Package ‘VisuClust’

February 17, 2016

Type Package
Title Visualisation of Clusters in Multivariate Data
Version 1.2
Date 2016-2-15
Author Michael Sieger [cre, aut], Georg Ohmayer [aut, ths], Hochschule Weihenstephan-Triesdorf [cph]
Suggests MASS, cluster
Depends aplpack
Maintainer Michael Sieger <sieger-michael@web.de>
Description Displays multivariate data, based on Sammon's nonlinear mapping.
License LGPL (>= 3)
NeedsCompilation no
Repository CRAN
Date/Publication 2016-02-17 11:19:16

R topics documented:

FuzzyPlot .. 2
LinkageMap .. 3
MilchBig ... 5
MilchSmall ... 5
VisuClust .. 6

Index 7
Displays a Fuzzy Plot

Description

A Fuzzy Plot is a 2D Scatter Plot that displays the result of Sammon’s Nonlinear Mapping together with a fuzzy clustering. The values $u[i,k]$ ($i=1,...,nPoints; k=1,...,nPoints$), which states the membership of the ith observation for the cluster k, can be computed for example with `fanny` from the package `cluster`.

If the slider is on the last position, all clusters are displayed together. The color and the symbol indicates the nearest crisp clustering then (max $u[i,k], k=1,...,nClusters$). The color intensity displays the probability of membership to the nearest cluster.

A single cluster can be selected too by setting the slider in position 1 to $nClusters$. The color intensity and the label size (if labels are set) shows the probability of membership to the selected cluster.

Usage

```r
fuzzyplot(xSammon, probsL, clustercolorsL, clusterSymbolsL, labelsL, labelsizeL, xlabL, ylabL, mainL, enableLegendL, cexL)
```

Arguments

- `xSammon`: A matrix with size $(nPoints,2)$ that contains the projected points from Sammon’s Nonlinear Mapping. See `sammon` (package MASS).
- `probs`: A matrix with size $(nPoints, nClusters)$ that contains the probabilities of membership for each cluster. See the membership argument of `fanny` (package cluster).
- `clustercolors`: A vector of size $nClusters$ that contains the colors for the clusters. One should only choose colors with a very high intensity. See `colors`.
- `clusterSymbols`: A vector of size $nClusters$ that contains the symbols for the clusters. Not all symbols can be filled. If this is wanted, one should use the symbols 15-20. See `points`.
- `labels`: A string-array with labels for the points (size: $nPoints$).
- `labelsize`: The size of the labels in the form $c(\min, \max)$.
- `xlab`: A title for the x axis (as described in `plot`).
- `ylab`: A title for the y axis (as described in `plot`).
- `main`: An overall title for the plot (as described in `plot`).
- `enableLegend`: Switch legend on/off.
- `cex`: Two numerical values in the form $c(\min, \max)$ giving the amount by which plotting text and symbols should be magnified relative to the default (as described in `par`).
Author(s)

Michael Sieger <siegemichael@web.de>
Georg Ohmayer <georg.ohmayer@hsrw.de>

Examples

library(cluster)
library(MASS)

The example data
data("MilchSmall")

M <- scale(MilchSmall[3:6])
D <- dist(M)
S <- sammon(D)
F <- fanny(D, 5)

FuzzyPlot(S$points, F$membership, labels=MilchSmall[,2],
clusterColors=c("red", "green", "magenta", "yellow", "blue", "black"))

LinkageMap Displays a Linkage Map

Description

A Linkage Map is a 2D Scatter Plot that displays the result of Sammon’s Nonlinear Mapping. A number of ranges (>= 1) for the distance values d[i,j] can be defined. Each point pair whose distance is inside of the defined range is connected with a line.

The ranges are defined by thresholds t[k](1<=k<=3) in the following way range[1]: d[i,j] <= t[1]
range[k]: t[k-1] < d[i,j] <= t[k] The ranges can be changed dynamically at runtime by changing the thresholds t[k] with sliders.

