Package ‘WGCNA’

October 24, 2018

Version 1.66
Date 2018-10-22
Title Weighted Correlation Network Analysis
Author Peter Langfelder <Peter.Langfelder@gmail.com> and Steve Horvath <SHorvath@mednet.ucla.edu> with contributions by Chaochao Cai, Jun Dong, Jeremy Miller, Lin Song, Andy Yip, and Bin Zhang
Maintainer Peter Langfelder <Peter.Langfelder@gmail.com>
Depends R (>= 3.0), dynamicTreeCut (>= 1.62), fastcluster
Imports stats, grDevices, utils, matrixStats (>= 0.8.1), Hmisc, impute, splines, foreach, doParallel, preprocessCore, survival, parallel, GO.db, AnnotationDbi, Rcpp (>= 0.11.0), robust
Suggests org.Hs.eg.db, org.Mm.eg.db, infotheo, entropy, minet
LinkingTo Rcpp
ZipData no
License GPL (>= 2)
URL http://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
NeedsCompilation yes
Repository CRAN
Date/Publication 2018-10-24 09:30:03 UTC

R topics documented:

 accuracyMeasures .. 6
 addErrorBars ... 9
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>addGrid</td>
<td>9</td>
</tr>
<tr>
<td>addGuideLines</td>
<td>10</td>
</tr>
<tr>
<td>addTraitToMEs</td>
<td>11</td>
</tr>
<tr>
<td>adjacency</td>
<td>12</td>
</tr>
<tr>
<td>adjacency.polyReg</td>
<td>14</td>
</tr>
<tr>
<td>adjacency.splineReg</td>
<td>16</td>
</tr>
<tr>
<td>AFcorMI</td>
<td>18</td>
</tr>
<tr>
<td>alignExpr</td>
<td>19</td>
</tr>
<tr>
<td>allocateJobs</td>
<td>20</td>
</tr>
<tr>
<td>allowWGCNATThreads</td>
<td>21</td>
</tr>
<tr>
<td>automaticNetworkScreening</td>
<td>22</td>
</tr>
<tr>
<td>automaticNetworkScreeningGS</td>
<td>23</td>
</tr>
<tr>
<td>BD.getData</td>
<td>25</td>
</tr>
<tr>
<td>bicor</td>
<td>26</td>
</tr>
<tr>
<td>bicorAndPvalue</td>
<td>29</td>
</tr>
<tr>
<td>bicovWeights</td>
<td>30</td>
</tr>
<tr>
<td>binarizeCategoricalColumns</td>
<td>32</td>
</tr>
<tr>
<td>binarizeCategoricalVariable</td>
<td>35</td>
</tr>
<tr>
<td>blockSize</td>
<td>38</td>
</tr>
<tr>
<td>blockwiseConsensusModules</td>
<td>39</td>
</tr>
<tr>
<td>blockwiseIndividualTOMs</td>
<td>50</td>
</tr>
<tr>
<td>blockwiseModules</td>
<td>55</td>
</tr>
<tr>
<td>BloodLists</td>
<td>63</td>
</tr>
<tr>
<td>blueWhiteRed</td>
<td>64</td>
</tr>
<tr>
<td>BrainLists</td>
<td>65</td>
</tr>
<tr>
<td>BrainRegionMarkers</td>
<td>65</td>
</tr>
<tr>
<td>branchEigengeneDissim</td>
<td>66</td>
</tr>
<tr>
<td>branchSplit</td>
<td>68</td>
</tr>
<tr>
<td>branchSplit.dissim</td>
<td>69</td>
</tr>
<tr>
<td>branchSplitFromStabilityLabels</td>
<td>70</td>
</tr>
<tr>
<td>checkAdjMat</td>
<td>71</td>
</tr>
<tr>
<td>checkSets</td>
<td>72</td>
</tr>
<tr>
<td>chooseOneHubInEachModule</td>
<td>73</td>
</tr>
<tr>
<td>chooseTopHubInEachModule</td>
<td>75</td>
</tr>
<tr>
<td>clusterCoef</td>
<td>76</td>
</tr>
<tr>
<td>coClustering</td>
<td>77</td>
</tr>
<tr>
<td>coClustering.permutationTest</td>
<td>78</td>
</tr>
<tr>
<td>collapseRows</td>
<td>80</td>
</tr>
<tr>
<td>collapseRowsUsingKME</td>
<td>85</td>
</tr>
<tr>
<td>collectGarbage</td>
<td>86</td>
</tr>
<tr>
<td>colQuantileC</td>
<td>87</td>
</tr>
<tr>
<td>conformityBasedNetworkConcepts</td>
<td>88</td>
</tr>
<tr>
<td>conformityDecomposition</td>
<td>90</td>
</tr>
<tr>
<td>consensusCalculation</td>
<td>92</td>
</tr>
<tr>
<td>consensusDissTOMandTree</td>
<td>95</td>
</tr>
<tr>
<td>consensusKME</td>
<td>97</td>
</tr>
<tr>
<td>consensusMEDissimilarity</td>
<td>102</td>
</tr>
<tr>
<td>consensusOrderMEs</td>
<td>103</td>
</tr>
<tr>
<td>R topics documented:</td>
<td>3</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>consensusProjectiveKMeans</td>
<td>104</td>
</tr>
<tr>
<td>consensusRepresentatives</td>
<td>106</td>
</tr>
<tr>
<td>consensusTOM</td>
<td>109</td>
</tr>
<tr>
<td>consensusTreeInputs</td>
<td>117</td>
</tr>
<tr>
<td>convertNumericColumnsToNumeric</td>
<td>117</td>
</tr>
<tr>
<td>cor</td>
<td>118</td>
</tr>
<tr>
<td>corAndPvalue</td>
<td>121</td>
</tr>
<tr>
<td>corPredictionSuccess</td>
<td>123</td>
</tr>
<tr>
<td>corPvalueFisher</td>
<td>124</td>
</tr>
<tr>
<td>corPvalueStudent</td>
<td>124</td>
</tr>
<tr>
<td>correlationPreservation</td>
<td>125</td>
</tr>
<tr>
<td>coxRegressionResiduals</td>
<td>126</td>
</tr>
<tr>
<td>cutreeStatic</td>
<td>127</td>
</tr>
<tr>
<td>cutreeStaticColor</td>
<td>128</td>
</tr>
<tr>
<td>displayColors</td>
<td>129</td>
</tr>
<tr>
<td>dynamicMergeCut</td>
<td>130</td>
</tr>
<tr>
<td>empiricalBayesLM</td>
<td>131</td>
</tr>
<tr>
<td>exportNetworkToCytoscape</td>
<td>136</td>
</tr>
<tr>
<td>exportNetworkToVisANT</td>
<td>137</td>
</tr>
<tr>
<td>factorizeNonNumericColumns</td>
<td>138</td>
</tr>
<tr>
<td>fixDataStructure</td>
<td>139</td>
</tr>
<tr>
<td>formatLabels</td>
<td>140</td>
</tr>
<tr>
<td>fundamentalNetworkConcepts</td>
<td>141</td>
</tr>
<tr>
<td>GOenrichmentAnalysis</td>
<td>143</td>
</tr>
<tr>
<td>goodGenes</td>
<td>147</td>
</tr>
<tr>
<td>goodGenesMS</td>
<td>149</td>
</tr>
<tr>
<td>goodSamples</td>
<td>151</td>
</tr>
<tr>
<td>goodSamplesGenes</td>
<td>152</td>
</tr>
<tr>
<td>goodSamplesGenesMS</td>
<td>154</td>
</tr>
<tr>
<td>goodSamplesMS</td>
<td>155</td>
</tr>
<tr>
<td>greenBlackRed</td>
<td>157</td>
</tr>
<tr>
<td>greenWhiteRed</td>
<td>158</td>
</tr>
<tr>
<td>GTOMdist</td>
<td>159</td>
</tr>
<tr>
<td>hierarchicalConsensusCalculation</td>
<td>160</td>
</tr>
<tr>
<td>hierarchicalConsensusKME</td>
<td>163</td>
</tr>
<tr>
<td>hierarchicalConsensusMEDissimilarity</td>
<td>170</td>
</tr>
<tr>
<td>hierarchicalConsensusModules</td>
<td>171</td>
</tr>
<tr>
<td>hierarchicalConsensusTOM</td>
<td>179</td>
</tr>
<tr>
<td>hierarchicalMergeCloseModules</td>
<td>183</td>
</tr>
<tr>
<td>hubGeneSignificance</td>
<td>186</td>
</tr>
<tr>
<td>ImmunePathwayLists</td>
<td>187</td>
</tr>
<tr>
<td>imputeByModule</td>
<td>187</td>
</tr>
<tr>
<td>individualTOMs</td>
<td>188</td>
</tr>
<tr>
<td>Inline display of progress</td>
<td>191</td>
</tr>
<tr>
<td>intramodularConnectivity</td>
<td>193</td>
</tr>
<tr>
<td>isMultiData</td>
<td>194</td>
</tr>
<tr>
<td>keepCommonProbes</td>
<td>195</td>
</tr>
<tr>
<td>kMEcomparisonScatterplot</td>
<td>196</td>
</tr>
</tbody>
</table>
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>labeledBarplot</code></td>
<td>198</td>
</tr>
<tr>
<td><code>labeledHeatmap</code></td>
<td>199</td>
</tr>
<tr>
<td><code>labeledHeatmap.multiPage</code></td>
<td>204</td>
</tr>
<tr>
<td><code>labelPoints</code></td>
<td>207</td>
</tr>
<tr>
<td><code>labels2colors</code></td>
<td>209</td>
</tr>
<tr>
<td><code>list2multiData</code></td>
<td>210</td>
</tr>
<tr>
<td><code>lowerTri2matrix</code></td>
<td>211</td>
</tr>
<tr>
<td><code>matchLabels</code></td>
<td>212</td>
</tr>
<tr>
<td><code>matrixToNetwork</code></td>
<td>213</td>
</tr>
<tr>
<td><code>mergeCloseModules</code></td>
<td>215</td>
</tr>
<tr>
<td><code>metaAnalysis</code></td>
<td>218</td>
</tr>
<tr>
<td><code>metaZfunction</code></td>
<td>223</td>
</tr>
<tr>
<td><code>minWhichMin</code></td>
<td>224</td>
</tr>
<tr>
<td><code>moduleColor.getMEprefix</code></td>
<td>225</td>
</tr>
<tr>
<td><code>moduleEigengenes</code></td>
<td>226</td>
</tr>
<tr>
<td><code>moduleMergeUsingKME</code></td>
<td>229</td>
</tr>
<tr>
<td><code>moduleNumber</code></td>
<td>231</td>
</tr>
<tr>
<td><code>modulePreservation</code></td>
<td>232</td>
</tr>
<tr>
<td><code>mtd.apply</code></td>
<td>237</td>
</tr>
<tr>
<td><code>mtd.mapply</code></td>
<td>239</td>
</tr>
<tr>
<td><code>mtd.rbindSelf</code></td>
<td>241</td>
</tr>
<tr>
<td><code>mtd.setAttr</code></td>
<td>242</td>
</tr>
<tr>
<td><code>mtd.setColnames</code></td>
<td>243</td>
</tr>
<tr>
<td><code>mtd.simplify</code></td>
<td>244</td>
</tr>
<tr>
<td><code>mtd.subset</code></td>
<td>245</td>
</tr>
<tr>
<td><code>multiData</code></td>
<td>246</td>
</tr>
<tr>
<td><code>multiData.eigengeneSignificance</code></td>
<td>247</td>
</tr>
<tr>
<td><code>multiGSub</code></td>
<td>249</td>
</tr>
<tr>
<td><code>multiSetMEs</code></td>
<td>250</td>
</tr>
<tr>
<td><code>multiUnion</code></td>
<td>253</td>
</tr>
<tr>
<td><code>mutualInfoAdjacency</code></td>
<td>254</td>
</tr>
<tr>
<td><code>nearestCentroidPredictor</code></td>
<td>257</td>
</tr>
<tr>
<td><code>nearestNeighborConnectivity</code></td>
<td>261</td>
</tr>
<tr>
<td><code>nearestNeighborConnectivityMS</code></td>
<td>262</td>
</tr>
<tr>
<td><code>networkConcepts</code></td>
<td>264</td>
</tr>
<tr>
<td><code>networkScreening</code></td>
<td>267</td>
</tr>
<tr>
<td><code>networkScreeningGS</code></td>
<td>268</td>
</tr>
<tr>
<td><code>newBlockInformation</code></td>
<td>270</td>
</tr>
<tr>
<td><code>newBlockwiseData</code></td>
<td>271</td>
</tr>
<tr>
<td><code>newConsensusOptions</code></td>
<td>273</td>
</tr>
<tr>
<td><code>newConsensusTree</code></td>
<td>274</td>
</tr>
<tr>
<td><code>newCorrelationOptions</code></td>
<td>275</td>
</tr>
<tr>
<td><code>newNetworkOptions</code></td>
<td>276</td>
</tr>
<tr>
<td><code>normalizeLabels</code></td>
<td>277</td>
</tr>
<tr>
<td><code>nPresent</code></td>
<td>278</td>
</tr>
<tr>
<td><code>nSets</code></td>
<td>279</td>
</tr>
<tr>
<td><code>numbers2colors</code></td>
<td>279</td>
</tr>
<tr>
<td><code>orderBranchesUsingHubGenes</code></td>
<td>281</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>orderMEs</td>
<td>283</td>
</tr>
<tr>
<td>orderMEsByHierarchicalConsensus</td>
<td>285</td>
</tr>
<tr>
<td>overlapTable</td>
<td>286</td>
</tr>
<tr>
<td>overlapTableUsingKME</td>
<td>287</td>
</tr>
<tr>
<td>pickHardThreshold</td>
<td>289</td>
</tr>
<tr>
<td>pickSoftThreshold</td>
<td>291</td>
</tr>
<tr>
<td>plotClusterTreeSamples</td>
<td>293</td>
</tr>
<tr>
<td>plotColorUnderTree</td>
<td>295</td>
</tr>
<tr>
<td>plotCor</td>
<td>297</td>
</tr>
<tr>
<td>plotDendroAndColors</td>
<td>298</td>
</tr>
<tr>
<td>plotEigengeneNetworks</td>
<td>301</td>
</tr>
<tr>
<td>plotMat</td>
<td>303</td>
</tr>
<tr>
<td>plotMEpairs</td>
<td>304</td>
</tr>
<tr>
<td>plotModuleSignificance</td>
<td>305</td>
</tr>
<tr>
<td>plotMultiHist</td>
<td>307</td>
</tr>
<tr>
<td>plotNetworkHeatmap</td>
<td>308</td>
</tr>
<tr>
<td>populationMeansInAdmixture</td>
<td>309</td>
</tr>
<tr>
<td>pquantile</td>
<td>312</td>
</tr>
<tr>
<td>prepComma</td>
<td>314</td>
</tr>
<tr>
<td>prependZeros</td>
<td>314</td>
</tr>
<tr>
<td>preservationNetworkConnectivity</td>
<td>315</td>
</tr>
<tr>
<td>projectiveKMeans</td>
<td>317</td>
</tr>
<tr>
<td>proportionsInAdmixture</td>
<td>319</td>
</tr>
<tr>
<td>pruneAndExplained</td>
<td>321</td>
</tr>
<tr>
<td>pruneConsensusModules</td>
<td>322</td>
</tr>
<tr>
<td>PWLists</td>
<td>325</td>
</tr>
<tr>
<td>qvalue</td>
<td>327</td>
</tr>
<tr>
<td>qvalue.restricted</td>
<td>329</td>
</tr>
<tr>
<td>randIndex</td>
<td>330</td>
</tr>
<tr>
<td>rankPvalue</td>
<td>330</td>
</tr>
<tr>
<td>recutBlockwiseTrees</td>
<td>333</td>
</tr>
<tr>
<td>recutConsensusTrees</td>
<td>337</td>
</tr>
<tr>
<td>redWhiteGreen</td>
<td>341</td>
</tr>
<tr>
<td>relativeCorPredictionSuccess</td>
<td>342</td>
</tr>
<tr>
<td>removeGreyME</td>
<td>343</td>
</tr>
<tr>
<td>removePrincipalComponents</td>
<td>344</td>
</tr>
<tr>
<td>replaceMissing</td>
<td>344</td>
</tr>
<tr>
<td>returnGeneSetsAsList</td>
<td>345</td>
</tr>
<tr>
<td>rgcolors.func</td>
<td>347</td>
</tr>
<tr>
<td>sampledBlockwiseModules</td>
<td>348</td>
</tr>
<tr>
<td>sampledHierarchicalConsensusModules</td>
<td>350</td>
</tr>
<tr>
<td>scaleFreeFitIndex</td>
<td>352</td>
</tr>
<tr>
<td>scaleFreePlot</td>
<td>353</td>
</tr>
<tr>
<td>SCsLists</td>
<td>354</td>
</tr>
<tr>
<td>selectFewestConsensusMissing</td>
<td>355</td>
</tr>
<tr>
<td>setCorrelationPreservation</td>
<td>356</td>
</tr>
<tr>
<td>shortenStrings</td>
<td>357</td>
</tr>
</tbody>
</table>
accuracyMeasures

Accuracy measures for a 2x2 confusion matrix or for vectors of predicted and observed values.
accuracyMeasures

Description

The function calculates various prediction accuracy statistics for predictions of binary or quantitative (continuous) responses. For binary classification, the function calculates the error rate, accuracy, sensitivity, specificity, positive predictive value, and other accuracy measures. For quantitative prediction, the function calculates correlation, R-squared, error measures, and the C-index.

Usage

accuracyMeasures(
 predicted,
 observed = NULL,
 type = c("auto", "binary", "quantitative"),
 levels = if (isTRUE(all.equal(dim(predicted), c(2,2)))) colnames(predicted)
 else if (is.factor(predicted))
 sort(unique(c(as.character(predicted), as.character(observed))))
 else sort(unique(c(ordered, predicted))),
 negativeLevel = levels[2],
 positiveLevel = levels[1])

Arguments

predicted either a a 2x2 confusion matrix (table) whose entries contain non-negative integers, or a vector of predicted values. Predicted values can be binary or quantitative (see type below). If a 2x2 matrix is given, it must have valid column and row names that specify the levels of the predicted and observed variables whose counts the matrix is giving (e.g., the function table sets the names appropriately.) If it is a 2x2 table and the table contains non-negative real (non-integer) numbers the function outputs a warning.

observed if predicted is a vector of predicted values, this (observed) must be a vector of the same length giving the "gold standard" (or observed) values. Ignored if predicted is a 2x2 table.

type character string specifying the type of the prediction problem (i.e., values in the predicted and observed vectors). The default "auto" decides type automatically: if predicted is a 2x2 table or if the number of unique values in the concatenation of predicted and observed is 2, the prediction problem (type) is assumed to be binary, otherwise it is assumed to be quantitative. Inconsistent specification (for example, when predicted is a 2x2 matrix and type is "quantitative") trigger errors.

levels a 2-element vector specifying the two levels of binary variables. Only used if type is "binary" (or "auto" that results in the binary type). Defaults to either the column names of the confusion matrix (if the matrix is specified) or to the sorted unique values of observed and predicted.

negativeLevel the binary value (level) that corresponds to the negative outcome. Note that the default is the second of the sorted levels (for example, if levels are 1,2, the default negative level is 2). Only used if type is "binary" (or "auto" that results in the binary type).
positiveLevel the binary value (level) that corresponds to the positive outcome. Note that the
default is the second of the sorted levels (for example, if levels are 1,2, the
default negative level is 2). Only used if type is "binary" (or "auto" that
results in the binary type).

Details

The rows of the 2x2 table tab must correspond to a test (or predicted) outcome and the columns to
a true outcome ("gold standard"). A table that relates a predicted outcome to a true test outcome
is also known as confusion matrix. Warning: To correctly calculate sensitivity and specificity, the
positive and negative outcome must be properly specified so they can be matched to the appropriate
rows and columns in the confusion table.

Interchanging the negative and positive levels swaps the estimates of the sensitivity and specificity
but has no effect on the error rate or accuracy. Specifically, denote by pos the index of the positive
level in the confusion table, and by neg the index of the negative level in the confusion table. The
function then defines number of true positives=TP=tab[pos, pos], no false positives =FP=tab[pos, neg],
no false negatives=FN=tab[neg, pos], no true negatives=TN=tab[neg, neg]. Then Specificity=
TN/(FP+TN) Sensitivity= TP/(TP+FN) PositivePredictiveValue= TN/(FN + TN) PositivePredic-
tiveValue= TP/(TP + FP) FalsePositiveRate = 1-Specificity FalseNegativeRate = 1-Sensitivity Power
= Sensitivity LikelihoodRatioPositive = Sensitivity / (1-Specificity) LikelihoodRatioNegative = (1-
Sensitivity)/Specificity. The naive error rate is the error rate of a constant (naive) predictor that
assigns the same outcome to all samples. The prediction of the naive predictor equals the most
frequently observed outcome. Example: Assume you want to predict disease status and 70 percent
of the observed samples have the disease. Then the naive predictor has an error rate of 30 percent
(since it only misclassifies 30 percent of the healthy individuals).

Value

Data frame with two columns:

Measure this column contains character strings that specify name of the accuracy measure.
Value this column contains the numeric estimates of the corresponding accuracy mea-
sures.

Author(s)

Steve Horvath and Peter Langfelder

References

Examples

m=100
trueOutcome=sample(c(1,2),m,replace=TRUE)
predictedOutcome=trueOutcome
now we noise half of the entries of the predicted outcome
predictedOutcome[1:(m/2)] =sample(predictedOutcome[1:(m/2)])
tab=table(predictedOutcome, trueOutcome)
addErrorBars

accuracyMeasures(tab)

Same result:
accuracyMeasures(predictedOutcome, trueOutcome)

addErrorBars
Add error bars to a barplot.

Description

This function adds error bars to an existing barplot.

Usage

```r
addErrorBars(means, errors, two.side = FALSE)
```

Arguments

- **means**: vector of means plotted in the barplot
- **errors**: vector of standard errors (signed positive values) to be plotted.
- **two.side**: should the error bars be two-sided?

Value

None.

Author(s)

Steve Horvath and Peter Langfelder

addGrid
Add grid lines to an existing plot.

Description

This function adds horizontal and/or vertical grid lines to an existing plot. The grid lines are aligned with tick marks.

