Package ‘TwoCop’

February 19, 2015

Type Package
Title Nonparametric test of equality between two copulas
Version 1.0
Date 2012-10-17
Author Bruno Remillard and Jean-Francois Plante
Maintainer Bruno Remillard <bruno.remillard@hec.ca>
Description This package implements the nonparametric test of equality between two copulas proposed by Remillard and Scaillet in their 2009 JMVA paper.
License GPL-2
Repository CRAN
Date/Publication 2012-10-19 06:44:27
NeedsCompilation yes

R topics documented:

TwoCop-package .. 1
TwoCop ... 2

Index 4

Description

This package implements the nonparametric test of equality between two copulas proposed by Remillard and Scaillet (2009) in their JMVA paper. The test is based on the Cramer-von-Mises statistic between the two empirical copulas. An approximate p-value is returned.

Details
The function `TwoCop` provides an approximate p-value for the test of equality between two copulas.

Author(s)

Bruno Remillard and Jean-Francois Plante

Maintainer: Bruno Remillard <bruno.remillard@hec.ca>

References

Description

This function performs the nonparametric test of equality between two copulas proposed by Remillard and Scaillet (2009). The test is based on the Cramer-von-Mises statistic between the two empirical copulas. An approximate p-value is returned.

Usage

```r
TwoCop(x, y, Nsim=100, paired=FALSE, alpha=0.95)
```

Arguments

- `x`: `n` by `d` matrix containing the first dataset.
- `y`: `m` by `d` matrix containing the second dataset.
- `Nsim`: Number of iterations used in the approximation of the p-value.
- `paired`: `FALSE` (default) means that `x` and `y` are from two independent populations, `TRUE` indicates paired data.
- `alpha`: Level of the calculated VaR. Default is 0.95.

Details

Details of the method can be found in Remillard and Scaillet (2009).
Value

A list of the following objects:

- pvalue: p-value based on the multiplier Monte Carlo method with \(\text{nsim} \) iterations.
- cvmsim: Simulated values of the Cramer-von Mises statistic.
- VaR: \(\alpha \) quantile of the simulated Cramer-von Mises statistics.

Author(s)

Bruno Remillard and Jean-Francois Plante

References

Examples

Simulating a bivariate normal (copula = independence)

\[
X = \text{matrix}(\text{rnorm}(100), \text{ncol}=2)
\]

Simulating a bivariate exponential distribution with a Clayton copula

\[
v = \text{runif}(50)
\theta = 1
x = (1/\text{runif}(50))^{\text{theta+1}}
\]

\[
u = -(x^\theta - v^\theta + 1)^{-1/\theta}
\]

\[
y = \text{cbind}(-\log(1-u), -\log(1-v))
\]

Testing equality of the copulas

\[
\text{TwoCop}(X, Y) \text{\$pvalue}
\]
Index

*Topic **copula**
 TwoCop, 2
 TwoCop-package, 1
*Topic **htest**
 TwoCop, 2
 TwoCop-package, 1
*Topic **multivariate**
 TwoCop, 2
 TwoCop-package, 1
*Topic **nonparametric**
 TwoCop, 2
 TwoCop-package, 1
*Topic **package**
 TwoCop-package, 1
*Topic **ranks**
 TwoCop, 2
 TwoCop-package, 1
 TwoCop, 2
 TwoCop-package, 1