Bus, 7, 5, 37, 2, 2, 1, 1e-6, matrix(rnorm(7*2),nrow=7),
matrix(rnorm(5*2),nrow=5), matrix(rnorm(37*2),nrow=37),
matrix(rnorm(2*4),nrow=2))

T3runsApproxFit Approximated Tucker3 solutions

Description

Computes all the approximated Tucker3 solutions using PCASup results with r1 (from 1 to maxa), r2 (from 1 to maxb) and r3 (from 1 to maxc) components.

Usage

T3runsApproxFit(X, n, m, p, maxa, maxb, maxc)
Arguments

- **x**: Matrix (or data.frame coerced to a matrix) of order \((n \times mp)\) containing the matricized array (frontal slices)
- **n**: Number of A-mode entities
- **m**: Number of B-mode entities
- **p**: Number of C-mode entities
- **maxa**: Maximum dimensionality for the A-mode
- **maxb**: Maximum dimensionality for the B-mode
- **maxc**: Maximum dimensionality for the C-mode

Value

- **out**: Matrix with columns: number of components for the A-mode, number of components for the B-mode, number of components for the C-mode, goodness of fit (%), total number of components

Note

Cumulative sum of eigenvalues and fits from PCAsup applied to the A-, B- and C-modes are automatically printed.

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

DimSelector, LineCon, pcasup3, T3

Examples

```r
# Fit values of T3 with different numbers of components (from 1 to 4 for the A-mode, # from 1 to 3 for the B-mode, from 1 to 5 for the C-mode)
FitT3 <- T3runsApproxFit(Bus, 7, 5, 37, 4, 3, 5)
```
threewayanova

Three-way ANOVA

Description
Computation of three-way Analysis of Variance (ANOVA).

Usage
threewayanova(Y, n, m, p)

Arguments
- **Y**: Matrix (or data.frame coerced to a matrix) of order \((n \times m \times p)\) containing the matricized array (frontal slices)
- **n**: Number of A-mode entities
- **m**: Number of B-mode entities
- **p**: Number of C-mode entities

Value
A list including the following components:
- **SS.a**: Main effect for the A-mode
- **SS.b**: Main effect for the B-mode
- **SS.c**: Main effect for the C-mode
- **SS.ab**: Second order interaction (A- and B-mode)
- **SS.bc**: Second order interaction (B- and C-mode)
- **SS.ac**: Second order interaction (A- and C-mode)
- **SS.abc**: Residual sum of squares after subtraction of second order interactions

Author(s)
Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

Examples
data(TV)
TVdata=TV[[1]]
anova3 <- threewayanova(TVdata, 16, 15, 30)
Description

Computes the trace of a matrix.

Usage

```r
tr(a)
```

Arguments

- **a**: Matrix

Value

- **t**: Trace of A

Author(s)

- Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
- Henk A.L. Kiers <h.a.l.kiers@rug.nl>
- Paolo Giordani <paolo.giordani@uniroma1.it>

Examples

```r
X <- matrix(rnorm(6*6),ncol=6)
trace <- tr(X)
```

TV data

Description

Three-way data about ratings of 15 American television shows on 16 bipolar scales made by 30 students.

Usage

```r
data(TV)
```
Format

A list containing one data.frame and three character vectors.

\(TV[[1]] \) is a data.frame with 16 rows and 450 (15 x 30) columns.
The rows refer to the American television shows.
The columns refer to the combinations of scales and students with the scales nested within the students.
The data.frame contains the frontal slices next to each other of the original array.
The labels for the bipolar scales are in the character vector \(TV[[2]] \).
The labels for the TV programs are in the character vector \(TV[[3]] \).
The labels for the students are in the character vector \(TV[[4]] \).

Details

The original data set consists of ratings made by 40 subjects (psychology students at the University of Western Ontario in 1981). To avoid missing data, only 30 students are considered. The ratings are made on 13-point bipolar scales. Lundy et al. (1989) perform Candecomp/Parafac on the preprocessed data. Details on preprocessing are not reported, but should be centered within TV programs and scales. Three real components are extracted. However, the unconstrained Candecomp/Parafac solution with three components suffers from the so-called degeneracy (obtained solution with highly correlated and uninterpretable dimensions). Degeneracy (see, for instance, Harshman & Lundy, 1984; Stegeman, 2006, 2007; De Silva & Lim, 2008; Rocci & Giordani, 2010) can be overcome by imposing orthogonal constraints in one of the component matrices. The so-obtained solution with three components is meaningful and interpretable as described in Lundy et al. (1989).