Usage

```r
addGrid(linesPerTick = NULL, horiz = TRUE, vert = FALSE, col = "grey30", lty = 3)
```
Arguments

- `linesPerTick` Number of lines between successive tick marks (including the line on the tick-marks themselves)
- `horiz` Draw horizontal grid lines?
- `vert` Draw vertical tick lines?
- `col` Specifies color of the grid lines
- `lty` Specifies line type of grid lines. See `par`.

Details

If `linesPerTick` is not specified, it is set to 5 if number of ticks is 5 or less, and it is set to 2 if number of ticks is greater than 5.

Note

The function does not work whenever logarithmic scales are in use.

Author(s)

Peter Langfelder

Examples

```r
plot(c(1:10), c(1:10))
addGrid();
```

Description

Adds vertical “guide lines” to a dendrogram plot.

Usage

```r
addGuideLines(dendro,
               all = FALSE,
               count = 50,
               positions = NULL,
               col = "grey30",
               lty = 3,
               hang = 0)
```
addTraitToMEs

Arguments

- `dendro`: The dendrogram (see `hclust`) to which the guide lines are to be added.
- `all`: Add a guide line to every object on the dendrogram? Useful if the number of objects is relatively low.
- `count`: Number of guide lines to be plotted. The lines will be equidistantly spaced.
- `positions`: Horizontal positions of the added guide lines. If given, overrides count.
- `col`: Color of the guide lines.
- `lty`: Line type of the guide lines. See `par`.
- `hang`: Fraction of the figure height that will separate top ends of guide lines and the merge heights of the corresponding objects.

Author(s)

Peter Langfelder

Description

Add trait information to multi-set module eigengene structure.

Usage

```
addTraitToMEs(multiME, multiTraits)
```

Arguments

- `multiME`: Module eigengenes in multi-set format. A vector of lists, one list per set. Each list must contain an element named `data` that is a data frame with module eigengenes.
- `multiTraits`: Microarray sample trait(s) in multi-set format. A vector of lists, one list per set. Each list must contain an element named `data` that is a data frame in which each column corresponds to a trait, and each row to an individual sample.

Details

The function simply `cbind`'s the module eigengenes and traits for each set. The number of sets and numbers of samples in each set must be consistent between `multiMEs` and `multiTraits`.

Value

A multi-set structure analogous to the input: a vector of lists, one list per set. Each list will contain a component `data` with the merged eigengenes and traits for the corresponding set.
adjacency

Author(s)
Peter Langfelder

See Also
checkSets, moduleEigengenes

adjacency

Calculate network adjacency

Description
Calculates (correlation or distance) network adjacency from given expression data or from a similarity.

Usage

adjacency(datExpr,
selectCols = NULL,
type = "unsigned",
power = if (type=="distance") 1 else 6,
corfnc = "cor", corOptions = list(use = "p"),
weights = NULL,
distfnc = "dist", distOptions = "method = 'euclidean'",
weightArgNames = c("weights.x", "weights.y"))

adjacency.fromSimilarity(similarity,
type = "unsigned",
power = if (type=="distance") 1 else 6)

Arguments
datExpr data frame containing expression data. Columns correspond to genes and rows to samples.
similarity a (signed) similarity matrix: square, symmetric matrix with entries between -1 and 1.
selectCols for correlation networks only (see below); can be used to select genes whose adjacencies will be calculated. Should be either a numeric vector giving the indices of the genes to be used, or a boolean vector indicating which genes are to be used.
type network type. Allowed values are (unique abbreviations of) "unsigned", "signed", "signed hybrid", "distance".
power soft thresholding power.
corFnc character string specifying the function to be used to calculate co-expression similarity for correlation networks. Defaults to Pearson correlation. Any function returning values between -1 and 1 can be used.

corOptions character string or a list specifying additional arguments to be passed to the function given by corFnc. Use "use = 'p', method = 'spearman'" or, equivalently, list(use = 'p', method = 'spearman') to obtain Spearman correlation.

weights optional observation weights for datExpr to be used in correlation calculation. A matrix of the same dimensions as datExpr, containing non-negative weights. Only used with Pearson correlation.

distFnc character string specifying the function to be used to calculate co-expression similarity for distance networks. Defaults to the function dist. Any function returning non-negative values can be used.

distOptions character string or a list specifying additional arguments to be passed to the function given by distFnc. For example, when the function dist is used, the argument method can be used to specify various ways of computing the distance.

weightArgNames character vector of length 2 giving the names of the arguments to corFnc that represent weights for variable x and y. Only used if weights are non-NULL.

Details

The argument type determines whether a correlation (type one of "unsigned", "signed", "signed hybrid"), or a distance network (type equal "distance") will be calculated. In correlation networks the adjacency is constructed from correlations (values between -1 and 1, with high numbers meaning high similarity). In distance networks, the adjacency is constructed from distances (non-negative values, high values mean low similarity).

The function calculates the similarity of columns (genes) in datExpr by calling the function given in corFnc (for correlation networks) or distFnc (for distance networks), transforms the similarity according to type and raises it to power, resulting in a weighted network adjacency matrix. If selectCols is given, the corFnc function will be given arguments (datExpr, datExpr[selectCols], ...); hence the returned adjacency will have rows corresponding to all genes and columns corresponding to genes selected by selectCols.

Correlation and distance are transformed as follows: for type = "unsigned", adjacency = |cor|^power; for type = "signed", adjacency = (0.5 * (1+cor))^power; for type = "signed hybrid", adjacency = cor^power if cor>0 and 0 otherwise; and for type = "distance", adjacency = (1-(dist/max(dist))^2)^power.

The function adjacency.fromSimilarity inputs a similarity matrix, that is it skips the correlation calculation step but is otherwise identical.

Value

Adjacency matrix of dimensions ncol(datExpr) times ncol(datExpr) (or the same dimensions as similarity). If selectCols was given, the number of columns will be the length (if numeric) or sum (if boolean) of selectCols.
Note

When calculated from the datExpr, the network is always calculated among the columns of datExpr irrespective of whether a correlation or a distance network is requested.

Author(s)

Peter Langfelder and Steve Horvath

References

adjacency.polyReg: Adjacency matrix based on polynomial regression

Description

adjacency.polyReg calculates a network adjacency matrix by fitting polynomial regression models to pairs of variables (i.e. pairs of columns from datExpr). Each polynomial fit results in a model fitting index R.squared. Thus, the n columns of datExpr result in an n x n dimensional matrix whose entries contain R.squared measures. This matrix is typically non-symmetric. To arrive at a (symmetric) adjacency matrix, one can specify different symmetrization methods with symmetrizationMethod.

Usage

adjacency.polyReg(datExpr, degree=3, symmetrizationMethod = "mean")

Arguments

datExpr: data frame containing numeric variables. Example: Columns may correspond to genes and rows to observations (samples).
degree: the degree of the polynomial. Must be less than the number of unique points.
symmetrizationMethod: character string (eg "none", "min","max","mean") that specifies the method used to symmetrize the pairwise model fitting index matrix (see details).
Details

A network adjacency matrix is a symmetric matrix whose entries lie between 0 and 1. It is a special case of a similarity matrix. Each variable (column of datExpr) is regressed on every other variable, with each model fitting index recorded in a square matrix. Note that the model fitting index of regressing variable x and variable y is usually different from that of regressing y on x. From the polynomial regression model glm(y ~ poly(x,degree)) one can calculate the model fitting index R.squared(y,x). R.squared(y,x) is a number between 0 and 1. The closer it is to 1, the better the polynomial describes the relationship between x and y and the more significant is the pairwise relationship between the 2 variables. One can also reverse the roles of x and y to arrive at a model fitting index R.squared(x,y). If degree>1 then R.squared(x,y) is typically different from R.squared(y,x). Assume a set of n variables x1,...,xn (corresponding to the columns of datExpr then one can define R.squared(xi,xj). The model fitting indices for the elements of an n x n dimensional matrix (R.squared(ij)). symmetrizationMethod implements the following symmetrization methods: A.min(ij)=min(R.squared(ij),R.squared(ji)), A.ave(ij)=(R.squared(ij)+R.squared(ji))/2, A.max(ij)=max(R.squared(ij),R.squared(ji)).

Value

An adjacency matrix of dimensions ncol(datExpr) times ncol(datExpr).

Author(s)

Lin Song, Steve Horvath

References

See Also

For more information about polynomial regression, please refer to functions poly and glm

Examples

#Simulate a data frame date which contains U columns and UP observations
m=50
x1=rnorm(m)
r=.5; x2=r*x1+sqrt(1-r^2)*rnorm(m)
r=.3; x3=r*(x1-.5)^2+sqrt(1-r^2)*rnorm(m)
x4=rnorm(m)
r=.3; x5=r*x4+sqrt(1-r^2)*rnorm(m)
date=data.frame(x1,x2,x3,x4,x5)
#calculate adjacency by symmetrizing using max
A.max=adjacency.polyReg(date, symmetrizationMethod="max")
A.max
#calculate adjacency by symmetrizing using max
A.mean=adjacency.polyReg(date, symmetrizationMethod="mean")
A.mean
adjacency.splineReg

Description

adjacency.splineReg calculates a network adjacency matrix by fitting spline regression models to pairs of variables (i.e. pairs of columns from datExpr). Each spline regression model results in a fitting index R.squared. Thus, the n columns of datExpr result in an n x n dimensional matrix whose entries contain R.squared measures. This matrix is typically non-symmetric. To arrive at a (symmetric) adjacency matrix, one can specify different symmetrization methods with symmetrizationMethod.

Usage

adjacency.splineReg(
datExpr,
df = 6-(nrow(datExpr)<100)-(nrow(datExpr)<30),
symmetrizationMethod = "mean",
...)

Arguments

datExpr
 data frame containing numeric variables. Example: Columns may correspond to genes and rows to observations (samples).

df
 degrees of freedom in generating natural cubic spline. The default is as follows: if nrow(datExpr)>100 use 6, if nrow(datExpr)>30 use 4, otherwise use 5.

symmetrizationMethod
 character string (eg "none", "min","max","mean") that specifies the method used to symmetrize the pairwise model fitting index matrix (see details).

...
 other arguments from function ns

Details

A network adjacency matrix is a symmetric matrix whose entries lie between 0 and 1. It is a special case of a similarity matrix. Each variable (column of datExpr) is regressed on every other variable, with each model fitting index recorded in a square matrix. Note that the model fitting index of regressing variable x and variable y is usually different from that of regressing y on x. From the spline regression model glm(y ~ ns(x, df)) one can calculate the model fitting index R.squared(y,x). R.squared(y,x) is a number between 0 and 1. The closer it is to 1, the better the spline regression model describes the relationship between x and y and the more significant is the pairwise relationship between the 2 variables. One can also reverse the roles of x and y to arrive at a model fitting index R.squared(x,y). R.squared(x,y) is typically different from R.squared(y,x). Assume a set of n variables x1,...,xn (corresponding to the columns of datExpr) then one can
adjacency.splineReg

define R.squared(xi,xj). The model fitting indices for the elements of an n x n dimensional matrix (R.squared(ij)). symmetrizationMethod implements the following symmetrization methods:
A.min(ij)=min(R.squared(ij),R.squared(ji)), A.ave(ij)=(R.squared(ij)+R.squared(ji))/2, A.max(ij)=max(R.squared(ij),R.squared(ji)).

For more information about natural cubic spline regression, please refer to functions "ns" and "glm".

Value
An adjacency matrix of dimensions ncol(datExpr) times ncol(datExpr).

Author(s)
Lin Song, Steve Horvath

References

See Also
ns, glm

Examples

#Simulate a data frame datE which contains 5 columns and 50 observations
m=50
x1=rnorm(m)
r=.5; x2=r*x1+sqrt(1-r^2)*rnorm(m)
r=.3; x3=r*(x1-.5)^2+sqrt(1-r^2)*rnorm(m)
x4=rnorm(m)
r=.3; x5=r*x4+sqrt(1-r^2)*rnorm(m)
datE=data.frame(x1,x2,x3,x4,x5)
#calculate adjacency by symmetrizing using max
A.max=adjacency.splineReg(datE, symmetrizationMethod="max")
A.max
#calculate adjacency by symmetrizing using max
A.mean=adjacency.splineReg(datE, symmetrizationMethod="mean")
A.mean
output the unsymmetrized pairwise model fitting indices R.squared
R.squared=adjacency.splineReg(datE, symmetrizationMethod="none")
R.squared
Prediction of Weighted Mutual Information Adjacency Matrix by Correlation

Description

AFcorMI computes a predicted weighted mutual information adjacency matrix from a given correlation matrix.

Usage

AFcorMI(r, m)

Arguments

r a symmetric correlation matrix with values from -1 to 1.
m number of observations from which the correlation was calculated.

Details

This function is a one-to-one prediction when we consider correlation as unsigned. The prediction corresponds to the AdjacencyUniversalVersion2 discussed in the help file for the function mutualInfoAdjacency. For more information about the generation and features of the predicted mutual information adjacency, please refer to the function mutualInfoAdjacency.

Value

A matrix with the same size as the input correlation matrix, containing the predicted mutual information of type AdjacencyUniversalVersion2.

Author(s)

Steve Horvath, Lin Song, Peter Langfelder

See Also

mutualInfoAdjacency

Examples

#Simulate a data frame datE which contains 5 columns and 50 observations
m=50
x1=runnorm(m)
r=.5; x2=r*x1+sqrt((1-r^2)*runnorm(m))
r=.3; x3=r*(x1-.5)^2+sqrt((1-r^2)*runnorm(m))
x4=runnorm(m)
r=.3; x5=r*x4+sqrt((1-r^2)*runnorm(m))
datE=data.frame(x1,x2,x3,x4,x5)
#calculate predicted AUV2
alignExpr

```r
cor.data=cor(datE, use="p")
AUV2=AFcorMI(r=cor.data, m=nrow(datE))
```

alignExpr
Align expression data with given vector

Description

Multiplies genes (columns) in given expression data such that their correlation with given reference vector is non-negative.

Usage

```r
alignExpr(datExpr, y = NULL)
```

Arguments

- `datExpr`: expression data to be aligned. A data frame with columns corresponding to genes and rows to samples.
- `y`: reference vector of length equal the number of samples (rows) in `datExpr`

Details

The function basically multiplies each column in `datExpr` by the sign of its correlation with `y`. If `y` is not given, the first column in `datExpr` will be used as the reference vector.

Value

A data frame containing the aligned expression data, of the same dimensions as the input data frame.

Author(s)

Steve Horvath and Peter Langfelder
allocateJobs

Divide tasks among workers

Description

This function calculates an even splitting of a given number of tasks among a given number of workers (threads).

Usage

allocateJobs(nTasks, nWorkers)

Arguments

nTasks number of tasks to be divided
nWorkers number of workers

Details

Tasks are labeled consecutively 1, 2, ..., nTasks. The tasks are split in contiguous blocks as evenly as possible.

Value

A list with one component per worker giving the task indices to be worked on by each worker. If there are more workers than tasks, the tasks for the extra workers are 0-length numeric vectors.

Author(s)

Peter Langfelder

Examples

allocateJobs(10, 3);
allocateJobs(2, 4);
allowWGCNAThreads

| allowWGCNAThreads | Allow and disable multi-threading for certain WGCNA calculations |

Description

These functions allow and disable multi-threading for WGCNA calculations that can optionally be multi-threaded, which includes all functions using cor or bicor functions.

Usage

allowWGCNAThreads(nThreads = NULL)

enableWGCNAThreads(nThreads = NULL)

disableWGCNAThreads()

wgcnAnThreads()

Arguments

nThreads Number of threads to allow. If not given, the number of processors online (as reported by system configuration) will be used. There appear to be some cases where the automatically-determined number is wrong; please check the output to see that the number of threads makes sense. Except for testing and/or torturing your system, the number of threads should be no more than the number of actual processors/cores.

Details

allowWGCNAThreads enables parallel calculation within the compiled code in WGCNA, principally for calculation of correlations in the presence of missing data. This function is now deprecated; use enableWGCNAThreads instead.

enableWGCNAThreads enables parallel calculations within user-level R functions as well as within the compiled code, and registers an appropriate parallel calculation back-end for the operating system/platform.

disableWGCNAThreads disables parallel processing.

wgcnAnThreads returns the number of threads (parallel processes) that WGCNA is currently configured to run with.

Value

allowWGCNAThreads, enableWGCNAThreads, and disableWGCNAThreads return the maximum number of threads WGCNA calculations will be allowed to use.
Note

Multi-threading within compiled code is not available on Windows; R code parallelization works on all platforms.

Author(s)

Peter Langfelder

automaticNetworkScreening

One-step automatic network gene screening

Description

This function performs gene screening based on a given trait and gene network properties

Usage

```r
automaticNetworkScreening(
  datExpr,
  y,
  power = 6,
  networkType = "unsigned",
  detectCutHeight = 0.995,
  minModuleSize = min(20, ncol(as.matrix(datExpr))/2),
  datME = NULL,
  getQValues = TRUE,
  ...) 
```

Arguments

datExpr data frame containing the expression data, columns corresponding to genes and rows to samples

y vector containing trait values for all samples in datExpr

power soft thresholding power used in network construction

networkType character string specifying network type. Allowed values are (unique abbreviations of) "unsigned", "signed", "hybrid".

detectCutHeight cut height of the gene hierarchical clustering dendrogram. See cutreeDynamic for details.

minModuleSize minimum module size to be used in module detection procedure.

datME optional specification of module eigengenes. A data frame whose columns are the module eigengenes. If given, module analysis will not be performed.

getQValues logical: should q-values (local FDR) be calculated?

... other arguments to the module identification function blockwiseModules
Details

Network screening is a method for identifying genes that have a high gene significance and are members of important modules at the same time. If datME is given, the function calls networkScreening with the default parameters. If datME is not given, module eigengenes are first calculated using network analysis based on supplied parameters.

Value

A list with the following components:

- networkScreening
 - a data frame containing results of the network screening procedure. See networkScreening for more details.
- datME
 - calculated module eigengenes (or a copy of the input datME, if given).
- hubGeneSignificance
 - hub gene significance for all calculated modules. See hubGeneSignificance.

Author(s)

Steve Horvath

See Also

networkScreening, hubGeneSignificance, networkScreening, cutreeDynamic

Description

This function performs gene screening based on external gene significance and their network properties.

Usage

automaticNetworkScreeningGS(
 datExpr, GS,
 power = 6, networkType = "unsigned",
 detectCutHeight = 0.995, minModuleSize = min(20, ncol(as.matrix(datExpr))/2),
 datME = NULL)
Arguments

datExpr data frame containing the expression data, columns corresponding to genes and rows to samples
GS vector containing gene significance for all genes given in datExpr
power soft thresholding power used in network construction
networkType character string specifying network type. Allowed values are (unique abbreviations of) "unsigned", "signed", "hybrid".
detectCutHeight cut height of the gene hierarchical clustering dendrogram. See cutreeDynamic for details.
minModuleSize minimum module size to be used in module detection procedure.
datME optional specification of module eigengenes. A data frame whose columns are the module eigengenes. If given, module analysis will not be performed.

Details

Network screening is a method for identifying genes that have a high gene significance and are members of important modules at the same time. If datME is given, the function calls networkScreeningGS with the default parameters. If datME is not given, module eigengenes are first calculated using network analysis based on supplied parameters.

Value

A list with the following components:

networkScreening a data frame containing results of the network screening procedure. See networkScreeningGS for more details.
datME calculated module eigengenes (or a copy of the input datME, if given).
hubGeneSignificance hub gene significance for all calculated modules. See hubGeneSignificance.

Author(s)

Steve Horvath

See Also

networkScreening, hubGeneSignificance, networkScreening, cutreeDynamic
Various basic operations on BlockwiseData objects.

Description

These functions implement basic operations on BlockwiseData objects. Blockwise here means that the data is too large to be loaded or processed in one piece and is therefore split into blocks that can be handled one by one in a divide-and-conquer manner.

Usage

bd.getData

bdNactualfilenamesHbwdataI
bdNnblocksHbwdataI
bdNblocklengthsHbwdataI
bdNgetmetadataHbwdataL blocks \] nullL simplify \] trueI
bdNgetdataHbwdataL blocks \] nullL simplify \] trueI
bdNcheckAndDeleteFilesHbwdataI

Arguments

bwData A BlockwiseData object.
blocks Optional vector of integers specifying the blocks on which to execute the operation.
simplify Logical: if the blocks argument above is of length 1, should the returned list be simplified by removing the redundant outer list structure?

Details

Several functions in this package use the concept of blockwise, or "divide-and-conquer", analysis. The BlockwiseData class is meant to hold the blockwise data, or all necessary information about blockwise data that is saved in disk files.

Value

bd.actualFileNames
returns a vector of character strings giving the file names in which the files are saved, or NULL if the data are held in-memory.
bd.nBlocks returns the number of blocks in the input object.
bd.blockLengths returns the block lengths (results of applying length to the data in each block).
bd.getMetaData returns a list with one component per block. Each component is in turn a list containing the stored meta-data for the corresponding block. If blocks is of length 1 and simplify is TRUE, the outer (redundant) list is removed.
bd.getData returns a list with one component per block. Each component is in turn a list containing the stored data for the corresponding block. If blocks is of length 1 and simplify is TRUE, the outer (redundant) list is removed.
bicor

Description

Calculate biweight midcorrelation efficiently for matrices.