A estimation of the density function for the distances d[i,j] (for example with kernel density estimation, see function density) is helpful for finding the ideal thresholds t[k] (=local minima in the density function).

Usage

LinkageMap(xSammon, dist, lineTypes=c("solid","dotted","dashed"),
lineColors=c("red","green","blue"), lineWidths=c(1,1,1),
labels = NULL, cluster = NULL, maxValue=0.5, legendDigits = 2,
xlab = "", ylab = "", main = "")
Arguments

xsammon A matrix with size (nPoints,2) that contains the projected points from Sammon’s Nonlinear Mapping.

dist A distance matrix for the given data (to compute with dist).

lineTypes An array of line types. The size must match with line colors and line widths. The various line types are described in par.

lineColors An array of colors. The size must match with line types and line widths. see colors

lineWidths An array of line widths. The size must match with line colors and line types. see par

labels A string-array with labels for the points (size: nPoints).

cluster A array containing cluster memberships of the points. The point membership will be indicated with different colors. The array size must match with nPoints.

maxValue maxValue*max(d[i,j]) is the maximum value that can be adjusted with the slid- ers.

legendDites The number of fractional digits to be displayed in the legend.

xlab A title for the x axis (as described in plot).

ylab A title for the y axis (as described in plot).

main An overall title for the plot (as described in plot).

Author(s)

Michael Sieger <sieger-michael@web.de>
Georg Ohmayer <georg.ohmayer@hswt.de>

Examples

library(MASS)

data("MilchSmall")
M <- scale(MilchSmall[3:6])

D <- dist(M)
S <- sammon(D)
K <- kmeans(D,center=5)
LinkageMap(S$points, D, cluster=K$cluster, labels=MilchSmall[,2])
MilchBig

Milk components of 50 mammals

Description
This dataset contains the fat, protein, lactose and ash of different milks.

Usage
MilchBig

Author(s)
Georg Ohmayer <georg.ohmayer@hswt.de>,
Herbert Seiler

References

MilchSmall

Milk components of mammals

Description
This dataset contains the fat, protein, lactose and ash of different milks. This is a reduced version (20 instead of 50 observations).

Usage
MilchSmall

Author(s)
Georg Ohmayer <georg.ohmayer@hswt.de>,
Herbert Seiler

References
Description

The VisuClust package provides functions to display the result of clusterings, if they are either disjoint (every observation belongs to one cluster) or fuzzy (for each observation i and cluster k there is a value \(u[i,k] \) \((i=1,\ldots,n\text{Points}; \ k=1,\ldots,n\text{Clusters})\)), which states the membership of the i.th observation for the cluster k, where \(\sum(u[i,k],k=1,\ldots,n\text{Clusters}) = 1 \). A disjoint clustering can be created with known hierarchical methods, if the desired number of clusters is provided, or by using k-means-clustering (for example \texttt{hclust}, \texttt{kmeans} from the package cluster). A fuzzy clustering can be created for example with fanny from the package cluster.

The basis of the visualization is Sammon’s method Nonlinear Mapping (NLM), which displays all observations in a plane so that the distances in the multivariate space are approximated best (see \texttt{sammon} from the package MASS). The clusters in the NLM diagram can be indicated by coloring, drawing lines between similar point pairs, and other features.

Author(s)

Michael Sieger <sieger-michael@web.de>
Georg Ohmayer <georg.ohmayer@hswt.de>

References

Index

*Topic datasets
 MilchBig, 5
 MilchSmall, 5

 cluster, 2, 6
 colors, 2, 4
 density, 3
 dist, 4
 fanny, 2
 FuzzyPlot, 2
 hclust, 6
 kmeans, 6
 LinkageMap, 3
 MilchBig, 5
 MilchSmall, 5
 par, 2, 4
 plot, 2
 points, 2
 sammon, 2, 6
 VisuClust, 6