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

Examples

```r
# to perform stability check and produce bootstrap confidence intervals
# it is useful to permute the modes so that the A-mode refers to students
data(TV)
TVdata=TV[[1]]
labSCALE=TV[[2]]
labPROGRAM=TV[[3]]
labSTUDENT=TV[[4]]
TVdata <- permnew(TVdata, 16, 15, 30)
TVdata <- permnew(TVdata, 15, 30, 16)
```

Description

Produces varimax rotated version of A and rotation matrix T.

Usage

```r
varim(A)
```

Arguments

A
Matrix to be to be rotated

Value

A list including the following components:

B
Rotated version of A (B=AT)
T
Rotation matrix
f
Varimax function value

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

varimcoco

See Also

normvari

Examples

X <- matrix(rnorm(6*3),ncol=3)
Y <- varim(X)
varimax rotated version of X
Y$B
rotation matrix
Y$T

varimcoco Varimax Rotation for Tucker3 and Tucker2

Description

Performs varimax rotation of the core and component matrix rotations to simple structure.

Usage

varimcoco(A, B, C, H, wa_rel, wb_rel, wc_rel, rot1, rot2, rot3, nanal)

Arguments

A Columnwise orthonormal component matrix for the A-mode
B Columnwise orthonormal component matrix for the B-mode
C Columnwise orthonormal component matrix for the C-mode
H Matricized core array (frontal slices)
wa_rel relative weight (>=0) for the simplicity of A
wb_rel relative weight (>=0) for the simplicity of B
wc_rel relative weight (>=0) for the simplicity of C
rot1 binary indicator (1 if the A-mode is rotated, 0 otherwise, default 1)
rot2 binary indicator (1 if the B-mode is rotated, 0 otherwise, default 1)
rot3 binary indicator (1 if the C-mode is rotated, 0 otherwise, default 1)
nanal Number of random starts, default 5
Value

A list including the following components:

- AS: Rotated component matrix for the A-mode
- BT: Rotated component matrix for the B-mode
- CU: Rotated component matrix for the C-mode
- K: Rotated matricized core array (frontal slices)
- S: Rotation matrix for the A-mode
- T: Rotation matrix for the B-mode
- U: Rotation matrix for the C-mode
- f: Best solution for three-way orthomax function value
- f1: Varimax value of H
- f2a: Varimax value of AS
- f2b: Varimax value of BT
- f2c: Varimax value of CU
- func: Function values upon convergence for all the runs of the orthomax algorithm

Note

The simplicity values f1, f2a, f2b, f2c are based on ‘natural’ weights and therefore comparable across matrices. When multiplied by the relative weights, they give the contribution to the overall simplicity value (they are \(I^2/p \), \(J^2/q \) or \(K^2/r \), respectively, times the sum of the variances of squared values).

Author(s)

Maria Antonietta Del Ferraro <mariaantonietta.delferraro@yahoo.it>
Henk A.L. Kiers <h.a.l.kiers@rug.nl>
Paolo Giordani <paolo.giordani@uniroma1.it>

References

See Also

orthmaxR, varim

Examples

data(Bus)
T3 solution
BusT3 <- T3funcrep(Bus, 7, 5, 37, 2, 2, 2, 0, 1e-6)
Simplicity of A (with weight = 2.5), B (with weight = 2) and C (with weight = 1.5)
T3vmABC <- varimcoco(BusT3$A, BusT3$B, BusT3$C, BusT3$H, 2.5, 2, 1.5)
Simplicity of only A (with weight = 2.5) and B (with weight = 2)
rot3=0; the value of wc_rel (= 0) does not play an active role
T3vmAB <- varimcoco(BusT3$A, BusT3$B, BusT3$C, BusT3$H, 2.5, 2, 0, 1, 1, 0)
simplicity repeatedly with different relative weights for A, B and C
T3vm <- list(
 weight.a <- c(1, 3, 6)
 weight.b <- c(0, 2, 5)
 weight.c <- c(1, 4)
 i <- 1
 for (wa_rel in weight.a){
 for (wb_rel in weight.b){
 for (wc_rel in weight.c){
 T3vm[[i]] <- varimcoco(BusT3$A, BusT3$B, BusT3$C, BusT3$H, wa_rel, wb_rel, wc_rel)
 i <- i+1
 }
 }
 }
)
Index