Usage

bicor(x, y = NULL,
 robustX = TRUE, robustY = TRUE,
 use = "all.obs",
 maxPOutliers = 1,
 quick = 0,
 pearsonFallback = "individual",
 cosine = FALSE,
 cosineX = cosine,
 cosineY = cosine,
 nThreads = 0,
 verbose = 0, indent = 0)

Arguments

x a vector or matrix-like numeric object
y a vector or matrix-like numeric object
robustX use robust calculation for x?
robustY use robust calculation for y?
bicor

use specifies handling of NAs. One of (unique abbreviations of) "all.obs", "pairwise.complete.obs".

maxPOutliers specifies the maximum percentile of data that can be considered outliers on either side of the median separately. For each side of the median, if higher percentile than maxPOutliers is considered an outlier by the weight function based on $9*\text{mad}(x)$, the width of the weight function is increased such that the percentile of outliers on that side of the median equals maxPOutliers. Using maxPOutliers=1 will effectively disable all weight function broadening; using maxPOutliers=0 will give results that are quite similar (but not equal to) Pearson correlation.

quick real number between 0 and 1 that controls the handling of missing data in the calculation of correlations. See details.

pearsonFallback Specifies whether the bicor calculation should revert to Pearson when median absolute deviation (mad) is zero. Recognized values are (abbreviations of) "none", "individual", "all". If set to "none", zero mad will result in NA for the corresponding correlation. If set to "individual", Pearson calculation will be used only for columns that have zero mad. If set to "all", the presence of a single zero mad will cause the whole variable to be treated in Pearson correlation manner (as if the corresponding robust option was set to FALSE).

cosine logical: calculate cosine biweight midcorrelation? Cosine bicorrelation is similar to standard bicorrelation but the median subtraction is not performed.

cosineX logical: use the cosine calculation for x? This setting does not affect y and can be used to give a hybrid cosine-standard bicorrelation.

cosineY logical: use the cosine calculation for y? This setting does not affect x and can be used to give a hybrid cosine-standard bicorrelation.

nThreads non-negative integer specifying the number of parallel threads to be used by certain parts of correlation calculations. This option only has an effect on systems on which a POSIX thread library is available (which currently includes Linux and Mac OSX, but excludes Windows). If zero, the number of online processors will be used if it can be determined dynamically, otherwise correlation calculations will use 2 threads. Note that this option does not affect what is usually the most expensive part of the calculation, namely the matrix multiplication. The matrix multiplication is carried out by BLAS routines provided by R; these can be sped up by installing a fast BLAS and making R use it.

verbose if non-zero, the underlying C function will print some diagnostics.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

This function implements biweight midcorrelation calculation (see references). If y is not supplied, midcorrelation of columns of x will be calculated; otherwise, the midcorrelation between columns of x and y will be calculated. Thus, bicor(x) is equivalent to bicor(x,x) but is more efficient.

The options robustX, robustY allow the user to revert the calculation to standard correlation calculation. This is important, for example, if any of the variables is binary (or, more generally, discrete)
as in such cases the robust methods produce meaningless results. If both robustX, robustY are set to FALSE, the function calculates the standard Pearson correlation (but is slower than the function cor).

The argument quick specifies the precision of handling of missing data in the correlation calculations. Value quick = 0 will cause all calculations to be executed accurately, which may be significantly slower than calculations without missing data. Progressively higher values will speed up the calculations but introduce progressively larger errors. Without missing data, all column medians and median absolute deviations (MADs) can be pre-calculated before the covariances are calculated. When missing data are present, exact calculations require the column medians and MADs to be calculated for each covariance. The approximate calculation uses the pre-calculated median and MAD and simply ignores missing data in the covariance calculation. If the number of missing data is high, the pre-calculated medians and MADs may be very different from the actual ones, thus potentially introducing large errors. The quick value times the number of rows specifies the maximum difference in the number of missing entries for median and MAD calculations on the one hand and covariance on the other hand that will be tolerated before a recalculation is triggered. The hope is that if only a few missing data are treated approximately, the error introduced will be small but the potential speedup can be significant.

The choice "all" for pearsonFallback is not fully implemented in the sense that there are rare but possible cases in which the calculation is equivalent to "individual". This may happen if the use option is set to "pairwise.complete.obs" and the missing data are arranged such that each individual mad is non-zero, but when two columns are analyzed together, the missing data from both columns may make a mad zero. In such a case, the calculation is treated as Pearson, but other columns will be treated as bicor.

Value

A matrix of biweight midcorrelations. Dimnames on the result are set appropriately.

Author(s)

Peter Langfelder

References

bicorAndPvalue

Calculation of biweight midcorrelations and associated p-values

Description

A faster, one-step calculation of Student correlation p-values for multiple biweight midcorrelations, properly taking into account the actual number of observations.

Usage

bicorAndPvalue(x, y = NULL,
 use = "pairwise.complete.obs",
 alternative = c("two.sided", "less", "greater"),
 ...)

Arguments

x a vector or a matrix
y a vector or a matrix. If NULL, the correlation of columns of x will be calculated.
use determines handling of missing data. See bicor for details.
alternative specifies the alternative hypothesis and must be (a unique abbreviation of) one of "two.sided", "greater" or "less". The initial letter. "greater" corresponds to positive association, "less" to negative association.
... other arguments to the function bicor.

Details

The function calculates the biweight midcorrelations of a matrix or of two matrices and the corresponding Student p-values. The output is not as full-featured as cor.test, but can work with matrices as input.

Value

A list with the following components, each a matrix:

bicor the calculated correlations
p the Student p-values corresponding to the calculated correlations
Z Fisher transform of the calculated correlations
t Student t statistics of the calculated correlations
nObs Numbers of observations for the correlation, p-values etc.

Author(s)

Peter Langfelder and Steve Horvath
References

See Also

bicor for calculation of correlations only;
cor.test for another function for significance test of correlations

Examples

generate random data with non-zero correlation
set.seed(1);
a = rnorm(100);
b = rnorm(100) + a;
x = cbind(a, b);
Call the function and display all results
bicorAndPvalue(x)
Set some components to NA
x[c(1:4), 1] = NA
corAndPvalue(x)
Note that changed number of observations.

bicovWeights Weights used in biweight midcovariance

Description

Calculation of weights and the intermediate weight factors used in the calculation of biweight midcovariance and midcorrelation. The weights are designed such that outliers get smaller weights; the weights become zero for data points more than 9 median absolute deviations from the median.

Usage

bicovWeights(
 x,
 pearsonFallback = TRUE,
 maxPOutliers = 1,
 outlierReferenceWeight = 0.5625,
 defaultWeight = 0)

bicovWeightFactors(
 x,
 pearsonFallback = TRUE,
 maxPOutliers = 1,
 outlierReferenceWeight = 0.5625,
 defaultFactor = NA)
bicovWeightsFromFactors(
 u,
 defaultWeight = 0)

Arguments

 x A vector or a two-dimensional array (matrix or data frame). If two-dimensional, the weights will be calculated separately on each column.
 u A vector or matrix of weight factors, usually calculated by bicovWeightFactors.
 pearsonFallback Logical: if the median absolute deviation is zero, should standard deviation be substituted?
 maxPOutliers Optional specification of the maximum proportion of outliers, i.e., data with weights equal to outlierReferenceWeight below.
 outlierReferenceWeight A number between 0 and 1 specifying what is to be considered an outlier when calculating the proportion of outliers.
 defaultWeight Value used for weights that correspond to a finite x but the weights themselves would not be finite, for example, when a column in x is constant.
 defaultFactor Value used for factors that correspond to a finite x but the weights themselves would not be finite, for example, when a column in x is constant.

Details

These functions are based on Equations (1) and (3) in Langfelder and Horvath (2012). The weight factor is denoted u in that article.

Langfelder and Horvath (2012) also describe the Pearson fallback and maximum proportion of outliers in detail. For a full discussion of the biweight midcovariance and midcorrelation, see Wilcox (2005).

Value

A vector or matrix of the same dimensions as the input x giving the bisquare weights (bicovWeights and bicovWeightsFromFactors) or the bisquare factors (bicovWeightFactors).

Author(s)

Peter Langfelder

References

binarizeCategoricalColumns

Turn categorical columns into sets of binary indicators

Description

Given a data frame with (some) categorical columns, this function creates a set of indicator variables for the various possible sets of levels.

Usage

binarizeCategoricalColumns(data, considerColumns = NULL, convertColumns = NULL, maxOrdinalLevels = 3, levelOrder = NULL, minCount = 3, valQ = PL valR = QL includePairwise = FALSE, includeLevelVsAll = TRUE, dropFirstLevelVsAll = TRUE, dropUninformative = TRUE, includePrefix = TRUE, prefixSep = ".", nameForAll = "all", levelSep = NULL, levelSep.pairwise = if (length(levelSep)==0) ".vs." else levelSep, levelSep.vsAll = if (length(levelSep)==0)
 (if (nameForAll=="") "" else ".vs.") else levelSep, checkNames = FALSE, includeLevelInformation = FALSE)

binarizeCategoricalColumns.pairwise(data, maxOrdinalLevels = 3, convertColumns = NULL, considerColumns = NULL,
binarizeCategoricalColumns

levelOrder = NULL,
val1 = 0, val2 = 1,
includePrefix = TRUE,
prefixSep = ".",
levelSep = ".vs.",
checkNames = FALSE)

binarizeCategoricalColumns.forRegression(
data,
maxOrdinalLevels = 3,
convertColumns = NULL,
considerColumns = NULL,
levelOrder = NULL,
val1 = 0, val2 = 1,
includePrefix = TRUE,
prefixSep = ".",
checkNames = TRUE)

binarizeCategoricalColumns.forPlots(
data,
maxOrdinalLevels = 3,
convertColumns = NULL,
considerColumns = NULL,
levelOrder = NULL,
val1 = 0, val2 = 1,
includePrefix = TRUE,
prefixSep = ".")

Arguments

- **data**: A data frame.
- **convertColumns**: Optional character vector giving the column names of the columns to be converted. See `maxOrdinalLevels` below.
- **considerColumns**: Optional character vector giving the column names of columns that should be looked at and possibly converted. If not given, all columns will be considered. See `maxOrdinalLevels` below.
- **maxOrdinalLevels**: When `convertColumns` above is `NULL`, the function looks at all columns in `considerColumns` and converts all non-numeric columns and those numeric columns that have at most `maxOrdinalLevels` unique values. A column is considered numeric if its storage mode is numeric or if it is character and all entries with the exception of "NA", "NULL" and "NO DATA" represent valid numbers.
- **levelOrder**: Optional list giving the ordering of levels (unique values) in each of the converted columns. Best used in conjunction with `convertColumns`.
- **minCount**: Levels of x for which there are fewer than `minCount` elements will be ignored.
- **val1**: Value for the lower level in binary comparisons.
binarizeCategoricalColumns

- **val2**: Value for the higher level in binary comparisons.
- **includePairwise**: Logical: should pairwise binary indicators be included? For each pair of levels, the indicator is `val1` for the lower level (earlier in `levelOrder`), `val2` for the higher level and `NA` otherwise.
- **includeLevelVsAll**: Logical: should binary indicators for each level be included? The indicator is `val2` where `x` equals the level and `val1` otherwise.
- **dropFirstLevelVsAll**: Logical: should the column representing first level vs. all be dropped? This makes the resulting matrix of indicators usable for regression models.
- **dropUninformative**: Logical: should uninformative (constant) columns be dropped?
- **includePrefix**: Logical: should the column name of the binarized column be included in column names of the output? See details.
- **prefixSep**: Separator of column names and level names in column names of the output. See details.
- **nameForAll**: Character string that represents "all others" in the column names of indicators of level vs. all others.
- **levelSep**: Separator for levels to be used in column names of the output. If `NULL`, pairwise and level vs. all indicators will use different level separators set by `levelSep.pairwise` and `levelSep.vsAll`.
- **levelSep.pairwise**: Separator for levels to be used in column names for pairwise indicators in the output.
- **levelSep.vsAll**: Separator for levels to be used in column names for level vs. all indicators in the output.
- **checkNames**: Logical: should the names of the output be made into syntactically correct R language names?
- **includeLevelInformation**: Logical: should information about which levels are represented by which columns be included in the attributes of the output?

Details

`binarizeCategoricalColumns` is the most general function, the rest are convenience wrappers that set some of the options to achieve the following:

- `binarizeCategoricalColumns.pairwise` returns only pairwise (level vs. level) binary indicators.
- `binarizeCategoricalColumns.forRegression` returns only level vs. all others binary indicators, with the first (according to `levelOrder`) level vs. all removed. This is essentially the same as would be returned by `model.matrix` except for the column representing intercept.
- `binarizeCategoricalColumns.forPlots` returns only level vs. all others binary indicators and keeps them all.

The columns to be converted are identified as follows. If `considerColumns` is given, columns not contained in it will not be converted, even if they are included in `convertColumns`.

If `convertColumns` is given, those columns will be converted (except any not contained in non-empty `considerColumns`). If `convertColumns` is `NULL`, the function converts columns that are not numeric (as reported by `is.numeric`) and those numeric columns that have at most `maxOrdinalValues` unique non-missing values.

The function creates two types of indicators. The first is one level (unique value) of `x` vs. all others, i.e., for a given level, the indicator is `val2` (usually 1) for all elements of `x` that equal the level, and `val1` (usually 0) otherwise. Column names for these indicators are the concatenation of `namePrefix`, the level, `nameSep` and `nameForAll`. The level vs. all indicators are created for all levels that have at least `minCounts` samples, are present in `levelOrder` (if it is non-NULL) and are not included in `ignore`.

The second type of indicator encodes binary comparisons. For each pair of levels (both with at least `minCount` samples), the indicator is `val2` (usually 1) for the higher level and `val1` (usually 0) for the lower level. The level order is given by `levelOrder` (which defaults to the sorted levels of `x`), assumed to be sorted in increasing order. All levels with at least `minCount` samples that are included in `levelOrder` and not included in `ignore` are included.

Internally, the function calls `binarizeCategoricalVariable` for each column that is converted.

Value

A data frame in which the converted columns have been replaced by sets of binarized indicators. When `includeLevelInformation` is `TRUE`, the attribute `includedLevels` is a table with one column per output column and two rows, giving the two levels (unique values of `x`) represented by the column.

Author(s)

Peter Langfelder

Examples

```r
set.seed(2);
x = data.frame(a = sample(c("A", "B", "C"), 15, replace = TRUE),
             b = sample(c(1:3), 15, replace = TRUE));
out = binarizeCategoricalColumns(x, includePairwise = TRUE, includeLevelVsAll = TRUE,
                                 includeLevelInformation = TRUE);
data.frame(x, out);
attr(out, "includedLevels")
```

binarizeCategoricalVariable

Turn a categorical variable into a set of binary indicators

Description

Given a categorical variable, this function creates a set of indicator variables for the various possible sets of levels.
Usage

binarizeCategoricalVariable(
 x,
 levelOrder = NULL,
 ignore = NULL,
 minCount = 3,
 val1 = 0, val2 = 1,
 includePairwise = TRUE,
 includeLevelVsAll = FALSE,
 dropFirstLevelVsAll = FALSE,
 dropUninformative = TRUE,
 namePrefix = "",
 levelSep = NULL,
 nameForAll = "all",
 levelSep.pairwise = if (length(levelSep)==0) ".vs." else levelSep,
 levelSep.vsAll = if (length(levelSep)==0)
 (if (nameForAll=="") "." else ".vs.") else levelSep,
 checkNames = FALSE,
 includeLevelInformation = TRUE)

Arguments

x A vector with categorical values.
levelOrder Optional specification of the levels (unique values) of x. Defaults to sorted unique values of x, but can be used to only include a subset of the existing levels as well as to specify the order of the levels in the output variables.
ignore Optional specification of levels of x that are to be ignored. Note that the levels are ignored only when deciding which variables to include in the output; the samples with these values of x will be included in "all" in indicators of level vs. all others.
minCount Levels of x for which there are fewer than minCount elements will be ignored.
val1 Value for the lower level in binary comparisons.
val2 Value for the higher level in binary comparisons.
includePairwise Logical: should pairwise binary indicators be included? For each pair of levels, the indicator is val1 for the lower level (earlier in levelOrder), val2 for the higher level and NA otherwise.
includeLevelVsAll Logical: should binary indicators for each level be included? The indicator is val2 where x equals the level and val1 otherwise.
dropFirstLevelVsAll Logical: should the column representing first level vs. all be dropped? This makes the resulting matrix of indicators usable for regression models.
dropUninformative Logical: should uninformative (constant) columns be dropped?
namePrefix Prefix to be used in column names of the output.
nameForAll When naming columns that represent a level vs. all others, nameForAll will be used to represent all others.

levelSep Separator for levels to be used in column names of the output. If NULL, pairwise and level vs. all indicators will use different level separators set by levelSep.pairwise and levelSep.vsAll.

levelSep.pairwise Separator for levels to be used in column names for pairwise indicators in the output.

levelSep.vsAll Separator for levels to be used in column names for level vs. all indicators in the output.

checkNames Logical: should the names of the output be made into syntactically correct R language names?

includeLevelInformation Logical: should information about which levels are represented by which columns be included in the attributes of the output?

Details

The function creates two types of indicators. The first is one level (unique value) of x vs. all others, i.e., for a given level, the indicator is val2 (usually 1) for all elements of x that equal the level, and val1 (usually 0) otherwise. Column names for these indicators are the concatenation of namePrefix, the level, nameSep and nameForAll. The level vs. all indicators are created for all levels that have at least minCounts samples, are present in levelOrder (if it is non-NULL) and are not included in ignore.

The second type of indicator encodes binary comparisons. For each pair of levels (both with at least minCount samples), the indicator is val2 (usually 1) for the higher level and val1 (usually 0) for the lower level. The level order is given by levelOrder (which defaults to the sorted levels of x), assumed to be sorted in increasing order. All levels with at least minCount samples that are included in levelOrder and not included in ignore are included.

Value

A matrix containing the indicators variables, one in each column. When includeLevelInformation is TRUE, the attribute includedLevels is a table with one column per output column and two rows, giving the two levels (unique values of x) represented by the column.

Author(s)

Peter Langfelder

See Also

Variations and wrappers for this function: binarizeCategoricalColumns for binarizing several columns of a matrix or data frame
Examples

```r
set.seed(2);
x = sample(c("A", "B", "C"), 15, replace = TRUE);
out = binarizeCategoricalVariable(x, includePairwise = TRUE, includeLevelVsAll = TRUE);
data.frame(x, out);
attr(out, "includedLevels")
# A different naming for level vs. all columns
binarizeCategoricalVariable(x, includeLevelVsAll = TRUE, nameForAll = "")
```

blockSize

Attempt to calculate an appropriate block size to maximize efficiency of block-wise calculations.

Description

The function uses a rather primitive way to estimate available memory and use it to suggest a block size appropriate for the many block-by-block calculations in this package.

Usage

```r
blockSize(
  matrixSize,
  rectangularBlocks = TRUE,
  maxMemoryAllocation = NULL,
  overheadFactor = 3)
```

Arguments

- **matrixSize**
 - the relevant dimension (usually the number of columns) of the matrix that is to be operated on block-by-block.
- **rectangularBlocks**
 - logical indicating whether the blocks of data are rectangular (of size blockSize times matrixSize) or square (of size blockSize times blockSize).
- **maxMemoryAllocation**
 - maximum desired memory allocation, in bytes. Should not exceed 2GB or total installed RAM (whichever is greater) on 32-bit systems, while on 64-bit systems it should not exceed the total installed RAM. If not supplied, the available memory will be estimated internally.
- **overheadFactor**
 - overhead factor for the memory use by R. Recommended values are between 2 (for simple calculations) and 4 or more for complicated calculations where intermediate results (for which R must also allocate memory) take up a lot of space.
Details

Multiple functions within the WGCNA package use a divide-and-conquer (also known as block-by-block, or block-wise) approach to handling large data sets. This function is meant to assist in choosing a suitable block size, given the size of the data and the available memory.

If the entire expected result fits into the allowed memory (after taking into account the expected overhead), the returned block size will equal the input \texttt{matrixSize}.

The internal estimation of available memory works by returning the size of largest successfully allocated block of memory. It is hoped that this will lead to reasonable results but some operating systems may actually allocate more than is available. It is therefore preferable that the user specifies the available memory by hand.

Value

A single integer giving the suggested block size, or \texttt{matrixSize} if the entire calculation is expected to fit into memory in one piece.

Author(s)

Peter Langfelder

Examples

```r
# Suitable blocks for handling 30,000 genes within 2GB (=2^31 bytes) of memory
blockSize(30000, rectangularBlocks = TRUE, maxMemoryAllocation = 2^31)
```

Description

Perform network construction and consensus module detection across several datasets.

Usage

```r
blockwiseConsensusModules(
    multiExpr,
    # Data checking options
    checkMissingData = TRUE,
    # Blocking options
    blocks = NULL,
    maxBlockSize = 5000,
    blockSizePenaltyPower = 5,
)```

nPreclusteringCenters = NULL,
randomSeed = 12345,

# TOM precalculation arguments, if available
individualTOMInfo = NULL,
useIndivTOMSubset = NULL,

# Network construction arguments: correlation options
corType = "pearson",
maxPOutliers = 1,
quickCor = 0,
pearsonFallback = "individual",
cosineCorrelation = FALSE,

# Adjacency function options
power = 6,
networkType = "unsigned",
checkPower = TRUE,
replaceMissingAdjacencies = FALSE,

# Topological overlap options
TOMType = "unsigned",
TOMDenom = "min",

# Save individual TOMs?
saveIndividualTOMs = TRUE,
individualTOMfileNames = "individualTOM-Set%s-Block%b.RData",

# Consensus calculation options: network calibration
networkCalibration = c("single quantile", "full quantile", "none"),

# Simple quantile calibration options
calibrationQuantile = 0.95,
sampleForCalibration = TRUE, sampleForCalibrationFactor = 1000,
getNetworkCalibrationSamples = FALSE,

# Consensus definition
consensusQuantile = 0,
useMean = FALSE,
setWeights = NULL,
# Saving the consensus TOM

```r
saveConsensusTOMs = FALSE,
consensusTOMFilePattern = "consensusTOM-block.%f.RData",
```

# Internal handling of TOMs

```r
useDiskCache = TRUE, chunkSize = NULL,
cacheBase = ".blockCons ModsCache",
cacheDir = "",
```

# Alternative consensus TOM input from a previous calculation

```r
consensusTOMInfo = NULL,
```

# Basic tree cut options

```r
deepSplit = 2,
detectCutHeight = 0.995, minModuleSize = 20,
checkMinModuleSize = TRUE,
```

# Advanced tree cut options

```r
maxCoreScatter = NULL, minGap = NULL,
maxAbsCoreScatter = NULL, minAbsGap = NULL,
minSplitHeight = NULL, minAbsSplitHeight = NULL,
useBranchEigennodeDissim = FALSE,
minBranchEigennodeDissim = mergeCutHeight,
stabilityLabels = NULL,
minStabilityDissim = NULL,
```

```r
pamStage = TRUE, pamRespectsDendro = TRUE,
```

# Gene reassignment and trimming from a module, and module "significance" criteria

```r
reassignThresholdPS = 1e-4,
trimmingConsensusQuantile = consensusQuantile,
minCoreKME = 0.5, minCoreKMESize = minModuleSize/3,
minKMetoStay = 0.2,
```

# Module eigengene calculation options

```r
impute = TRUE,
trapErrors = FALSE,
```
# Module merging options

equalizeQuantilesForModuleMerging = FALSE,
quantileSummaryForModuleMerging = "mean",
mergeCutHeight = 0.15,
mergeConsensusQuantile = consensusQuantile,

# Output options

numericLabels = FALSE,

# General options

nThreads = 0,
verbose = 2, indent = 0, ...)

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one per set. Each set must contain a component data that contains the expression data, with rows corresponding to samples and columns to genes or probes.

checkMissingData logical: should data be checked for excessive numbers of missing entries in genes and samples, and for genes with zero variance? See details.

blocks optional specification of blocks in which hierarchical clustering and module detection should be performed. If given, must be a numeric vector with one entry per gene of multiExpr giving the number of the block to which the corresponding gene belongs.

maxBlockSize integer giving maximum block size for module detection. Ignored if blocks above is non-NULL. Otherwise, if the number of genes in datExpr exceeds maxBlockSize, genes will be pre-clustered into blocks whose size should not exceed maxBlockSize.

blockSizePenaltyPower number specifying how strongly blocks should be penalized for exceeding the maximum size. Set to a large number or Inf if not exceeding maximum block size is very important.

nPreclusteringCenters number of centers to be used in the preclustering. Defaults to smaller of nGenes/20 and 100*nGenes/maxBlockSize, where nGenes is the number of genes (variables) in multiExpr.

randomSeed integer to be used as seed for the random number generator before the function starts. If a current seed exists, it is saved and restored upon exit. If NULL is given, the function will not save and restore the seed.

individualTOMInfo Optional data for TOM matrices in individual data sets. This object is returned by the function blockwiseIndividualTOMs. If not given, appropriate topological overlaps will be calculated using the network construction options below.
useIndivTOMSubset

If individualTOMInfo is given, this argument allows to only select a subset of the individual set networks contained in individualTOMInfo. It should be a numeric vector giving the indices of the individual sets to be used. Note that this argument is NOT applied to multiExpr.

corType

character string specifying the correlation to be used. Allowed values are (unique abbreviations of) "pearson" and "bicor", corresponding to Pearson and bid-weight midcorrelation, respectively. Missing values are handled using the pairwise.complete.obs option.

maxPOutliers

only used for corType=="bicor". Specifies the maximum percentile of data that can be considered outliers on either side of the median separately. For each side of the median, if higher percentile than maxPOutliers is considered an outlier by the weight function based on 9*mad(x), the width of the weight function is increased such that the percentile of outliers on that side of the median equals maxPOutliers. Using maxPOutliers=1 will effectively disable all weight function broadening; using maxPOutliers=0 will give results that are quite similar (but not equal to) Pearson correlation.

quickCor

real number between 0 and 1 that controls the handling of missing data in the calculation of correlations. See details.

pearsonFallback

Specifies whether the bicor calculation, if used, should revert to Pearson when median absolute deviation (mad) is zero. Recognized values are (abbreviations of) "none", "individual", "all". If set to "none", zero mad will result in NA for the corresponding correlation. If set to "individual", Pearson calculation will be used only for columns that have zero mad. If set to "all", the presence of a single zero mad will cause the whole variable to be treated in Pearson correlation manner (as if the corresponding robust option was set to FALSE). Has no effect for Pearson correlation. See bicor.

cosineCorrelation

logical: should the cosine version of the correlation calculation be used? The cosine calculation differs from the standard one in that it does not subtract the mean.

power

soft-thresholding power for network construction.

networkType

network type. Allowed values are (unique abbreviations of) "unsigned", "signed", "signed hybrid". See adjacency.

checkPower

logical: should basic sanity check be performed on the supplied power? If you would like to experiment with unusual powers, set the argument to FALSE and proceed with caution.

replaceMissingAdjacencies

logical: should missing values in the calculation of adjacency be replaced by 0?

TOMType

one of "none", "unsigned", "signed". If "none", adjacency will be used for clustering. If "unsigned", the standard TOM will be used (more generally, TOM function will receive the adjacency as input). If "signed", TOM will keep track of the sign of correlations between neighbors.

TOMDenom

a character string specifying the TOM variant to be used. Recognized values are "min" giving the standard TOM described in Zhang and Horvath (2005),
blockwiseConsensusModules

and "mean" in which the min function in the denominator is replaced by mean. The "mean" may produce better results but at this time should be considered experimental.

saveIndividualTOMs
logical: should individual TOMs be saved to disk for later use?

individualTOMFileNames
character string giving the file names to save individual TOMs into. The following tags should be used to make the file names unique for each set and block: %s will be replaced by the set number; %N will be replaced by the set name (taken from names(multiExpr)) if it exists, otherwise by set number; %b will be replaced by the block number. If the file names turn out to be non-unique, an error will be generated.

networkCalibration
network calibration method. One of "single quantile", "full quantile", "none" (or a unique abbreviation of one of them).

calibrationQuantile
if networkCalibration is "single quantile", topological overlaps (or adjacencies if TOMs are not computed) will be scaled such that their calibrationQuantile quantiles will agree.

sampleForCalibration
if TRUE, calibration quantiles will be determined from a sample of network similarities. Note that using all data can double the memory footprint of the function and the function may fail.

sampleForCalibrationFactor
determines the number of samples for calibration: the number is \(1 / \text{calibrationQuantile} \times \text{sampleForCalibrationFactor}\). Should be set well above 1 to ensure accuracy of the sampled quantile.

getNetworkCalibrationSamples
logical: should samples used for TOM calibration be saved for future analysis? This option is only available when sampleForCalibration is TRUE.

consensusQuantile
quantile at which consensus is to be defined. See details.

useMean
logical: should the consensus be determined from a (possibly weighted) mean across the data sets rather than a quantile?

setWeights
Optional vector (one component per input set) of weights to be used for weighted mean consensus. Only used when useMean above is TRUE.

saveConsensusTOMs
logical: should the consensus topological overlap matrices for each block be saved and returned?

consensusTOMFilePattern
character string containing the file names files containing the consensus topological overlaps. The tag %b will be replaced by the block number. If the resulting file names are non-unique (for example, because the user gives a file name without a %b tag), an error will be generated. These files are standard R data files and can be loaded using the \texttt{load} function.

useDiskCache
should calculated network similarities in individual sets be temporarily saved to disk? Saving to disk is somewhat slower than keeping all data in memory, but for large blocks and/or many sets the memory footprint may be too big.
chunkSize  network similarities are saved in smaller chunks of size chunkSize.
cacheBase  character string containing the desired name for the cache files. The actual file names will consist of cacheBase and a suffix to make the file names unique.
cacheDir   character string containing the desired path for the cache files.
consensusTOMInfo optional list summarizing consensus TOM, output of consensusTOM. It contains information about pre-calculated consensus TOM. Supplying this argument replaces TOM calculation, so none of the individual or consensus TOM calculation arguments are taken into account.
depth split integer value between 0 and 4. Provides a simplified control over how sensitive module detection should be to module splitting, with 0 least and 4 most sensitive. See cutreeDynamic for more details.
detectCutHeight dendrogram cut height for module detection. See cutreeDynamic for more details.
minModuleSize minimum module size for module detection. See cutreeDynamic for more details.
checkMinModuleSize logical: should sanity checks be performed on minModuleSize?
maxCoreScatter maximum scatter of the core for a branch to be a cluster, given as the fraction of cutHeight relative to the 5th percentile of joining heights. See cutreeDynamic for more details.
minGap minimum cluster gap given as the fraction of the difference between cutHeight and the 5th percentile of joining heights. See cutreeDynamic for more details.
maxAbsCoreScatter maximum scatter of the core for a branch to be a cluster given as absolute heights. If given, overrides maxCoreScatter. See cutreeDynamic for more details.
minAbsGap minimum cluster gap given as absolute height difference. If given, overrides minGap. See cutreeDynamic for more details.
minSplitHeight Minimum split height given as the fraction of the difference between cutHeight and the 5th percentile of joining heights. Branches merging below this height will automatically be merged. Defaults to zero but is used only if minAbsSplitHeight below is NULL.
minAbsSplitHeight Minimum split height given as an absolute height. Branches merging below this height will automatically be merged. If not given (default), will be determined from minSplitHeight above.
useBranchEigennodeDissim Logical: should branch eigennode (eigengene) dissimilarity be considered when merging branches in Dynamic Tree Cut?
minBranchEigennodeDissim Minimum consensus branch eigennode (eigengene) dissimilarity for branches to be considered separate. The branch eigennode dissimilarity in individual sets is simply 1-correlation of the eigennodes; the consensus is defined as quantile with probability consensusQuantile.
stabilityLabels
Optional matrix of cluster labels that are to be used for calculating branch dissimilarity based on split stability. The number of rows must equal the number of genes in `multiExpr`; the number of columns (clusterings) is arbitrary. See `branchSplitFromStabilityLabels` for details.

minStabilityDissim
Minimum stability dissimilarity criterion for two branches to be considered separate. Should be a number between 0 (essentially no dissimilarity required) and 1 (perfect dissimilarity or distinguishability based on `stabilityLabels`). See `branchSplitFromStabilityLabels` for details.

pamStage
logical. If TRUE, the second (PAM-like) stage of module detection will be performed. See `cutreeDynamic` for more details.

pamRespectsDendro
Logical, only used when `pamStage` is TRUE. If TRUE, the PAM stage will respect the dendrogram in the sense an object can be PAM-assigned only to clusters that lie below it on the branch that the object is merged into. See `cutreeDynamic` for more details.

reassignThresholdPS
per-set p-value ratio threshold for reassigning genes between modules. See Details.

trimmingConsensusQuantile
a number between 0 and 1 specifying the consensus quantile used for kME calculation that determines module trimming according to the arguments below.

minCoreKME
a number between 0 and 1. If a detected module does not have at least `minModuleKMESize` genes with eigengene connectivity at least `minCoreKME`, the module is disbanded (its genes are unlabeled and returned to the pool of genes waiting for module detection).

minCoreKMESize
see `minCoreKME` above.

minKMetoStay
genes whose eigengene connectivity to their module eigengene is lower than `minKMetoStay` are removed from the module.

impute
logical: should imputation be used for module eigengene calculation? See `moduleEigengenes` for more details.

trapErrors
logical: should errors in calculations be trapped?

equalizeQuantilesForModuleMerging
Logical: equalize quantiles of the module eigengene networks before module merging? If TRUE, the quantiles of the eigengene correlation matrices (interpreted as a single vectors of non-redundant components) will be equalized across the input data sets. Note that although this seems like a reasonable option, it should be considered experimental and not necessarily recommended.

quantileSummaryForModuleMerging
One of "mean" or "median". If quantile equalization of the module eigengene networks is performed, the resulting "normal" quantiles will be given by this function of the corresponding quantiles across the input data sets.

mergeCutHeight
dendrogram cut height for module merging.

mergeConsensusQuantile
consensus quantile for module merging. See `mergeCloseModules` for details.
numericLabels logical: should the returned modules be labeled by colors (FALSE), or by numbers (TRUE)?

nThreads non-negative integer specifying the number of parallel threads to be used by certain parts of correlation calculations. This option only has an effect on systems on which a POSIX thread library is available (which currently includes Linux and Mac OSX, but excludes Windows). If zero, the number of online processors will be used if it can be determined dynamically, otherwise correlation calculations will use 2 threads.

verbose integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

... Other arguments. At present these can include reproduceBranchEigenNodeQuantileError that instructs the function to reproduce a bug in branch eigennode dissimilarity calculations for purposes if reproducing old results.

Details

The function starts by optionally filtering out samples that have too many missing entries and genes that have either too many missing entries or zero variance in at least one set. Genes that are filtered out are left unassigned by the module detection. Returned eigengenes will contain NA in entries corresponding to filtered-out samples.

If blocks is not given and the number of genes exceeds maxBlockSize, genes are pre-clustered into blocks using the function consensusProjectiveKMeans; otherwise all genes are treated in a single block.

For each block of genes, the network is constructed and (if requested) topological overlap is calculated in each set. To minimize memory usage, calculated topological overlaps are optionally saved to disk in chunks until they are needed again for the calculation of the consensus network topological overlap.

Before calculation of the consensus Topological Overlap, individual TOMs are optionally calibrated. Calibration methods include single quantile scaling and full quantile normalization.

Single quantile scaling raises individual TOM in sets 2,3,... to a power such that the quantiles given by calibrationQuantile agree with the quantile in set 1. Since the high TOMs are usually the most important for module identification, the value of calibrationQuantile is close to (but not equal) 1. To speed up quantile calculation, the quantiles can be determined on a randomly-chosen component subset of the TOM matrices.

Full quantile normalization, implemented in normalize.quantiles, adjusts the TOM matrices such that all quantiles equal each other (and equal to the quantiles of the component-wise average of the individual TOM matrices).

Note that network calibration is performed separately in each block, i.e., the normalizing transformation may differ between blocks. This is necessary to avoid manipulating a full TOM in memory.

The consensus TOM is calculated as the component-wise consensusQuantile quantile of the individual (set) TOMs; that is, for each gene pair (TOM entry), the consensusQuantile quantile across all input sets. Alternatively, one can also use (weighted) component-wise mean across all input data sets. If requested, the consensus topological overlaps are saved to disk for later use.
Genes are then clustered using average linkage hierarchical clustering and modules are identified in the resulting dendrogram by the Dynamic Hybrid tree cut. Found modules are trimmed of genes whose consensus module membership kME (that is, correlation with module eigengene) is less than \texttt{minKMEtoStay}. Modules in which fewer than \texttt{minCoreKMESize} genes have consensus KME higher than \texttt{minCoreKME} are disbanded, i.e., their constituent genes are pronounced unassigned.

After all blocks have been processed, the function checks whether there are genes whose KME in the module they assigned is lower than KME to another module. If \texttt{p-values} of the higher correlations are smaller than those of the native module by the factor \texttt{reassignThresholdPS} (in every set), the gene is re-assigned to the closer module.

In the last step, modules whose eigengenes are highly correlated are merged. This is achieved by clustering module eigengenes using the dissimilarity given by one minus their correlation, cutting the dendrogram at the height \texttt{mergeCutHeight} and merging all modules on each branch. The process is iterated until no modules are merged. See \texttt{mergeCloseModules} for more details on module merging.

The argument \texttt{quick} specifies the precision of handling of missing data in the correlation calculations. Zero will cause all calculations to be executed precisely, which may be significantly slower than calculations without missing data. Progressively higher values will speed up the calculations but introduce progressively larger errors. Without missing data, all column means and variances can be pre-calculated before the covariances are calculated. When missing data are present, exact calculations require the column means and variances to be calculated for each covariance. The approximate calculation uses the pre-calculated mean and variance and simply ignores missing data in the covariance calculation. If the number of missing data is high, the pre-calculated means and variances may be very different from the actual ones, thus potentially introducing large errors. The \texttt{quick} value times the number of rows specifies the maximum difference in the number of missing entries for mean and variance calculations on the one hand and covariance on the other hand that will be tolerated before a recalculation is triggered. The hope is that if only a few missing data are treated approximately, the error introduced will be small but the potential speedup can be significant.

**Value**

A list with the following components:

- **colors**: module assignment of all input genes. A vector containing either character strings with module colors (if \texttt{numericLabels} was unset) or numeric module labels (if \texttt{numericLabels} was set to \texttt{TRUE}). The color "grey" and the numeric label 0 are reserved for unassigned genes.

- **unmergedColors**: module colors or numeric labels before the module merging step.

- **multiMEs**: module eigengenes corresponding to the modules returned in \texttt{colors}, in multi-set format. A vector of lists, one per set, containing eigengenes, proportion of variance explained and other information. See \texttt{multiSetMEs} for a detailed description.

- **goodSamples**: a list, with one component per input set. Each component is a logical vector with one entry per sample from the corresponding set. The entry indicates whether the sample in the set passed basic quality control criteria.
goodGenes a logical vector with one entry per input gene indicating whether the gene passed basic quality control criteria in all sets.

dendrograms a list with one component for each block of genes. Each component is the hierarchical clustering dendrogram obtained by clustering the consensus gene dissimilarity in the corresponding block.

TOMfiles if saveConsensusTOMs==TRUE, a vector of character strings, one string per block, giving the file names of files (relative to current directory) in which blockwise topological overlaps were saved.

blockGenes a list with one component for each block of genes. Each component is a vector giving the indices (relative to the input multiExpr) of genes in the corresponding block.

blocks if input blocks was given, its copy; otherwise a vector of length equal number of genes giving the block label for each gene. Note that block labels are not necessarily sorted in the order in which the blocks were processed (since we do not require this for the input blocks). See blockOrder below.

blockOrder a vector giving the order in which blocks were processed and in which blockGenes above is returned. For example, blockOrder[1] contains the label of the first-processed block.

originCount A vector of length nSets that contains, for each set, the number of (calibrated) elements that were less than or equal the consensus for that element.

networkCalibrationSamples if the input getNetworkCalibrationSamples is TRUE, this component is a list with one component per block. Each component is again a list with two components: sampleIndex contains indices of the distance structure in which TOM is stored that were sampled, and TOMSamples is a matrix whose rows correspond to TOM samples and columns to individual set. Hence, networkCalibrationSamples[[blockNo]]$TOMSamples contains the TOM entry that corresponds to element networkCalibrationSamples[[blockNo]]$sampleIndex of the TOM distance structure in block blockNo and set setNo. (For details on the distance structure, see dist.)

Note

If the input datasets have large numbers of genes, consider carefully the maxBlockSize as it significantly affects the memory footprint (and whether the function will fail with a memory allocation error). From a theoretical point of view it is advantageous to use blocks as large as possible; on the other hand, using smaller blocks is substantially faster and often the only way to work with large numbers of genes. As a rough guide, it is unlikely a standard desktop computer with 4GB memory or less will be able to work with blocks larger than 7000 genes.

Author(s)

Peter Langfelder

References

See Also

goodSamplesGenesMS for basic quality control and filtering;
adjacency, TOMsimilarity for network construction;
hclust for hierarchical clustering;
cutreeDynamic for adaptive branch cutting in hierarchical clustering dendrograms;
mergeCloseModules for merging of close modules.

blockwiseIndividualTOMs

*Calculation of block-wise topological overlaps*

**Description**

Calculates topological overlaps in the given (expression) data. If the number of variables (columns) in the input data is too large, the data is first split using pre-clustering, then topological overlaps are calculated in each block.

**Usage**