*Topic algebra
 bootstrapCP, 3
 bootstrapT3, 5
 Cc, 8
 ccmat, 8
 cent3, 9
 CP, 10
 CPdimensionalityplot, 13
 CPfitpartitioning, 14
 CFunc, 15
 CPfuncrep, 17
 CPrunsFit, 20
 DimSelector, 21
 jointplotgen, 22
 LineCon, 24
 norm3, 27
 normvari, 28
 nrm2, 29
 ord, 30
 orth, 30
 orthmax2, 31
 pcamean, 32
 pcasup1, 34
 pcasup2, 36
 pcasup3, 37
 percentile95, 39
 permnew, 40
 perms, 41
 phi, 41
 rarray, 42
 renormsolvCP, 43
 renormsolvT3, 44
 splithalfCP, 45
 splithalfT3, 47
 SUM, 49
 supermat, 50
 T1, 51
 T1runsFit, 53
 T2, 54
 T2func, 56
 T2funcrep, 58
 T2runsApproxFit, 60
 T3, 61
 T3dimensionalityplot, 64
 T3fitpartitioning, 66
 T3func, 67
 T3funcrep, 69
 T3runsApproxFit, 71
 threewayanova, 73
 tr, 74
 varim, 76
 varimcoco, 77

*Topic array
 bootstrapCP, 3
 bootstrapT3, 5
 Bus, 7
 Cc, 8
 ccmat, 8
 cent3, 9
 CP, 10
 CPdimensionalityplot, 13
 CPfitpartitioning, 14
 CFunc, 15
 CPfuncrep, 17
 CPrunsFit, 20
 DimSelector, 21
 jointplotgen, 22
 LineCon, 24
 meaudret, 25
 norm3, 27
 normvari, 28
 nrm2, 29
 ord, 30
 orth, 30
 orthmax2, 31
 pcamean, 32
 pcasup1, 34

80
INDEX

pcasupR, 36
pcasupS, 37
percentileYU, 39
permnew, 40
perms, 41
phi, 41
rarray, 42
renormsoltS, 44
splithalfCP, 45
splithalfT3, 47
SUM, 49
supermat, 50
T1, 51
T1runsFit, 53
T2, 54
T2func, 56
T2funcrep, 58
T2runsApproxFit, 60
T3, 61
T3dimensionalityplot, 64
T3fitpartitioning, 66
T3func, 67
T3funcrep, 69
T3runsApproxFit, 71
threewayanova, 73
tr, 74
TV, 74
varim, 76
varimcoco, 77

*Topic data
 Bus, 7
 Kinship, 23
 meaudret, 25
 TV, 74

*Topic multivariate
 bootstrapCP, 3
 bootstrapT3, 5
 Bus, 7
 Cc, 8
 ccmat, 8
 cent3, 9
 CP, 10
 CPdimensionalityplot, 13
 CPFitpartitioning, 14
 CPfunc, 15
 CPfuncrep, 17
 CPRunsFit, 20
 DimSelector, 21
 jointplotgen, 22
 Kinship, 23
 LineCon, 24
 meaudret, 25
 norm3, 27
 normvari, 28
 norm2, 29
 ord, 30
 orth, 30
 orthmax2, 31
 pcamean, 32
 pcasup1, 34
 pcasup2, 36
 pcasup3, 37
 percentileYU, 39
 permnew, 40
 perms, 41
 phi, 41
 rarray, 42
 renormsoltS, 44
 splithalfCP, 45
 splithalfT3, 47
 SUM, 49
 supermat, 50
 T1, 51
 T1runsFit, 53
 T2, 54
 T2func, 56
 T2funcrep, 58
 T2runsApproxFit, 60
 T3, 61
 T3dimensionalityplot, 64
 T3fitpartitioning, 66
 T3func, 67
 T3funcrep, 69
 T3runsApproxFit, 71
 threewayanova, 73
 tr, 74
 TV, 74
 varim, 76
 varimcoco, 77

bootstrapCP, 3, 6, 11, 39
bootstrapT3, 4, 5, 39, 62
Bus, 7
Cc, 8, 10, 29