```r
blockwiseIndividualTOMs(
 multiExpr, # multiWeights = NULL,
 # Data checking options
 checkMissingData = TRUE,
 # Blocking options
 blocks = NULL, maxBlockSize = 5000, blockSizePenaltyPower = 5,
 nPreclusteringCenters = NULL, randomSeed = 12345,
 # Network construction arguments: correlation options
 corType = "pearson", maxPOutliers = 1, quickCor = 0,
 pearsonFallback = "individual", cosineCorrelation = FALSE,
 # Adjacency function options
)```

```
Arguments

multiExpr  expression data in the multi-set format (see checkSets). A vector of lists, one per set. Each set must contain a component data that contains the expression data, with rows corresponding to samples and columns to genes or probes.

multiWeights  optional observation weights in the same format (and dimensions) as multiExpr. These weights are used in correlation calculation.

checkMissingData  logical: should data be checked for excessive numbers of missing entries in genes and samples, and for genes with zero variance? See details.

blocks  optional specification of blocks in which hierarchical clustering and module detection should be performed. If given, must be a numeric vector with one entry per gene of multiExpr giving the number of the block to which the corresponding gene belongs.

maxBlockSize  integer giving maximum block size for module detection. Ignored if blocks above is non-NULL. Otherwise, if the number of genes in datExpr exceeds maxBlockSize, genes will be pre-clustered into blocks whose size should not exceed maxBlockSize.

blockSizePenaltyPower  number specifying how strongly blocks should be penalized for exceeding the maximum size. Set to a large number or Inf if not exceeding maximum block size is very important.

nPreclusteringCenters  number of centers for pre-clustering. Larger numbers typically results in better but slower pre-clustering. The default is as.integer(min(nGenes/20, 100*nGenes/preferredSize)) and is an attempt to arrive at a reasonable number given the resources available.
randomSeed: integer to be used as seed for the random number generator before the function starts. If a current seed exists, it is saved and restored upon exit. If NULL is given, the function will not save and restore the seed.

corType: character string specifying the correlation to be used. Allowed values are (unique abbreviations of) "pearson" and "bicor", corresponding to Pearson and bidirectional midcorrelation, respectively. Missing values are handled using the pairwise.complete.obs option.

maxPOutliers: only used for corType="bicor". Specifies the maximum percentile of data that can be considered outliers on either side of the median separately. For each side of the median, if higher percentile than maxPOutliers is considered an outlier by the weight function based on 9*mad(x), the width of the weight function is increased such that the percentile of outliers on that side of the median equals maxPOutliers. Using maxPOutliers=1 will effectively disable all weight function broadening; using maxPOutliers=0 will give results that are quite similar (but not equal to) Pearson correlation.

quickCor: real number between 0 and 1 that controls the handling of missing data in the calculation of correlations. See details.

pearsonFallback: Specifies whether the bicor calculation, if used, should revert to Pearson when median absolute deviation (mad) is zero. Recognized values are (abbreviations of) "none", "individual", "all". If set to "none", zero mad will result in NA for the corresponding correlation. If set to "individual", Pearson calculation will be used only for columns that have zero mad. If set to "all", the presence of a single zero mad will cause the whole variable to be treated in Pearson correlation manner (as if the corresponding robust option was set to FALSE). Has no effect for Pearson correlation. See bicor.

cosineCorrelation: logical: should the cosine version of the correlation calculation be used? The cosine calculation differs from the standard one in that it does not subtract the mean.

power: soft-thresholding power for network construction.

networkType: network type. Allowed values are (unique abbreviations of) "unsigned", "signed", "signed hybrid". See adjacency.

checkPower: logical: should basic sanity check be performed on the supplied power? If you would like to experiment with unusual powers, set the argument to FALSE and proceed with caution.

replaceMissingAdjacencies: logical: should missing values in calculated adjacency be replaced by 0?

suppressTOMForZeroAdjacencies: Logical: should TOM be set to zero for zero adjacencies?

TOMType: one of "none", "unsigned", "signed". If "none", adjacency will be used for clustering. If "unsigned", the standard TOM will be used (more generally, TOM function will receive the adjacency as input). If "signed", TOM will keep track of the sign of correlations between neighbors. Note that the "unsigned" vs. "signed" distinction is only relevant when networkType is "unsigned". When networkType is "signed" or "signed hybrid", there is no difference between TOMType="signed" and TOMType="unsigned".
blockwiseIndividualTOMs

TOMDenom

a character string specifying the TOM variant to be used. Recognized values are "min" giving the standard TOM described in Zhang and Horvath (2005), and "mean" in which the min function in the denominator is replaced by mean. The "mean" may produce better results in certain special situations but at this time should be considered experimental.

saveTOMs

logical: should calculated TOMs be saved to disk (TRUE) or returned in the return value (FALSE)? Returning calculated TOMs via the return value may be more convenient but not always feasible if the matrices are too big to fit all in memory at the same time.

individualTOMFileNames

character string giving the file names to save individual TOMs into. The following tags should be used to make the file names unique for each set and block: %s will be replaced by the set number; %N will be replaced by the set name (taken from names(multExpr)) if it exists, otherwise by set number; %b will be replaced by the block number. If the file names turn out to be non-unique, an error will be generated.

nThreads

non-negative integer specifying the number of parallel threads to be used by certain parts of correlation calculations. This option only has an effect on systems on which a POSIX thread library is available (which currently includes Linux and Mac OSX, but excludes Windows). If zero, the number of online processors will be used if it can be determined dynamically, otherwise correlation calculations will use 2 threads.

useInternalMatrixAlgebra

Logical: should WGCNA's own, slow, matrix multiplication be used instead of R-wide BLAS? Only useful for debugging.

verbose

integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

indent

indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

The function starts by optionally filtering out samples that have too many missing entries and genes that have either too many missing entries or zero variance in at least one set. Genes that are filtered out are excluded from the TOM calculations.

If blocks is not given and the number of genes exceeds maxBlockSize, genes are pre-clustered into blocks using the function consensusProjectiveKMeans; otherwise all genes are treated in a single block.

For each block of genes, the network is constructed and (if requested) topological overlap is calculated in each set. The topological overlaps can be saved to disk as RData files, or returned directly within the return value (see below). Note that the matrices can be big and returning them within the return value can quickly exhaust the system's memory. In particular, if the block-wise calculation is necessary, it is nearly certain that returning all matrices via the return value will be impossible.

Value

A list with the following components:
actualTOMfilenames

Only returned if input saveTOMs is TRUE. A matrix of character strings giving the file names in which each block TOM is saved. Rows correspond to data sets and columns to blocks.

TOMsimilarities

Only returned if input saveTOMs is FALSE. A list in which each component corresponds to one block. Each component is a matrix of dimensions \( N \times \frac{n(n-1)}{2} \), where \( N \) is the length of a distance structure corresponding to the block. That is, if the block contains \( n \) genes, \( N = n^2 - n / 2 \). Each column of the matrix contains the topological overlap of variables in the corresponding set (and the corresponding block), arranged as a distance structure. Do note however that the topological overlap is a similarity (not a distance).

blocks

if input blocks was given, its copy; otherwise a vector of length equal number of genes giving the block label for each gene. Note that block labels are not necessarily sorted in the order in which the blocks were processed (since we do not require this for the input blocks). See blockOrder below.

blockGenes

a list with one component for each block of genes. Each component is a vector giving the indices (relative to the input multiexpr) of genes in the corresponding block.

goodSamplesAndGenes

if input checkMissingData is TRUE, the output of the function goodSamplesGenesMS. A list with components goodGenes (logical vector indicating which genes passed the missing data filters), goodSamples (a list of logical vectors indicating which samples passed the missing data filters in each set), and allOK (a logical indicating whether all genes and all samples passed the filters). See goodSamplesGenesMS for more details. If checkMissingData is FALSE, goodSamplesAndGenes contains a list of the same type but indicating that all genes and all samples passed the missing data filters.

The following components are present mostly to streamline the interaction of this function with blockwiseConsensusModules.

nGenes

Number of genes that passed missing data filters (if input checkMissingData is TRUE), or the number of all genes (if checkMissingData is FALSE).

gBlocks

the vector blocks (above), restricted to good genes only.

nThreads

number of threads used to calculate correlation and TOM matrices.

saveTOMs

logical: were calculated matrices saved in files (TRUE) or returned in the return value (FALSE)?

intNetworkType, intCorType

integer codes for network and correlation type.

nSets

number of sets in input data.

setNames

the names attribute of input multiExpr.

Author(s)

Peter Langfelder
blockwiseModules

References

For a general discussion of the weighted network formalism, see
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

The blockwise approach is briefly described in the article describing this package,
Langfelder P, Horvath S (2008) "WGCNA: an R package for weighted correlation network analy-
sis". BMC Bioinformatics 2008, 9:559

See Also

blockwiseConsensusModules

Description

This function performs automatic network construction and module detection on large expression
datasets in a block-wise manner.

Usage

blockwiseModules(
  # Input data
  datExpr,
  weights = NULL,

  # Data checking options
  checkMissingData = TRUE,

  # Options for splitting data into blocks
  blocks = NULL,
  maxBlockSize = 5000,
  blockSizePenaltyPower = 5,
  nPreclusteringCenters = as.integer(min(ncol(datExpr)/20,
                                          100*ncol(datExpr)/maxBlockSize)),
  randomSeed = 12345,

  # load TOM from previously saved file?
  loadTOM = FALSE,
)
# Network construction arguments: correlation options

corType = "pearson",
maxPOutliers = 1,
quickCor = 0,
pearsonFallback = "individual",
cosineCorrelation = FALSE,

# Adjacency function options

power = 6,
networkType = "unsigned",
replaceMissingAdjacencies = FALSE,
suppressTOMForZeroAdjacencies = FALSE,

# Topological overlap options

TOMType = "signed",
TOMDenom = "min",

# Saving or returning TOM

getTOMs = NULL,
saveTOMs = FALSE,
saveTOMfileBase = "blockwiseTOM",

# Basic tree cut options

deepSplit = 2,
detectCutHeight = 0.995,
minModuleSize = min(20, ncol(datExpr)/2 ),

# Advanced tree cut options

maxCoreScatter = NULL, minGap = NULL,
maxAbsCoreScatter = NULL, minAbsGap = NULL,
minSplitHeight = NULL, minAbsSplitHeight = NULL,

useBranchEigennodeDissim = FALSE,
minBranchEigennodeDissim = mergeCutHeight,

stabilityLabels = NULL,
stabilityCriterion = c("Individual fraction", "Common fraction"),
minStabilityDissim = NULL,

pamStage = TRUE, pamRespectsDendro = TRUE,

# Gene reassignment, module trimming, and module "significance" criteria
reassignThreshold = 1e-6,
minCoreKME = 0.5,
minCoreKMESize = minModuleSize/3,
minKMetoStay = 0.3,

# Module merging options
mergeCutHeight = 0.15,
impute = TRUE,
trapErrors = FALSE,

# Output options
numericLabels = FALSE,

# Options controlling behaviour
nThreads = 0,
useInternalMatrixAlgebra = FALSE,
useCorOptionsThroughout = TRUE,
verbose = 0, indent = 0,
...)

Arguments

datExprr Expression data. A matrix (preferred) or data frame in which columns are genes
and rows are samples. NAs are allowed, but not too many. See checkMissingData
below and details.

weights optional observation weights in the same format (and dimensions) as datExpr.
These weights are used in correlation calculation.

checkMissingData logical: should data be checked for excessive numbers of missing entries in
genes and samples, and for genes with zero variance? See details.

blocks optional specification of blocks in which hierarchical clustering and module de-
tection should be performed. If given, must be a numeric vector with one entry
per column (gene) of exprData giving the number of the block to which the
 corresponding gene belongs.

maxBlockSize integer giving maximum block size for module detection. Ignored if blocks
above is non-NULL. Otherwise, if the number of genes in datExpr exceeds
maxBlockSize, genes will be pre-clustered into blocks whose size should not
 exceed maxBlockSize.

blockSizePenaltyPower number specifying how strongly blocks should be penalized for exceeding the
maximum size. Set to a large number or Inf if not exceeding maximum block
 size is very important.
nPreclusteringCenters
number of centers for pre-clustering. Larger numbers typically results in better but slower pre-clustering.

randomSeed
integer to be used as seed for the random number generator before the function starts. If a current seed exists, it is saved and restored upon exit. If NULL is given, the function will not save and restore the seed.

loadTOM
logical: should Topological Overlap Matrices be loaded from previously saved files (TRUE) or calculated (FALSE)? It may be useful to load previously saved TOM matrices if these have been calculated previously, since TOM calculation is often the most computationally expensive part of network construction and module identification. See saveTOMs and saveTOMfileBase below for when and how TOM files are saved, and what the file names are. If loadTOM is TRUE but the files cannot be found, or do not contain the correct TOM data, TOM will be recalculated.

corType
character string specifying the correlation to be used. Allowed values are (unique abbreviations of) "pearson" and "bicor", corresponding to Pearson and bid-weight midcorrelation, respectively. Missing values are handled using the pairwise.complete.obs option.

maxPOutliers
only used for corType="bicor". Specifies the maximum percentile of data that can be considered outliers on either side of the median separately. For each side of the median, if higher percentile than maxPOutliers is considered an outlier by the weight function based on 9*mad(x), the width of the weight function is increased such that the percentile of outliers on that side of the median equals maxPOutliers. Using maxPOutliers=1 will effectively disable all weight function broadening; using maxPOutliers=0 will give results that are quite similar (but not equal to) Pearson correlation.

quickCor
real number between 0 and 1 that controls the handling of missing data in the calculation of correlations. See details.

pearsonFallback
Specifies whether the bicor calculation, if used, should revert to Pearson when median absolute deviation (mad) is zero. Recongnized values are (abbreviations of) "none", "individual", "all". If set to "none", zero mad will result in NA for the corresponding correlation. If set to "individual", Pearson calculation will be used only for columns that have zero mad. If set to "all", the presence of a single zero mad will cause the whole variable to be treated in Pearson correlation manner (as if the corresponding robust option was set to FALSE). Has no effect for Pearson correlation. See bicor.

cosineCorrelation
logical: should the cosine version of the correlation calculation be used? The cosine calculation differs from the standard one in that it does not subtract the mean.

power
soft-thresholding power for network construction.

networkType
network type. Allowed values are (unique abbreviations of) "unsigned", "signed", "signed hybrid". See adjacency.

replaceMissingAdjacencies
logical: should missing values in the calculation of adjacency be replaced by 0?
suppressTOMForZeroAdjacencies
Logical: should TOM be set to zero for zero adjacencies?

TOMType
one of "none", "unsigned", "signed". If "none", adjacency will be used for clustering. If "unsigned", the standard TOM will be used (more generally, TOM function will receive the adjacency as input). If "signed", TOM will keep track of the sign of correlations between neighbors.

TOMDenom
a character string specifying the TOM variant to be used. Recognized values are "min" giving the standard TOM described in Zhang and Horvath (2005), and "mean" in which the min function in the denominator is replaced by mean. The "mean" may produce better results but at this time should be considered experimental.

getTOMs
deprecated, please use saveTOMs below.

saveTOMs
logical: should the consensus topological overlap matrices for each block be saved and returned?

saveTOMFileBase
character string containing the file name base for files containing the consensus topological overlaps. The full file names have "block.1.RData", "block.2.RData" etc. appended. These files are standard R data files and can be loaded using the load function.

deeepSplit
integer value between 0 and 4. Provides a simplified control over how sensitive module detection should be to module splitting, with 0 least and 4 most sensitive. See cutreeDynamic for more details.

detectCutHeight
dendrogram cut height for module detection. See cutreeDynamic for more details.

minModuleSize
minimum module size for module detection. See cutreeDynamic for more details.

maxCoreScatter
maximum scatter of the core for a branch to be a cluster, given as the fraction of cutHeight relative to the 5th percentile of joining heights. See cutreeDynamic for more details.

minGap
minimum cluster gap given as the fraction of the difference between cutHeight and the 5th percentile of joining heights. See cutreeDynamic for more details.

maxAbsCoreScatter
maximum scatter of the core for a branch to be a cluster given as absolute heights. If given, overrides maxCoreScatter. See cutreeDynamic for more details.

minAbsGap
minimum cluster gap given as absolute height difference. If given, overrides minGap. See cutreeDynamic for more details.

minSplitHeight
Minimum split height given as the fraction of the difference between cutHeight and the 5th percentile of joining heights. Branches merging below this height will automatically be merged. Defaults to zero but is used only if minAbsSplitHeight below is NULL.

minAbsSplitHeight
Minimum split height given as an absolute height. Branches merging below this height will automatically be merged. If not given (default), will be determined from minSplitHeight above.
useBranchEigennodeDissim
   Logical: should branch eigennode (eigengene) dissimilarity be considered when merging branches in Dynamic Tree Cut?

minBranchEigennodeDissim
   Minimum consensus branch eigennode (eigengene) dissimilarity for branches to be considered separate. The branch eigennode dissimilarity in individual sets is simply 1-correlation of the eigennodes; the consensus is defined as quantile with probability consensusQuantile.

stabilityLabels
   Optional matrix of cluster labels that are to be used for calculating branch dissimilarity based on split stability. The number of rows must equal the number of genes in multiExpr; the number of columns (clusterings) is arbitrary. See branchSplitFromStabilityLabels for details.

stabilityCriterion
   One of c("Individual fraction", "Common fraction"), indicating which method for assessing stability similarity of two branches should be used. We recommend "Individual fraction" which appears to perform better; the "Common fraction" method is provided for backward compatibility since it was the (only) method available prior to WGCNA version 1.60.

minStabilityDissim
   Minimum stability dissimilarity criterion for two branches to be considered separate. Should be a number between 0 (essentially no dissimilarity required) and 1 (perfect dissimilarity or distinguishability based on stabilityLabels). See branchSplitFromStabilityLabels for details.

pamStage
   logical. If TRUE, the second (PAM-like) stage of module detection will be performed. See cutreeDynamic for more details.

pamRespectsDendro
   Logical, only used when pamStage is TRUE. If TRUE, the PAM stage will respect the dendrogram in the sense an object can be PAM-assigned only to clusters that lie below it on the branch that the object is merged into. See cutreeDynamic for more details.

minCoreKME
   a number between 0 and 1. If a detected module does not have at least minModuleKMEsize genes with eigengene connectivity at least minCoreKME, the module is disbanded (its genes are unlabeled and returned to the pool of genes waiting for module detection).

minCoreKMEsize
   see minCoreKME above.

minKMetoStay
   genes whose eigengene connectivity to their module eigengene is lower than minKMetoStay are removed from the module.

reassignThreshold
   p-value ratio threshold for reassigning genes between modules. See Details.

mergeCutHeight
   dendrogram cut height for module merging.

impute
   logical: should imputation be used for module eigengene calculation? See moduleEigengenes for more details.

trapErrors
   logical: should errors in calculations be trapped?

numericLabels
   logical: should the returned modules be labeled by colors (FALSE), or by numbers (TRUE)?
blockwiseModules

\texttt{nThreads}\non-negative integer specifying the number of parallel threads to be used by certain parts of correlation calculations. This option only has an effect on systems on which a POSIX thread library is available (which currently includes Linux and Mac OSX, but excludes Windows). If zero, the number of online processors will be used if it can be determined dynamically, otherwise correlation calculations will use 2 threads.

\texttt{useInternalMatrixAlgebra}\Logical: should WGCNA's own, slow, matrix multiplication be used instead of R-wide BLAS? Only useful for debugging.

\texttt{useCorOptionsThroughout}\Logical: should correlation options passed to network analysis also be used in calculation of kME? Set to \texttt{FALSE} to reproduce results obtained with WGCNA 1.62 and older.

\texttt{verbose}\integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

\texttt{indent}\indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

\ldots\Other other arguments.

\textbf{Details}

Before module detection starts, genes and samples are optionally checked for the presence of N\texttt{A}s. Genes and/or samples that have too many N\texttt{A}s are flagged as bad and removed from the analysis; bad genes will be automatically labeled as unassigned, while the returned eigengenes will have N\texttt{A} entries for all bad samples.

If \texttt{blocks} is not given and the number of genes exceeds \texttt{maxBlockSize}, genes are pre-clustered into blocks using the function \texttt{projectiveKMeans}; otherwise all genes are treated in a single block.

For each block of genes, the network is constructed and (if requested) topological overlap is calculated. If requested, the topological overlaps are returned as part of the return value list. Genes are then clustered using average linkage hierarchical clustering and modules are identified in the resulting dendrogram by the Dynamic Hybrid tree cut. Found modules are trimmed of genes whose correlation with module eigengene (KME) is less than \texttt{minKMEToStay}. Modules in which fewer than \texttt{minCoreKMESize} genes have KME higher than \texttt{minCoreKME} are disbanded, i.e., their constituent genes are pronounced unassigned.

After all blocks have been processed, the function checks whether there are genes whose KME in the module they assigned is lower than KME to another module. If p-values of the higher correlations are smaller than those of the native module by the factor \texttt{reassignThresholdPS}, the gene is reassigned to the closer module.

In the last step, modules whose eigengenes are highly correlated are merged. This is achieved by clustering module eigengenes using the dissimilarity given by one minus their correlation, cutting the dendrogram at the height \texttt{mergeCutHeight} and merging all modules on each branch. The process is iterated until no modules are merged. See \texttt{mergeCloseModules} for more details on module merging.

The argument \texttt{quick} specifies the precision of handling of missing data in the correlation calculations. Zero will cause all calculations to be executed precisely, which may be significantly slower than calculations without missing data. Progressively higher values will speed up the calculations.
but introduce progressively larger errors. Without missing data, all column means and variances can be pre-calculated before the covariances are calculated. When missing data are present, exact calculations require the column means and variances to be calculated for each covariance. The approximate calculation uses the pre-calculated mean and variance and simply ignores missing data in the covariance calculation. If the number of missing data is high, the pre-calculated means and variances may be very different from the actual ones, thus potentially introducing large errors. The quick value times the number of rows specifies the maximum difference in the number of missing entries for mean and variance calculations on the one hand and covariance on the other hand that will be tolerated before a recalculation is triggered. The hope is that if only a few missing data are treated approximately, the error introduced will be small but the potential speedup can be significant.

Value

A list with the following components:

- **colors**
  - a vector of color or numeric module labels for all genes.
- **unmergedColors**
  - a vector of color or numeric module labels for all genes before module merging.
- **MEs**
  - a data frame containing module eigengenes of the found modules (given by colors).
- **goodSamples**
  - numeric vector giving indices of good samples, that is samples that do not have too many missing entries.
- **goodGenes**
  - numeric vector giving indices of good genes, that is genes that do not have too many missing entries.
- **dendrograms**
  - a list whose components contain hierarchical clustering dendrograms of genes in each block.
- **TOMFiles**
  - if saveTOMs==TRUE, a vector of character strings, one string per block, giving the file names of files (relative to current directory) in which blockwise topological overlaps were saved.
- **blockGenes**
  - a list whose components give the indices of genes in each block.
- **blocks**
  - if input blocks was given, its copy; otherwise a vector of length equal number of genes giving the block label for each gene. Note that block labels are not necessarily sorted in the order in which the blocks were processed (since we do not require this for the input blocks). See blockOrder below.
- **blockOrder**
  - a vector giving the order in which blocks were processed and in which blockGenes above is returned. For example, blockOrder[1] contains the label of the first-processed block.
- **MEsOK**
  - logical indicating whether the module eigengenes were calculated without errors.

Note

significantly affects the memory footprint (and whether the function will fail with a memory allocation error). From a theoretical point of view it is advantageous to use blocks as large as possible; on the other hand, using smaller blocks is substantially faster and often the only way to work with large numbers of genes. As a rough guide, it is unlikely a standard desktop computer with 4GB memory or less will be able to work with blocks larger than 8000 genes.
Author(s)

Peter Langfelder

References


See Also

goodSamplesGenes for basic quality control and filtering;
adacency, TOMsimilarity for network construction;
hclust for hierarchical clustering;
cutreeDynamic for adaptive branch cutting in hierarchical clustering dendrograms;
mergeCloseModules for merging of close modules.

BloodLists

Blood Cell Types with Corresponding Gene Markers

Description

This matrix gives a predefined set of marker genes for many blood cell types, as reported in several previously-published studies. It is used with userListEnrichment to search user-defined gene lists for enrichment.

Usage

data(BloodLists)

Format

A 2048 x 2 matrix of characters containing Gene / Category pairs. The first column (Gene) lists genes corresponding to a given category (second column). Each Category entry is of the form <Blood cell type>__<reference>, where the references can be found at userListEnrichment. Note that the matrix is sorted first by Category and then by Gene, such that all genes related to the same category are listed sequentially.

Source

For references used in this variable, please see userListEnrichment

Examples

data(BloodLists)
head(BloodLists)
blueWhiteRed  

Blue-white-red color sequence

Description
Generate a blue-white-red color sequence of a given length.

Usage
blueWhiteRed(n, gamma = 1, endSaturation = 1)

Arguments
- n: number of colors to be returned.
- gamma: color change power.
- endSaturation: a number between 0 and 1 giving the saturation of the colors that will represent the ends of the scale. Lower numbers mean less saturation (lighter colors).

Details
The function returns a color vector that starts with blue, gradually turns into white and then to red. The power gamma can be used to control the behaviour of the quarter- and three quarter-values (between blue and white, and white and red, respectively). Higher powers will make the mid-colors more white, while lower powers will make the colors more saturated, respectively.

Value
A vector of colors of length n.

Author(s)
Peter Langfelder

See Also
numbers2colors for a function that produces a color representation for continuous numbers.

Examples
```r
par(mfrow = c(3, 1))
displayColors(blueWhiteRed(50)); title("gamma = 1")
displayColors(blueWhiteRed(50, 3)); title("gamma = 3")
displayColors(blueWhiteRed(50, 0.5)); title("gamma = 0.5")
```
### BrainLists

**Brain-Related Categories with Corresponding Gene Markers**

#### Description

This matrix gives a predefined set of marker genes for many brain-related categories (i.e., cell type, organelle, changes with disease, etc.), as reported in several previously-published studies. It is used with userListEnrichment to search user-defined gene lists for enrichment.

#### Usage

```r
data(BrainLists)
```

#### Format

A 48319 x 2 matrix of characters containing Gene / Category pairs. The first column (Gene) lists genes corresponding to a given category (second column). Each Category entry is of the form `<Brain descriptor>__<reference>`, where the references can be found at `userListEnrichment`. Note that the matrix is sorted first by Category and then by Gene, such that all genes related to the same category are listed sequentially.

#### Source

For references used in this variable, please see `userListEnrichment`

#### Examples

```r
data(BrainLists)
head(BrainLists)
```

---

### BrainRegionMarkers

**Gene Markers for Regions of the Human Brain**

#### Description


#### Usage

```r
data(BrainRegionMarkers)
```
Format

A 28477 x 2 matrix of characters containing Gene / Category pairs. The first column (Gene) lists genes corresponding to a given category (second column). Each Category entry is of the form `<Brain Region>_<Marker Type>__HBA`. Note that the matrix is sorted first by Category and then by Gene, such that all genes related to the same category are listed sequentially.

Source

For references used in this variable, or other information, please see `userListEnrichment`

Examples

data(BrainRegionMarkers)
head(BrainRegionMarkers)

---

`branchEigengeneDissim` **Branch dissimilarity based on eigennodes (eigengenes).**

Description

Calculation of branch dissimilarity based on eigennodes (eigengenes) in single set and multi-data situations. This function is used as a plugin for the dynamicTreeCut package and the user should not call this function directly. This function is experimental and subject to change.

Usage

```r
branchEigengeneDissim(
 expr,
 branch1, branch2,
 corFnc = cor, corOptions = list(use = "p"),
 signed = TRUE, ...)
```

```r
branchEigengeneSimilarity(
 expr,
 branch1,
 branch2,
 networkOptions,
 returnDissim = TRUE, ...)
```

```r
mtd.branchEigengeneDissim(
 multiExpr,
 branch1, branch2,
 corFnc = cor, corOptions = list(use = 'p'),
 consensusQuantile = 0,
 signed = TRUE, reproduceQuantileError = FALSE, ...)
```

```r
hierarchicalBranchEigengeneDissim(
```
branchEigengeneDissim

multiExpr, branch1, branch2, networkOptions, consensusTree, ...)

Arguments
expr Expression data.
multiExpr Expression data in multi-set format.
branch1 Branch 1.
branch2 Branch 2.
corFnc Correlation function.
corOptions Other arguments to the correlation function.
consensusQuantile Consensus quantile.
signed Should the network be considered signed?
reproduceQuantileError Logical: should an error in the calculation from previous versions, which caused the true consensus quantile to be 1-consensusQuantile rather than consensusQuantile, be reproduced? Use this only to reproduce old calculations.
networkOptions An object of class NetworkOptions giving the network construction options to be used in the calculation of the similarity.
returnDissim Logical: if TRUE, dissimilarity, rather than similarity, will be returned.
consensusTree A list of class ConsensusTree specifying the consensus calculation. Note that calibration options within the consensus specifications are ignored: since the consensus is calculated from entries representing a single value, calibration would not make sense.
... Other arguments for compatibility; currently unused.

Details
These functions calculate the similarity or dissimilarity of two groups of genes (variables) in expr or multiExpr using correlations of the first singular vectors ("eigengenes"). For a single data set (branchEigengeneDissim and branchEigengeneSimilarity), the similarity is the correlation, and dissimilarity 1-correlation of the first singular vectors.

Functions mtd.branchEigengeneDissim and hierarchicalBranchEigengeneDissim calculate consensus eigengene dissimilarity. Function mtd.branchEigengeneDissim calculates a simple ("flat") consensus of branch eigengene similarities across the given data set, at the given consensus quantile. Function hierarchicalBranchEigengeneDissim can calculate a hierarchical consensus in which consensus calculations are hierarchically nested.

Value
A single number, the dissimilarity for branchEigengeneDissim, mtd.branchEigengeneDissim, and hierarchicalBranchEigengeneDissim.

branchEigengeneSimilarity returns similarity or dissimilarity, depending on imput.
Author(s)

Peter Langfelder

See Also

hierarchicalConsensusCalculation

---

**branchSplit**

*Branch split.*

**Description**

Calculation of branch split based on expression data. This function is used as a plugin for the dynamicTreeCut package and the user should not call this function directly.

**Usage**

```r
branchSplit(expr, branch1, branch2, discardProp = 0.05, minCentralProp = 0.75, nConsideredPCs = 3, signed = FALSE, getDetails = TRUE, ...)
```

**Arguments**

- `expr` Expression data.
- `branch1` Branch 1.
- `branch2` Branch 2.
- `discardProp` Proportion of data to be discarded as outliers.
- `minCentralProp` Minimum central proportion
- `nConsideredPCs` Number of principal components to consider.
- `signed` Should the network be considered signed?
- `getDetails` Should details of the calculation be returned?
- `...` Other arguments. Present for compatibility; currently unused.

**Value**

A single number or a list containing details of the calculation.

**Author(s)**

Peter Langfelder
branchSplit.dissim

Branch split based on dissimilarity.

Description

Calculation of branch split based on a dissimilarity matrix. This function is used as a plugin for the dynamicTreeCut package and the user should not call this function directly. This function is experimental and subject to change.

Usage

```r
branchSplit.dissim(
 dissimMat,
 branch1, branch2,
 upperP,
 minNumberInSplit = 5,
 getDetails = FALSE, ...
)
```

Arguments

dissimMat   Dissimilarity matrix.
branch1     Branch 1.
branch2     Branch 2.
upperP      Percentile of (closest) objects to be considered.
minNumberInSplit Minimum number of objects to be considered.
getDetails  Should details of the calculation be returned?
...         Other arguments for compatibility; currently unused.

Value

A single number or a list containing details of the calculation.

Author(s)

Peter Langfelder
branchSplitFromStabilityLabels

Branch split (dissimilarity) statistics derived from labels determined from a stability study

Description

These functions evaluate how different two branches are based on a series of cluster labels that are usually obtained in a stability study but can in principle be arbitrary. The idea is to quantify how well membership on the two tested branches can be predicted from clusters in the given stability labels.

Usage

branchSplitFromStabilityLabels(
    branch1, branch2,
    stabilityLabels,
    ignoreLabels = 0,
    ...
)

branchSplitFromStabilityLabels.prediction(
    branch1, branch2,
    stabilityLabels, ignoreLabels = 0, ...
)

branchSplitFromStabilityLabels.individualFraction(
    branch1, branch2,
    stabilityLabels, ignoreLabels = 0, ...
)

Arguments

branch1 A vector of indices giving members of branch 1.
branch2 A vector of indices giving members of branch 1.
stabilityLabels A matrix of cluster labels. Each column corresponds to one clustering and each row to one object (whose indices branch1 and branch2 refer to).
ignoreLabels Label or labels that do not constitute proper clusters in stabilityLabels, for example because they label unassigned objects.
... Ignored.

Details

The idea is to measure how well clusters in stabilityLabels can distinguish the two given branches. For example, if a cluster C intersects with branch1 but not branch2, it can distinguish branches 1 and 2 perfectly. On the other hand, if there is a cluster C that contains both branch 1 and branch 2, the two branches are indistinguishable (based on the test clustering). The three functions differ in the details of the similarity calculation.
branchSplitFromStabilityLabels.individualFraction: Currently the recommended branch split calculation method, and default for hierarchicalConsensusModules. For each branch and all clusters that overlap with the branch (not necessarily with the other branch), calculate the fraction of the cluster objects (restricted to the two branches) that belongs to the branch. For each branch, sum these fractions over all clusters. If this number is relatively low, around 0.5, it means most elements are in non-discriminative clusters.

branchSplitFromStabilityLabels: This was the original branch split measure and for backward compatibility it still is the default method in blockwiseModules and blockwiseConsensusModules. For each cluster C in each clustering in stabilityLabels, its contribution to the branch similarity is \( \min(r_1, r_2) \), where \( r_1 = \frac{|\text{intersect}(C, \text{branch1})|}{|\text{branch1}|} \) and \( r_2 = \frac{|\text{intersect}(C, \text{branch2})|}{|\text{branch2}|} \). The statistics for clusters in each clustering are added; the sums are then averaged across the clusterings.

branchSplitFromStabilityLabels.prediction: Use only for experiments, not recommended for actual analyses because it is not stable under small changes in the branch membership. For each cluster that overlaps with both branches, count the objects in the branch with which the cluster has a smaller overlap and add it to the score for that branch. The final counts divided by number of genes on branch give a "indistinctness" score; take the larger of the two indistinctness scores and call this the similarity.

Since the result of the last two calculations is a similarity statistic, the final dissimilarity is defined as 1-similarity. The dissimilarity ranges between 0 (branch1 and branch2 are indistinguishable) and 1 (branch1 and branch2 are perfectly distinguishable).

These statistics are quite simple and do not correct for similarity that would be expected by chance. On the other hand, all 3 statistics are fairly (though not perfectly) stable under splitting and joining of clusters in stabilityLabels.

Value

Branch dissimilarity (a single number between 0 and 1).

Author(s)

Peter Langfelder

See Also

These function are utilized in blockwiseModules, blockwiseConsensusModules and hierarchicalConsensusModules.

checkAdjMat

Check adjacency matrix

Description

Checks a given matrix for properties that an adjacency matrix must satisfy.
Usage

checkAdjMat(adjMat, min = 0, max = 1)
checkSimilarity(similarity, min = -1, max = 1)

Arguments

adjMat matrix to be checked
similarity matrix to be checked
min minimum allowed value for entries of the input
max maximum allowed value for entries of the input

Details

The function checks whether the given matrix really is a 2-dimensional numeric matrix, whether it is square, symmetric, and all finite entries are between min and max. If any of the conditions is not met, the function issues an error.

Value

None. The function returns normally if all conditions are met.

Author(s)

Peter Langfelder

See Also

adjacency

checkSets Check structure and retrieve sizes of a group of datasets.

Description

Checks whether given sets have the correct format and retrieves dimensions.

Usage

checkSets(data, checkStructure = FALSE, useSets = NULL)

Arguments

data A vector of lists; in each list there must be a component named data whose content is a matrix or dataframe or array of dimension 2.
checkStructure If FALSE, incorrect structure of data will trigger an error. If TRUE, an appropriate flag (see output) will be set to indicate whether data has correct structure.
useSets Optional specification of entries of the vector data that are to be checked. Defaults to all components. This may be useful when data only contains information for some of the sets.
Details

For multiset calculations, many quantities (such as expression data, traits, module eigengenes etc) are presented by a common structure, a vector of lists (one list for each set) where each list has a component data that contains the actual (expression, trait, eigengene) data for the corresponding set in the form of a dataframe. This function checks whether data conforms to this convention and retrieves some basic dimension information (see output).

Value

A list with components

- nSets: Number of sets (length of the vector data).
- nGenes: Number of columns in the data components in the lists. This number must be the same for all sets.
- nSamples: A vector of length nSets giving the number of rows in the data components.
- structureOK: Only set if the argument checkStructure equals TRUE. The value is TRUE if the parameter data passes a few tests of its structure, and FALSE otherwise. The tests are not exhaustive and are meant to catch obvious user errors rather than be bulletproof.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

Usage

chooseOneHubInEachModule(  datExpr,  colorh,  numGenes = 100,  omitColors = "grey",  power = 2,  type = "signed",  ...)
Arguments

datExpr  Gene expression data with rows as samples and columns as genes.
colorh  The module assignments (color vectors) corresponding to the rows in datExpr.
numGenes  The number of random genes to select per module. Higher number of genes increases the accuracy of hub selection but slows down the function.
omitColors  All colors in this character vector (default is "grey") are ignored by this function.
power  Power to use for the adjacency network (default = 2).
type  What type of network is being entered. Common choices are "signed" (default) and "unsigned". With "signed" negative correlations count against, whereas with "unsigned" negative correlations are treated identically as positive correlations.

Value

Both functions output a character vector of genes, where the genes are the hub gene picked for each module, and the names correspond to the module in which each gene is a hub.

Author(s)

Jeremy Miller

Examples

```R
Example: first simulate some data.
Meturquoise = sample(1:100,50)
MEblue = sample(1:100,50)
MEbrown = sample(1:100,50)
MEyellow = sample(1:100,50)
MEgreen = c(MEyellow[1:30], sample(1:100,20))
MEred = c(MEbrown[1:20], sample(1:100,30))
MEblack = c(MEblue[1:25], sample(1:100,25))
ME = data.frame(Meturquoise, MEblue, MEbrown, MEyellow, MEgreen, MEred, MEblack)
dat1 = simulateDatExpr(ME, 300, c(0.2, 0.1, 0.88, 0.061, 0.05, 0.042, 0.041, 0.3),
 signed=TRUE)
TOM1 = TOMsimilarityFromExpr(dat1$datExpr, networkType="signed")
colnames(TOM1) <- rownames(TOM1) <- colnames(dat1$datExpr)
tree1 <- tree2 <- fastcluster::hclust(as.dist(1-TOM1), method="average")
colorh = labels2colors(dat1$allLabels)
hubs = chooseOneHubInEachModule(dat1$datExpr, colorh)
hubs
```
chooseTopHubInEachModule

Chooses the top hub gene in each module

Description

chooseTopHubInEachModule returns the gene in each module with the highest connectivity, looking at all genes in the expression file.

Usage

chooseTopHubInEachModule(
  datExpr,
  colorh,
  omitColors = "grey",
  power = 2,
  type = "signed",
  ...
)

Arguments

datExpr      Gene expression data with rows as samples and columns as genes.
colorh       The module assignments (color vectors) corresponding to the rows in datExpr.
omitColors   All colors in this character vector (default is "grey") are ignored by this function.
power        Power to use for the adjacency network (default = 2).
type         What type of network is being entered. Common choices are "signed" (default) and "unsigned". With "signed" negative correlations count against, whereas with "unsigned" negative correlations are treated identically as positive correlations.
...           Any other parameters accepted by the *adjacency* function

Value

Both functions output a character vector of genes, where the genes are the hub gene picked for each module, and the names correspond to the module in which each gene is a hub.

Author(s)

Jeremy Miller

Examples

```r
Example: first simulate some data.
MEturquoise = sample(1:100,50)
MEblue = sample(1:100,50)
MEbrown = sample(1:100,50)
```
clusterCoef

Description

This function calculates the clustering coefficients for all nodes in the network given by the input adjacency matrix.

Usage

clusterCoef(adjMat)

Arguments

adjMat adjacency matrix

Value

A vector of clustering coefficients for each node.

Author(s)

Steve Horvath

MEyellow = sample(1:100, 50)
MEgreen = c(MEyellow[1:30], sample(1:100, 20))
MERed = c(MERed[1:20], sample(1:100, 30))
MEblack = c(MEblack[1:25], sample(1:100, 25))
ME = data.frame(MEturquoise, MEblue, MEBrown, MEyellow, MEGreen, MERed, MEblack)
dat1 = simulateDatExpr(ME, 300, c(0.2, 0.1, 0.08, 0.051, 0.05, 0.042, 0.041, 0.3), signed=TRUE)
TOM1 = TOMsimilarityFromExpr(dat1$datExpr, networkType="signed")
colnames(TOM1) <- rownames(TOM1) <- colnames(dat1$datExpr)
tree1 <- tree2 <- fastcluster::hclust(as.dist(1-TOM1), method="average")
colorh = labels2colors(dat1$allLabels)
hubs = chooseTopHubInEachModule(dat1$datExpr, colorh)
hubs
coClustering

**Description**

The function calculates the co-clustering statistics for each module in the reference clustering.

**Usage**

\[ \text{coClustering}(\text{clusters.ref}, \text{clusters.test}, \text{tupletSize} = 2, \text{unassignedLabel} = 0) \]

**Arguments**

- `clusters.ref`: Reference input clustering. A vector in which each element gives the cluster label of an object.
- `clusters.test`: Test input clustering. Must be a vector of the same size as `clusters.ref`.
- `tupletSize`: Co-clustering tuplet size.
- `unassignedLabel`: Optional specification of a clustering label that denotes unassigned objects. Objects with this label are excluded from the calculation.

**Details**

Co-clustering of cluster \( q \) in the reference clustering and cluster \( q' \) in the test clustering measures the overlap of clusters \( q \) and \( q' \) by the number of tuplets that can be chosen from the overlap of clusters \( q \) and \( q' \) relative to the number of tuplets in cluster \( q \). To arrive at a co-clustering measure for cluster \( q \), we sum the co-clustering of \( q \) and \( q' \) over all clusters \( q' \) in the test clustering. A value close to 1 indicates high preservation of the reference cluster in the test clustering, while a value close to zero indicates a low preservation.

**Value**

A vector in which each component corresponds to a cluster in the reference clustering. Entries give the co-clustering measure of cluster preservation.

**Author(s)**

Peter Langfelder

**References**

See Also

`modulePreservation` for a large suite of module preservation statistics `coClustering.permutationTest`  
for a permutation test for co-clustering significance

Examples

```r
An example with random (unrelated) clusters:

set.seed(1);
nModules = 10;
nGenes = 1000;
c11 = sample(c(1:nModules), nGenes, replace = TRUE);
c12 = sample(c(1:nModules), nGenes, replace = TRUE);
coclustering(c11, c12)

For the same reference and test clustering:

coclustering(c11, c11)
```

---

**coClustering.permutationTest**  
*Permutation test for co-clustering*

**Description**

This function calculates permutation Z statistics that measure how different the co-clustering of modules in a reference and test clusterings is from random.

**Usage**

```r
coclustering.permutationTest(
 clusters.ref, clusters.test,
 tupletSize = 2,
 nPermutations = 100,
 unassignedLabel = 0,
 randomSeed = 12345, verbose = 0, indent = 0)
```

**Arguments**

- `clusters.ref` Reference input clustering. A vector in which each element gives the cluster label of an object.
- `clusters.test` Test input clustering. Must be a vector of the same size as `cluster.ref`.
- `tupletSize` Co-clustering tuplet size.
coClustering.permutationTest

**nPermutations**  Number of permutations to execute. Since the function calculates parametric p-values, a relatively small number of permutations (at least 50) should be sufficient.

**unassignedLabel**  Optional specification of a clustering label that denotes unassigned objects. Objects with this label are excluded from the calculation.

**randomSeed**  Random seed for initializing the random number generator. If NULL, the generator is not initialized (useful for calling the function sequentially). The default assures reproducibility.

**verbose**  If non-zero, function will print out progress messages.

**indent**  Indentation for progress messages. Each unit adds two spaces.

**Details**

This function performs a permutation test to determine whether observed co-clustering statistics are significantly different from those expected by chance. It returns the observed co-clustering as well as the permutation Z statistic, calculated as (observed - mean)/sd, where mean and sd are the mean and standard deviation of the co-clustering when the test clustering is repeatedly randomly permuted.

**Value**

- **observed**: the observed co-clustering measures for clusters in clusters.ref
- **Z**: permutation Z statistics
- **permuted.mean**: means of the co-clustering measures when the test clustering is permuted
- **permuted.sd**: standard deviations of the co-clustering measures when the test clustering is permuted
- **permuted.cc**: values of the co-clustering measure for each permutation of the test clustering. A matrix of dimensions (number of permutations)x(number of clusters in reference clustering).

**Author(s)**

Peter Langfelder

**References**


**See Also**

coclustering for calculation of the "observed" co-clustering measure modulePreservation for a large suite of module preservation statistics
Examples

```r
set.seed(1);
nModules = 5;
nGenes = 100;
c11 = sample(c(1:nModules), nGenes, replace = TRUE);
c12 = sample(c(1:nModules), nGenes, replace = TRUE);
c1 = coClustering(c11, c12)

Choose a low number of permutations to make the example fast
ccPerm = coClustering.permutationTest(c11, c12, nPermutations = 20, verbose = 1);
ccPerm$observed
ccPerm$Z

Combine c11 and c12 to obtain clustering that is somewhat similar to c11:
c13 = c12;
from1 = sample(c(TRUE, FALSE), nGenes, replace = TRUE);
c13[from1] = c11[from1];
ccPerm = coClustering.permutationTest(c11, c13, nPermutations = 20, verbose = 1);

observed co-clustering is higher than before:
ccPerm$observed

Note the high preservation Z statistics:
ccPerm$Z
```

**Description**

Abstractly speaking, the function allows one to collapse the rows of a numeric matrix, e.g. by forming an average or selecting one representative row for each group of rows specified by a grouping variable (referred to as `rowGroup`). The word "collapse" reflects the fact that the method yields a new matrix whose rows correspond to other rows of the original input data. The function implements several network-based and biostatistical methods for finding a representative row for each group specified in `rowGroup`. Optionally, the function identifies the representative row according to the least number of missing data, the highest sample mean, the highest sample variance, the highest connectivity. One of the advantages of this function is that it implements default settings which have worked well in numerous applications. Below, we describe these default settings in more detail.

**Usage**

```r
collapseRows(data, rowGroup, rowID,
method="MaxMean", connectivityBasedCollapsing=FALSE,
methodFunction=NULL, connectivityPower=1,
selectFewestMissing=TRUE, thresholdCombine=NA)
```
Arguments

datET matrix or data frame containing numeric values where rows correspond to variables (e.g. microarray probes) and columns correspond to observations (e.g. microarrays). Each row of datET must have a unique row identifier (specified in the vector rowID). The group label of each row is encoded in the vector rowGroup. While rowID should have non-missing, unique values (identifiers), the values of the vector rowGroup will typically not be unique since the function aims to pick a representative row for each group.

rowGroup character vector whose components contain the group label (e.g. a character string) for each row of datET. This vector needs to have the same length as the vector rowID. In gene expression applications, this vector could contain the gene symbol (or a co-expression module label).

rowID character vector of row identifiers. This should include all the rows from row.names(datET), but can include other rows. Its entries should be unique (no duplicates) and no missing values are permitted. If the row identifier is missing for a given row, we suggest you remove this row from datET before applying the function.

method character string for determining which method is used to choose a probe among exactly 2 corresponding rows or when connectivityBasedCollapsing=FALSE. These are the options: "MaxMean" (default) or "MinMean" = choose the row with the highest or lowest mean value, respectively. "maxRowVariance" = choose the row with the highest variance (across the columns of datET). "absMaxMean" or "absMinMean" = choose the row with the highest or lowest mean absolute value. "ME" = choose the eigenrow (first principal component of the rows in each group). Note that with this method option, connectivityBasedCollapsing is automatically set to FALSE. "Average" = for each column, take the average value of the rows in each group "function" = use this method for a user-input function (see the description of the argument "methodFunction"). Note: if method="ME", "Average" or "function", the output parameters "group2row" and "selectedRow" are not informative.

connectivityBasedCollapsing logical value. If TRUE, groups with 3 or more corresponding rows will be represented by the row with the highest connectivity according to a signed weighted correlation network adjacency matrix among the corresponding rows. Recall that the connectivity is defined as the rows sum of the adjacency matrix. The signed weighted adjacency matrix is defined as $A=(0.5+0.5*COR)^{\text{power}}$ where power is determined by the argument connectivityPower and COR denotes the matrix of pairwise Pearson correlation coefficients among the corresponding rows.

methodFunction character string. It only needs to be specified if method="function" otherwise its input is ignored. Must be a function that takes a Nr x Nc matrix of numbers as input and outputs a vector with the length Nc (e.g., colMeans). This will then be the method used for collapsing values for multiple rows into a single value for the row.

connectivityPower Positive number (typically integer) for specifying the threshold (power) used to construct the signed weighted adjacency matrix, see the description of connectivityBasedCollapsing.
This option is only used if connectivityBasedCollapsing=TRUE.

**selectFewestMissing**

logical values. If TRUE (default), the input expression matrix is trimmed such that for each group only the rows with the fewest number of missing values are retained. In situations where an equal number of values are missing (or where there is no missing data), all rows for a given group are retained. Whether this value is set to TRUE or FALSE, all rows with >90% missing data are omitted from the analysis.

**thresholdCombine**

Number between -1 and 1, or NA. If NA (default), this input is ignored. If a number between -1 and 1 is input, this value is taken as a threshold value, and collapseRows proceeds following the "maxMean" method, but ONLY for ids with correlations of R>thresholdCombine. Specifically: ...1) If there is one id/group, keep the id ...2) If there are 2 ids/group, take the maximum mean expression if their correlation is > thresholdCombine ...3) If there are 3+ ids/group, iteratively repeat (2) for the 2 ids with the highest correlation until all ids remaining have correlation < thresholdCombine for each group. Note that this option usually results in more than one id per group; therefore, one must use care when implementing this option for use in comparisons between multiple matrices / data frames.

**Details**

The function is robust to missing data. Also, if rowIDs are missing, they are inferred according to the rownames of datET when possible. When a group corresponds to only 1 row then it is represented by this row since there is no other choice. Having said this, the row may be removed if it contains an excessive amount of missing data (90 percent or more missing values), see the description of the argument selectFewestMissing for more details.

A group is represented by a corresponding row with the fewest number of missing data if selectFewestMissing has been set to TRUE. Often several rows have the same minimum number of missing values (or no missing values) and a representative must be chosen among those rows. In this case we distinguish 2 situations: (1) If a group corresponds to exactly 2 rows then the corresponding row with the highest average is selected if method="maxMean". Alternative methods can be chosen as described in method. (2) If a group corresponds to more than 2 rows, then the function calculates a signed weighted correlation network (with power specified in connectivityPower) among the corresponding rows if connectivityBasedCollapsing=TRUE. Next the function calculates the network connectivity of each row (closely related to the sum or correlations with the other matching rows). Next it chooses the most highly connected row as representative. If connectivityBasedCollapsing=FALSE, then method is used. For both situations, if more than one row has the same value, the first such row is chosen.

Setting thresholdCombine is a special case of this function, as not all ids for a single group are necessarily collapsed—only those with similar expression patterns are collapsed. We suggest using this option when the goal is to decrease the number of ids for computational reasons, but when ALL ids for a single group should not be combined (for example, if two probes could represent different splice variants for the same gene on a microarray).

Example application: when dealing with microarray gene expression data then the rows of datET may correspond to unique probe identifiers and rowGroup may contain corresponding gene symbols. Recall that multiple probes (specified using rowID=ProbeID) may correspond to the same
gene symbol (specified using rowGroup=GeneSymbol). In this case, datET contains the input expression data with rows as rowIDs and output expression data with rows as gene symbols, collapsing all probes for a given gene symbol into one representative.

Value

The output is a list with the following components.

- datETcollapsed is a numeric matrix with the same columns as the input matrix datET, but with rows corresponding to the different row groups rather than individual row identifiers. (If thresholdCombine is set, then rows still correspond to individual row identifiers.)

- group2row is a matrix whose rows correspond to the unique group labels and whose 2 columns report which group label (first column called group) is represented by what row label (second column called selectedRowID). Set to NULL if method="ME" or "function".

- selectedRow is a logical vector whose components are TRUE for probes selected as representatives and FALSE otherwise. It has the same length as the vector probeID. Set to NULL if method="ME" or "function".

Author(s)

Jeremy A. Miller, Steve Horvath, Peter Langfelder, Chaochao Cai

References


Examples

```R
Example 1:
The code simulates a data frame (called datI) of correlated rows.
You can skip this part and start at the line called Typical Input Data
The first column of the data frame will contain row identifiers
number of columns HnN observations or microarrays
m=60
number of rows (e.g. variables or probes on a microarray)
n=500
seed module eigenvector for the simulateModule function
Mtrue=rnorm(m)
numeric data frame of n rows and m columns
datNumeric=data.frame(t(simulateModule(Mtrue,n)))
RowIdentifier=paste("Probes", 1:n, sep="")
ColumnName=paste("Sample",1:m, sep="")
dimnames(datNumeric)[[2]]=columnName
Let us now generate a data frame whose first column contains the rowID
```
we simulate a vector with n/5 group labels, i.e. each row group corresponds to 5 rows

# Typical Input Data
# Since the first column of dat1 contains the RowIdentifier, we use the following code
datET=dat1[,,-1]
rowID=dat1[,1]

# assign row names according to the RowIdentifier
dimnames(datET)[[1]]=rowID
# run the function and save it in an object
collapse.object=collapseRows(datET=datET, rowGroup=rowGroup, rowID=rowID)

# this creates the collapsed data where
# the first column contains the group name
# the second column reports the corresponding selected row name (the representative)
# and the remaining columns report the values of the representative row
datICollapsed=data.frame( collapse.object$group2row, collapse.object$datETcollapsed)
datICollapsed[1:5,1:5]

# EXAMPLE 2:
# Using the same data frame as above, run collapseRows with a user-inputted function.
# In this case we will use the mean. Note that since we are choosing some combination
# of the probe values for each gene, the group2row and selectedRow output
# parameters are not meaningful.
collapse.object.mean=collapseRows(datET=datET, rowGroup=rowGroup, rowID=rowID,
method="function", methodFunction=colMeans)[[1]]

# Note that in this situation, running the following code produces the identical results:
collapse.object.mean.2=collapseRows(datET=datET, rowGroup=rowGroup, rowID=rowID,
method="Average")[[1]]

# EXAMPLE 3:
# Using collapseRows to calculate the module eigengene.
# First we create some sample data as in example 1 (or use your own!)
m=60
n=500
MEtrue=rnorm(m)
datNumeric=data.frame(t(simulateModule(MEtrue,n)))

# In this example, rows are genes, and groups are modules.
RowIdentifier=paste("Gene", 1:n, sep="")
ColumnName=paste("Sample",1:m, sep="")
dimnames(datNumeric)[[2]]=ColumnName
dat1=data.frame(RowIdentifier, datNumeric)
# We simulate a vector with n/100 modules, i.e. each row group corresponds to 100 rows
rowGroup=rep( paste("Module",1:(n/100), sep=""), 100 )

collapse.object=collapseRows(datET=datET, rowGroup=rowGroup, rowID=rowID,
method="function", methodFunction=colMeans)[[1]]
collapseRowsUsingKME

**Description**

This function selects only the most informative probe for each gene in a kME table, only keeping the probe which has the highest kME with respect to any module in the module membership matrix. This function is a special case of the function collapseRows.

**Usage**

```r
collapseRowsUsingKME(MM, Gin, Pin = NULL, kMEcols = 1:dim(MM)[2])
```

**Arguments**

- **MM**
  A module membership (kME) table with at least a subset of the columns corresponding to kME values.

- **Gin**
  Genes labels in a 1 to 1 correspondence with the rows of MM.

- **Pin**
  If NULL (default), rownames of MM are assumed to be probe IDs. If entered, Pin must be the same length as Gin and correspond to probe IDs for MM.

- **kMEcols**
  A numeric vector showing which columns in MM correspond to kME values. The default is all of them.

**Value**

- **datETcollapsed**
  A numeric matrix with the same columns as the input matrix MM, but with rows corresponding to the genes rather than the probes.

- **group2row**
  A matrix whose rows correspond to the unique gene labels and whose 2 columns report which gene label (first column called group) is represented by what probe (second column called selectedRowID).

- **selectedRow**
  A logical vector whose components are TRUE for probes selected as representatives and FALSE otherwise. It has the same length as the vector Pin.

**Author(s)**

Jeremy Miller
### collectGarbage

**Iterative garbage collection.**

**Description**

Performs garbage collection until free memory indicators show no change.

**Usage**

```r
collectGarbage()
```

**Value**

None.

**Author(s)**

Steve Horvath

---

### Examples

```r
Example: first simulate some data
set.seed(100)
ME.A = sample(1:100,50); ME.B = sample(1:100,50)
ME.C = sample(1:100,50); ME.D = sample(1:100,50)
ME1 = data.frame(ME.A, ME.B, ME.C, ME.D)
simDatA = simulateDatExpr(ME1,1000,c(0.2,0.1,0.08,0.05,0.3), signed=TRUE)
simDatB = simulateDatExpr(ME1,1000,c(0.2,0.1,0.08,0.05,0.3), signed=TRUE)
Gin = c(colnames(simDatA$datExpr), colnames(simDatB$datExpr))
Pin = paste("Probe",1:length(Gin), sep=".")
datExpr = cbind(simDatA$datExpr, simDatB$datExpr)
MM = corAndPvalue(datExpr, ME1)$cor

Now run the function and see some example output
results = collapseRowsUsingKME(MM, Gin, Pin)
head(results$MMcollapsed)
head(results$group2Row)
head(results$selectedRow)
```
colQuantileC

Fast column- and row-wise quantile of a matrix.

Description

Fast calculation of column- and row-wise quantiles of a matrix at a single probability. Implemented via compiled code, it is much faster than the equivalent `apply(data, 2, quantile, prob = p)`.

Usage

```
colQuantileC(data, p)
rowQuantileC(data, p)
```

Arguments

- `data`: a numerical matrix column-wise quantiles are desired. Missing values are removed.
- `p`: a single probability at which the quantile is to be calculated.

Details

At present, only one quantile type is implemented, namely the default type 7 used by R.

Value

A vector of length equal the number of columns (for `colQuantileC`) or rows (for `rowQuantileC`) in `data` containing the column- or row-wise quantiles.

Author(s)

Peter Langfelder

See Also

`quantile; pquantile` for another way of calculating quantiles across structured data.
conformityBasedNetworkConcepts

Calculation of conformity-based network concepts.

Description

This function computes 3 types of network concepts (also known as network indices or statistics) based on an adjacency matrix and optionally a node significance measure.

Usage

conformityBasedNetworkConcepts(adj, GS = NULL)

Arguments

adj adjacency matrix. A symmetric matrix with components between 0 and 1.
GS optional node significance measure. A vector with length equal the dimension of adj.

Details

This function computes 3 types of network concepts (also known as network indices or statistics) based on an adjacency matrix and optionally a node significance measure. Specifically, it computes I) fundamental network concepts, II) conformity based network concepts, and III) approximate conformity based network concepts. These network concepts are defined for any symmetric adjacency matrix (weighted and unweighted). The network concepts are described in Dong and Horvath (2007) and Horvath and Dong (2008). In the following, we use the term gene and node interchangeably since these methods were originally developed for gene networks. In the following, we briefly describe the 3 types of network concepts:

Type I: fundamental network concepts are defined as a function of the off-diagonal elements of an adjacency matrix A and/or a node significance measure GS. Type II: conformity-based network concepts are functions of the off-diagonal elements of the conformity based adjacency matrix $A.CF=CF^t(CF)$ and/or the node significance measure. These network concepts are defined for any network for which a conformity vector can be defined. Details: For any adjacency matrix A, the conformity vector CF is calculated by requiring that $A[i,j]$ is approximately equal to $CF[i]*CF[j]$. Using the conformity one can define the matrix $A.CF=CF^t(CF)$ which is the outer product of the conformity vector with itself. In general, $A.CF$ is not an adjacency matrix since its diagonal elements are different from 1. If the off-diagonal elements of $A.CF$ are similar to those of A according to the Frobenius matrix norm, then A is approximately factorizable. To measure the factorizability of a network, one can calculate the Factorizability, which is a number between 0 and 1 (Dong and Horvath 2007). The conformity is defined using a monotonic, iterative algorithm that maximizes the factorizability measure. Type III: approximate conformity based network concepts are functions of all elements of the conformity based adjacency matrix $A.CF$ (including the diagonal) and/or the node significance measure GS. These network concepts are very useful for deriving relationships between network concepts in networks that are approximately factorizable.
Value

A list with the following components:

Factorizability
	number between 0 and 1 giving the factorizability of the matrix. The closer to 1 the higher the evidence of factorizability, that is, A-I is close to outer(CF,CF)-diag(CF^2).

fundamentalNCs

fundamental network concepts, that is network concepts calculated directly from the given adjacency matrix adj. A list with components ScaledConnectivity (giving the scaled connectivity of each node), Connectivity (connectivity of each node), ClusterCoef (the clustering coefficient of each node), MAR (maximum adjacency ratio of each node), Density (the mean density of the network), Centralization (the centralization of the network), Heterogeneity (the heterogeneity of the network). If the input node significance gs is specified, the following additional components are included: NetworkSignificance (network significance, the mean node significance), and HubNodeSignificance (hub node significance given by the linear regression of node significance on connectivity).

conformityBasedNCs

network concepts based on an approximate adjacency matrix given by the outer product of the conformity vector but with unit diagonal. A list with components Conformity (the conformity vector) and Connectivity.CF, ClusterCoef.CF, MAR.CF, Density.CF, giving the conformity-based analogs of the above network concepts.

approximateConformityBasedNCs

network concepts based on an approximate adjacency matrix given by the outer product of the conformity vector. A list with components Conformity (the conformity vector) and Connectivity.CF.App, ClusterCoef.CF.App, MAR.CF.App, Density.CF.App, giving the conformity-based analogs of the above network concepts.

Author(s)

Steve Horvath

References


See Also

networkConcepts for calculation of eigennode based network concepts for a correlation network; fundamentalNetworkConcepts for calculation of fundamental network concepts only.
conformityDecomposition

Conformity and module based decomposition of a network adjacency matrix.

Description

The function calculates the conformity based approximation $A \cdot \mathbf{CF}$ of an adjacency matrix and a factorizability measure $\text{codeFactorizability}$. If a module assignment $\mathbf{Cl}$ is provided, it also estimates a corresponding intermodular adjacency matrix. In this case, function automatically carries out the module- and conformity based decomposition of the adjacency matrix described in chapter 2 of (Horvath 2011).

Usage

conformityDecomposition(adj, Cl = NULL)

Arguments

adj a symmetric numeric matrix (or data frame) whose entries lie between 0 and 1.
Cl a vector (or factor variable) of length equal to the number of rows of $\mathbf{adj}$. The variable assigns each network node (row of $\mathbf{adj}$) to a module. The entries of $\mathbf{Cl}$ could be integers or character strings.

Details

We distinguish two situation depending on whether or not $\mathbf{Cl}$ equals NULL. 1) Let us start out assuming that $\mathbf{Cl} = \text{NULL}$. In this case, the function calculates the conformity vector for a general, possibly non-factorizable network $\mathbf{adj}$ by minimizing a quadratic (sums of squares) loss function. The conformity and factorizability for an adjacency matrix is defined in (Dong and Horvath 2007, Horvath and Dong 2008) but we briefly describe it in the following. A network is called exactly factorizable if the pairwise connection strength (adjacency) between 2 network nodes can be factored into node specific contributions, named node ‘conformity’, i.e. if $\mathbf{adj}_{ij} = \text{Conformity}_i \cdot \text{Conformity}_j$. The conformity turns out to be highly related to the network connectivity (aka degree). If $\mathbf{adj}$ is not exactly factorizable, then the function conformityDecomposition calculates a conformity vector of the exactly factorizable network that best approximates $\mathbf{adj}$. The factorizability measure Factorizability is a number between 0 and 1. The higher Factorizability, the more factorizable is $\mathbf{adj}$. Warning: the algorithm may only converge to a local optimum and it may not converge at all. Also see the notes below.

2) Let us now assume that $\mathbf{Cl}$ is not NULL, i.e. it specifies the module assignment of each node. Then the function calculates a module- and CF-based approximation of $\mathbf{adj}$ (explained in chapter 2 in Horvath 2011). In this case, the function calculates a conformity vector Conformity and a matrix $\text{IntermodularAdjacency}$ such that $\mathbf{adj}_{ij}$ is approximately equal to $\text{Conformity}_i \cdot \text{Conformity}_j \cdot \text{IntermodularAdjacency}[\text{module.index}_i, \text{module.index}_j]$, where $\text{module.index}_i$ is the row of the matrix $\text{IntermodularAdjacency}$ that corresponds to the module assigned to node $i$. To estimate Conformity and a matrix $\text{IntermodularAdjacency}$, the function attempts to minimize a quadratic loss function (sums of squares). Currently, the function only implements a heuristic algorithm for optimizing the objective function (chapter 2 of Horvath
Another, more accurate Majorization Minorization (MM) algorithm for the decomposition is implemented in the function `propensityDecomposition` by Ranola et al (2011).

**Value**

- **A.CF**
  A symmetric matrix that approximates the input matrix adj. Roughly speaking, the i,j-the element of the matrix equals `Conformity[i]*Conformity[j]*IntermodularAdjacency[module.index[i], module.index[j]]`, where `module.index[i]` is the row of the matrix `IntermodularAdjacency` that corresponds to the module assigned to node i.

- **Conformity**
  A numeric vector whose entries correspond to the rows of `codeadj`. If `cl` is `NULL` then `Conformity[i]` is the conformity. If `cl` is not `NULL` then `Conformity[i]` is the intramodular conformity with respect to the module that node i belongs to.

- **IntermodularAdjacency**
  A symmetric matrix (data frame) whose rows and columns correspond to the number of modules specified in `cl`. Interpretation: it measures the similarity (adjacency) between the modules. In this case, the rows (and columns) of `IntermodularAdjacency` correspond to the entries of `cl.level`.

- **Factorizability**
  A number between 0 and 1. If `cl` is `NULL` then it equals 1, if (and only if) `adj` is exactly factorizable. If `cl` is a vector, then it measures how well the module- and CF based decomposition approximates `adj`.

- **cl.level**
  A vector of character strings which correspond to the factor levels of the module assignment `cl`. Incidentally, the function automatically turns `cl` into a factor variable. The components of `Conformity` and `IntramodularFactorizability` correspond to the entries of `cl.level`.

- **IntramodularFactorizability**
  A numeric vector of length equal to the number of modules specified by `cl`. Its entries report the factorizability measure for each module. The components correspond to the entries of `cl.level`.

**listConformity**

**Note**

Regarding the situation when `cl` is `NULL`. One can easily show that the conformity vector is not unique if `adj` contains only 2 nodes. However, for more than 2 nodes the conformity is uniquely defined when dealing with an exactly factorizable weighted network whose entries `adj[i,j]` are larger than 0. In this case, one can get explicit formulas for the conformity (Dong and Horvath 2007).

**Author(s)**

Steve Horvath

**References**

consensusCalculation

Calculation of a (single) consensus with optional data calibration.

Description

This function calculates a single consensus from given individual data, optionally first calibrating the individual data to make them comparable.

Usage

consensusCalculation(
  individualData,
  consensusOptions,
Arguments

- `individualData`  Individual data from which the consensus is to be calculated. It can be either a list or a `multidata` structure. Each element in `individualData` can in turn either be a numeric object (vector, matrix or array) or a `BlockwiseData` structure.

- `consensusOptions`  A list of class `ConsensusOptions` that contains options for the consensus calculation. A suitable list can be obtained by calling function `newConsensusOptions`.

- `useBlocks`  When `individualData` contains `BlockwiseData`, this argument can be an integer vector with indices of blocks for which the calculation should be performed.

- `randomSeed`  If non-NULL, the function will save the current state of the random generator, set the given seed, and restore the random seed to its original state upon exit. If NULL, the seed is not set nor is it restored on exit.

- `saveCalibratedIndividualData`  Logical: should calibrated individual data be saved?

- `calibratedIndividualDataFilePattern`  Pattern from which file names for saving calibrated individual data are determined. The conversions %a, %s and %b will be replaced by analysis name, set number and block number, respectively.

- `saveConsensusData`  Logical: should final consensus be saved (TRUE) or returned in the return value (FALSE)?

- `consensusDataFileNames`  Pattern from which file names for saving the final consensus are determined. The conversions %a and %b will be replaced by analysis name and block number, respectively.
getCalibrationSamples
   When calibration method in the consensusOptions component of ConsensusTree is "single quantile", this logical argument determines whether the calibration samples should be retuned within the return value.

useDiskCache
   Logical: should disk cache be used for consensus calculations? The disk cache can be used to store chunks of calibrated data that are small enough to fit one chunk from each set into memory (blocks may be small enough to fit one block of one set into memory, but not small enough to fit one block from all sets in a consensus calculation into memory at the same time). Using disk cache is slower but lessens the memory footprint of the calculation. As a general guide, if individual data are split into blocks, we recommend setting this argument to TRUE. If this argument is NULL, the function will decide whether to use disk cache based on the number of sets and block sizes.

chunkSize
   Integer giving the chunk size. If left NULL, a suitable size will be chosen automatically.

cacheDir
   Directory in which to save cache files. The files are deleted on normal exit but persist if the function terminates abnormally.

cacheBase
   Base for the file names of cache files.

collectGarbage
   Logical: should garbage collection be forced after each major calculation?

verbose
   Integer level of verbosity of diagnostic messages. Zero means silent, higher values make the output progressively more and more verbose.

indent
   Indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

Consensus is defined as the element-wise (also known as "parallel") quantile of the individual data at probability given by the consensusQuantile element of consensusOptions. Depending on the value of component calibration of consensusOptions, the individual data are first calibrated. For consensusOptions$calibration="full quantile", the individual data are quantile normalized using normalize.quantiles. For consensusOptions$calibration="single quantile", the individual data are raised to a power such that the quantiles at probability consensusOptions$calibrationQuantile are the same. For consensusOptions$calibration="none", the individual data are not calibrated.

Value

A list with the following components:

consensusData
   A BlockwiseData list containing the consensus.

nSets
   Number of input data sets.

saveCalibratedIndividualData
   Copy of the input saveCalibratedIndividualData.

calibratedIndividualData
   If input saveCalibratedIndividualData is TRUE, a list in which each component is a BlockwiseData structure containing the calibrated individual data for the corresponding input individual data set.
calibrationSamples

If consensusOptions$calibration is "single quantile" and getCalibrationSamples is TRUE, a list in which each component contains the calibration samples for the corresponding input individual data set.

originCountA vector of length nSets that contains, for each set, the number of (calibrated) elements that were less than or equal the consensus for that element.

Author(s)

Peter Langfelder

References

Consensus network analysis was originally described in Langfelder P, Horvath S. Eigengene networks for studying the relationships between co-expression modules. BMC Systems Biology 2007, 1:54 http://www.biomedcentral.com/1752-0509/1/54

See Also

normalize.quantiles for quantile normalization.

consensusDissTOMandTree

Consensus clustering based on topological overlap and hierarchical clustering

Description

This function makes a consensus network using all of the default values in the WGCNA library. Details regarding how consensus modules are formed can be found here: http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/ConsensusNetworkConstruction-man.pdf

Usage

consensusDissTOMandTree(multiExpr, softPower, TOM = NULL)

Arguments

multiExprExpression data in the multi-set format (see checkSets). A vector of lists, one per set. Each set must contain a component data that contains the expression data. Rows correspond to samples and columns to genes or probes. Two or more sets of data must be included and adjacencies cannot be used.

softPowerSoft thresholding power used to make each of the networks in multiExpr.

TOM A LIST of matrices holding the topological overlap corresponding to the sets in multiExpr, if they have already been calculated. Otherwise, keep TOM set as NULL (default), and TOM similarities will be calculated using the WGCNA defaults. If inputted, this variable must be a list with each entree a TOM corresponding to the same entries in multiExpr.
Value

**consensusTOM**  The TOM difference matrix (1-TOM similarity) corresponding to the consensus network.

**consTree**  Returned value is the same as that of hclust: An object of class hclust which describes the tree produced by the clustering process. This tree corresponds to the dissimilarity matrix consensusTOM.

Author(s)

Peter Langfelder, Steve Horvath, Jeremy Miller

References


See Also

blockwiseConsensusModules

Examples

# Example consensus network using two simulated data sets

```
set.seed = 100
METurquoise = sample(1:100,50)
MEblue = sample(1:100,50)
MEbrown = sample(1:100,50)
MEyellow = sample(1:100,50)
MEgreen = sample(1:100,50)

ME = data.frame(METurquoise, MEblue, MEbrown, MEyellow, MEgreen)

system.time{
 dat1 = simulateDatExpr(ME,300,c(0.2, 0.10, 0.10, 0.10, 0.10, 0.2), signed=TRUE))
 dat2 = simulateDatExpr(ME,300,c(0.18, 0.11, 0.11, 0.09, 0.11, 0.23), signed=TRUE))
multiExpr = list(S1=list(data=dat1$datExpr),S2=list(data=dat2$datExpr))
softPower=8

system.time({
 consensusNetwork = consensusDissTOMandTree(multiExpr, softPower))
 system.time(
 plotDendroAndColors(consensusNetwork$consTree, cbind(colors=dat1$allLabels),
 labels2colors(dat2$allLabels)),c("S1","S2"), dendroLabels=FALSE))
```
Consensus kME

Calculate consensus kME (eigengene-based connectivities) across multiple data sets.

Description

Calculate consensus kME (eigengene-based connectivities) across multiple data sets, typically following a consensus module analysis.

Usage

```r
consensusKME(
 multiExpr,
 moduleLabels,
 multiEigengenes = NULL,
 consensusQuantile = 0,
 signed = TRUE,
 useModules = NULL,
 metaAnalysisWeights = NULL,
 corAndPvalueFnc = corAndPvalue, corOptions = list(), corComponent = "cor",
 getQvalues = FALSE,
 useRankPvalue = TRUE,
 rankPvalueOptions = list(calculateQvalue = getQvalues, pValueMethod = "scale"),
 setNames = NULL,
 excludeGrey = TRUE,
 greyLabel = if (is.numeric(moduleLabels)) 0 else "grey"
)
```

Arguments

- **multiExpr**: Expression (or other numeric) data in a multi-set format. A vector of lists; in each list there must be a component named 'data' whose content is a matrix or dataframe or array of dimension 2.
- **moduleLabels**: Module labels: one label for each gene in multiExpr.
- **multiEigengenes**: Optional eigengenes of modules specified in moduleLabels. If not given, will be calculated from multiExpr.
- **signed**: logical: should the network be considered signed? In signed networks (TRUE), negative kME values are not considered significant and the corresponding p-values will be one-sided. In unsigned networks (FALSE), negative kME values are considered significant and the corresponding p-values will be two-sided.
- **useModules**: Optional specification of module labels to which the analysis should be restricted. This could be useful if there are many modules, most of which are not interesting. Note that the "grey" module cannot be used with useModules.
- **consensusQuantile**: Quantile for the consensus calculation. Should be a number between 0 (minimum) and 1.
metaAnalysisWeights
Optional specification of meta-analysis weights for each input set. If given, must be a numeric vector of length equal the number of input data sets (i.e., length(multiExpr)). These weights will be used in addition to constant weights and weights proportional to number of samples (observations) in each set.

corAndPvalueFnc
Function that calculates associations between expression profiles and eigengenes. See details.

corOptions
List giving additional arguments to function corAndPvalueFnc. See details.

corComponent
Name of the component of output of corAndPvalueFnc that contains the actual correlation.

getQvalues
logical: should q-values (estimates of FDR) be calculated?

useRankPvalue
Logical: should the rankPvalue function be used to obtain alternative meta-analysis statistics?

rankPvalueOptions
Additional options for function rankPvalue. These include na.last (default "keep"), ties.method (default "average"), calculateQvalue (default copied from input getQvalues), and pValueMethod (default "scale"). See the help file for rankPvalue for full details.

setNames
names for the input sets. If not given, will be taken from names(multiExpr). If those are NULL as well, the names will be "Set_1", "Set_2", ....

excludeGrey
logical: should the grey module be excluded from the kME tables? Since the grey module is typically not a real module, it makes little sense to report kME values for it.

greyLabel
label that labels the grey module.

Details
The function corAndPvalueFnc is currently is expected to accept arguments x (gene expression profiles), y (eigengene expression profiles), and alternative with possibilities at least "greater", "two.sided". Any additional arguments can be passed via corOptions.

The function corAndPvalueFnc should return a list which at the least contains (1) a matrix of associations of genes and eigengenes (this component should have the name given by corComponent), and (2) a matrix of the corresponding p-values, named "p" or "p.value". Other components are optional but for full functionality should include (3) nObs giving the number of observations for each association (which is the number of samples less number of missing data - this can in principle vary from association to association), and (4) Z giving a Z static for each observation. If these are missing, nObs is calculated in the main function, and calculations using the Z statistic are skipped.

Value
Data frame with the following components (for easier readability the order here is not the same as in the actual output):

ID
Gene ID, taken from the column names of the first input data set
consensus.kME.1, consensus.kME.2, ...

Consensus kME (that is, the requested quantile of the kMEs in the individual data sets in each module for each gene across the input data sets. The module labels (here 1, 2, etc.) correspond to those in moduleLabels.

weightedAverage.equalWeights.kME1, weightedAverage.equalWeights.kME2, ...

Average kME in each module for each gene across the input data sets.

weightedAverage.RootDoFWeights.kME1, weightedAverage.RootDoFWeights.kME2, ...

Weighted average kME in each module for each gene across the input data sets. The weight of each data set is proportional to the square root of the number of samples in the set.

weightedAverage.DoFWeights.kME1, weightedAverage.DoFWeights.kME2, ...

Weighted average kME in each module for each gene across the input data sets. The weight of each data set is proportional to number of samples in the set.

weightedAverage.userWeights.kME1, weightedAverage.userWeights.kME2, ...

(Only present if input metaAnalysisWeights is non-NULL.) Weighted average kME in each module for each gene across the input data sets. The weight of each data set is given in metaAnalysisWeights.

meta.Z.equalWeights.kME1, meta.Z.equalWeights.kME2, ...

Meta-analysis Z statistic for kME in each module, obtained by weighing the Z scores in each set equally. Only returned if the function corAndPvalueFnc returns the Z statistics corresponding to the correlations.

meta.Z.RootDoFWeights.kME1, meta.Z.RootDoFWeights.kME2, ...

Meta-analysis Z statistic for kME in each module, obtained by weighing the Z scores in each set by the square root of the number of samples. Only returned if the function corAndPvalueFnc returns the Z statistics corresponding to the correlations.

meta.Z.DoFWeights.kME1, meta.Z.DoFWeights.kME2, ...

Meta-analysis Z statistic for kME in each module, obtained by weighing the Z scores in each set by the number of samples. Only returned if the function corAndPvalueFnc returns the Z statistics corresponding to the correlations.

meta.Z.userWeights.kME1, meta.Z.userWeights.kME2, ...

Meta-analysis Z statistic for kME in each module, obtained by weighing the Z scores in each set by metaAnalysisWeights. Only returned if metaAnalysisWeights is non-NULL and the function corAndPvalueFnc returns the Z statistics corresponding to the correlations.

meta.p.equalWeights.kME1, meta.p.equalWeights.kME2, ...

p-values obtained from the equal-weight meta-analysis Z statistics. Only returned if the function corAndPvalueFnc returns the Z statistics corresponding to the correlations.

meta.p.RootDoFWeights.kME1, meta.p.RootDoFWeights.kME2, ...

p-values obtained from the meta-analysis Z statistics with weights proportional to the square root of the number of samples. Only returned if the function corAndPvalueFnc returns the Z statistics corresponding to the correlations.

meta.p.DoFWeights.kME1, meta.p.DoFWeights.kME2, ...

p-values obtained from the degree-of-freedom weight meta-analysis Z statistics. Only returned if the function corAndPvalueFnc returns the Z statistics corresponding to the correlations.
meta.p.userWeights.kME1, meta.p.userWeights.kME2, ...

p-values obtained from the user-supplied weight meta-analysis Z statistics. Only returned if metaAnalysisWeights is non-NULL and the function corAndPvalueFnc returns the Z statistics corresponding to the correlations.

meta.q.equalWeights.kME1, meta.q.equalWeights.kME2, ...

q-values obtained from the equal-weight meta-analysis p-values. Only present if getQvalues is TRUE and the function corAndPvalueFnc returns the Z statistics corresponding to the kME values.

meta.q.RootDoFWeights.kME1, meta.q.RootDoFWeights.kME2, ...

q-values obtained from the meta-analysis p-values with weights proportional to the square root of the number of samples. Only present if getQvalues is TRUE and the function corAndPvalueFnc returns the Z statistics corresponding to the kME values.

meta.q.DoFWeights.kME1, meta.q.DoFWeights.kME2, ...

q-values obtained from the degree-of-freedom weight meta-analysis p-values. Only present if getQvalues is TRUE and the function corAndPvalueFnc returns the Z statistics corresponding to the kME values.

meta.q.userWeights.kME1, meta.q.userWeights.kME2, ...

q-values obtained from the user-specified weight meta-analysis p-values. Only present if metaAnalysisWeights is non-NULL, getQvalues is TRUE and the function corAndPvalueFnc returns the Z statistics corresponding to the kME values.

The next set of columns contain the results of function rankPvalue and are only present if input useRankPvalue is TRUE. Some columns may be missing depending on the options specified in rankPvalueOptions. We explicitly list columns that are based on weighing each set equally; names of these columns carry the suffix .equalWeights

pValueExtremeRank.ME1.equalWeights, pValueExtremeRank.ME2.equalWeights, ...

This is the minimum between pValueLowRank and pValueHighRank, i.e. min(pValueLow, pValueHigh)

pValueLowRank.ME1.equalWeights, pValueLowRank.ME2.equalWeights, ...

Asymptotic p-value for observing a consistently low value across the columns of datS based on the rank method.

pValueHighRank.ME1.equalWeights, pValueHighRank.ME2.equalWeights, ...

Asymptotic p-value for observing a consistently low value across the columns of datS based on the rank method.

pValueExtremeScale.ME1.equalWeights, pValueExtremeScale.ME2.equalWeights, ...

This is the minimum between pValueLowScale and pValueHighScale, i.e. min(pValueLow, pValueHigh)

pValueLowScale.ME1.equalWeights, pValueLowScale.ME2.equalWeights, ...

Asymptotic p-value for observing a consistently low value across the columns of datS based on the Scale method.

pValueHighScale.ME1.equalWeights, pValueHighScale.ME2.equalWeights, ...

Asymptotic p-value for observing a consistently low value across the columns of datS based on the Scale method.

qValueExtremeRank.ME1.equalWeights, qValueExtremeRank.ME2.equalWeights, ...

local false discovery rate (q-value) corresponding to the p-value pValueExtremeRank.
The following set of columns summarize kME in individual input data sets.

- **kME1.Set_1, kME1.Set_2, ..., kME2.Set_1, kME2.Set_2, ...**
  - kME values for each gene in each module in each given data set.

- **p.kME1.Set_1, p.kME1.Set_2, ..., p.kME2.Set_1, p.kME2.Set_2, ...**
  - p-values corresponding to kME values for each gene in each module in each given data set.

- **q.kME1.Set_1, q.kME1.Set_2, ..., q.kME2.Set_1, q.kME2.Set_2, ...**
  - q-values corresponding to kME values for each gene in each module in each given data set. Only returned if getQvalues is TRUE.

- **Z.kME1.Set_1, Z.kME1.Set_2, ..., Z.kME2.Set_1, Z.kME2.Set_2, ...**
  - Z statistics corresponding to kME values for each gene in each module in each given data set. Only present if the function corAndPvalueFnc returns the Z statistics corresponding to the kME values.

**Author(s)**

Peter Langfelder

**References**


**See Also**

- `signedKME` for eigengene based connectivity in a single data set. `corAndPvalue`, `bicorAndPvalue` for two alternatives for calculating correlations and the corresponding p-values and Z scores. Both can be used with this function.
Description

Calculates consensus dissimilarity (1−cor) of given module eigengenes realized in several sets.

Usage

consensusMEDissimilarity(MEs, useAbs = FALSE, useSets = NULL, method = "consensus")

Arguments

- **MEs**: Module eigengenes of the same modules in several sets.
- **useAbs**: Controls whether absolute value of correlation should be used instead of correlation in the calculation of dissimilarity.
- **useSets**: If the consensus is to include only a selection of the given sets, this vector (or scalar in the case of a single set) can be used to specify the selection. If NULL, all sets will be used.
- **method**: A character string giving the method to use. Allowed values are (abbreviations of) "consensus" and "majority". The consensus dissimilarity is calculated as the minimum of given set dissimilarities for "consensus" and as the average for "majority".

Details

This function calculates the individual set dissimilarities of the given eigengenes in each set, then takes the (parallel) maximum or average over all sets. For details on the structure of input data, see checkSets.

Value

A dataframe containing the matrix of dissimilarities, with names and rownames set appropriately.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

See Also

checkSets
consensusOrderMEs

Put close eigenvectors next to each other in several sets.

Description

Reorder given (eigen-)vectors such that similar ones (as measured by correlation) are next to each other. This is a multi-set version of orderMEs; the dissimilarity used can be of consensus type (for each pair of eigenvectors the consensus dissimilarity is the maximum of individual set dissimilarities over all sets) or of majority type (for each pair of eigenvectors the consensus dissimilarity is the average of individual set dissimilarities over all sets).

Usage

consensusOrderMEs(MEs, useAbs = FALSE, useSets = NULL,
                 greyLast = TRUE,
                 greyName = paste(moduleColor.getMEprefix(), "grey", sep=""),
                 method = "consensus")

Arguments

MEs Module eigengenes of several sets in a multi-set format (see checkSets). A vector of lists, with each list corresponding to one dataset and the module eigengenes in the component data, that is `MEs[[set]]$data[[sample, module]` is the expression of the eigengene of module module in sample sample in dataset set. The number of samples can be different between the sets, but the modules must be the same.

useAbs Controls whether vector similarity should be given by absolute value of correlation or plain correlation.

useSets Allows the user to specify for which sets the eigengene ordering is to be performed.

greyLast Normally the color grey is reserved for unassigned genes; hence the grey module is not a proper module and it is conventional to put it last. If this is not desired, set the parameter to FALSE.

greyName Name of the grey module eigengene.

method A character string giving the method to be used calculating the consensus dissimilarity. Allowed values are (abbreviations of) "consensus" and "majority". The consensus dissimilarity is calculated as the maximum of given set dissimilarities for "consensus" and as the average for "majority".

Details

Ordering module eigengenes is useful for plotting purposes. This function calculates the consensus or majority dissimilarity of given eigengenes over the sets specified by useSets (defaults to all sets). A hierarchical dendrogram is calculated using the dissimilarity and the order given by the dendrogram is used for the eigengenes in all other sets.
Value

A vector of lists of the same type as `MEs` containing the re-ordered eigengenes.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

See Also

`moduleEigengenes`, `multiSetMEs`, `orderMEs`

---

**consensusProjectiveKMeans**

*Consensus projective K-means (pre-)clustering of expression data*

Description

Implementation of a consensus variant of K-means clustering for expression data across multiple data sets.

Usage

```r
consensusProjectiveKMeans(
 multiExpr, # expression data in the multi-set format (see checkSets). A vector of lists, one per set. Each set must contain a component data that contains the expression data, with rows corresponding to samples and columns to genes or probes.
 preferredSize = 5000, # preferred maximum size of clusters.
 nCenters = NULL, # number of initial clusters. Empirical evidence suggests that more centers will give a better preclustering: the default is as.integer(min(nGenes/20, 100*nGenes/preferredSize)) and is an attempt to arrive at a reasonable number given the resources available.
 sizePenaltyPower = 4, # parameter specifying how severe is the penalty for clusters that exceed preferredSize.
 networkType = "unsigned", # type of network to use for preclustering.
 randomSeed = 54321, # seed for random number generator.
 checkData = TRUE, # whether to check the data for validity.
 imputeMissing = TRUE, # whether to impute missing values.
 useMean = (length(multiExpr) > 3), # whether to use mean or median for preclustering.
 maxIterations = 1000, # maximum number of iterations.
 verbose = 0, indent = 0) # verbosity and indentation level.
```

Arguments

- `multiExpr`: expression data in the multi-set format (see `checkSets`). A vector of lists, one per set. Each set must contain a component data that contains the expression data, with rows corresponding to samples and columns to genes or probes.
- `preferredSize`: preferred maximum size of clusters.
- `nCenters`: number of initial clusters. Empirical evidence suggests that more centers will give a better preclustering: the default is as.integer(min(nGenes/20, 100*nGenes/preferredSize)) and is an attempt to arrive at a reasonable number given the resources available.
- `sizePenaltyPower`: parameter specifying how severe is the penalty for clusters that exceed `preferredSize`. 
networkType
randomSeed
checkData
imputeMissing
useMean
maxIterations
verbose
indent

Details

The principal aim of this function within WGCNA is to pre-cluster a large number of genes into smaller blocks that can be handled using standard WGCNA techniques. This function implements a variant of K-means clustering that is suitable for co-expression analysis. Cluster centers are defined by the first principal component, and distances by correlation. Consensus distance across several sets is defined as the maximum of the corresponding distances in individual sets; however, if useMean is set, the mean distance will be used instead of the maximum. The distance between a gene and a center of a cluster is multiplied by a factor of $\max(\text{clusterSize}/\text{preferredSize},1)^{\text{sizePenaltyPower}}$, thus penalizing clusters whose size exceeds preferredSize. The function starts with randomly generated cluster assignment (hence the need to set the random seed for repeatability) and executes iterations of calculating new centers and reassigning genes to nearest (in the consensus sense) center until the clustering becomes stable. Before returning, nearby clusters are iteratively combined if their combined size is below preferredSize.

Consensus distance defined as maximum of distances in all sets is consistent with the approach taken in blockwiseConsensusModules, but the procedure may not converge. Hence it is advisable to use the mean as consensus in cases where there are multiple data sets (4 or more, say) and/or if the input data sets are very different.

The standard principal component calculation via the function svd fails from time to time (likely a convergence problem of the underlying lapack functions). Such errors are trapped and the principal component is approximated by a weighted average of expression profiles in the cluster. If verbose is set above 2, an informational message is printed whenever this approximation is used.

Value

A list with the following components:

clusters
centers a vector of lists, one list per set. Each list contains a component data that contains a matrix whose columns are the cluster centers in the corresponding set.

unmergedClusters a numerical vector with one component per input gene, giving the cluster number in which the gene was assigned before the final merging step.

unmergedCenters a vector of lists, one list per set. Each list contains a component data that contains a matrix whose columns are the cluster centers before merging in the corresponding set.

Author(s)

Peter Langfelder

See Also

projectiveKMeans

Description

Given multiple data sets corresponding to the same variables and a grouping of variables into groups, the function selects a representative variable for each group using a variety of possible selection approaches. Typical uses include selecting a representative probe for each gene in microarray data.

Usage

consensusRepresentatives(
  mdx,
  group,
  colID,
  consensusQuantile = 0,
  method = "MaxMean",
  useGroupHubs = TRUE,
  calibration = c("none", "full quantile"),
  selectionStatisticFnc = NULL,
  connectivityPower = 1,
  minProportionPresent = 1,
  getRepresentativeData = TRUE,
  statisticFncArguments = list(),
  adjacencyArguments = list(),
  verbose = 2, indent = 0)
consensusRepresentatives

Arguments

- **mdx**: A `multiData` structure. All sets must have the same columns.
- **group**: Character vector whose components contain the group label (e.g. a character string) for each entry of `colID`. This vector must be of the same length as the vector `colID`. In gene expression applications, this vector could contain the gene symbol (or a co-expression module label).
- **colID**: Character vector of column identifiers. This must include all the column names from `mdx`, but can include other values as well. Its entries must be unique (no duplicates) and no missing values are permitted.
- **consensusQuantile**: A number between 0 and 1 giving the quantile probability for consensus calculation. 0 means the minimum value (true consensus) will be used.
- **method**: character string for determining which method is used to choose the representative (when `useGroupHubs` is TRUE, this method is only used for groups with 2 variables). The following values can be used: "MaxMean" (default) or "MinMean" return the variable with the highest or lowest mean value, respectively; "maxRowVariance" return the variable with the highest variance; "absMaxMean" or "absMinMean" return the variable with the highest or lowest mean absolute value; and "function" will call a user-input function (see the description of the argument `selectionStatisticFnc`). The built-in functions can be instructed to use robust analogs (median and median absolute deviation) by also specifying `statisticFncArguments=list(robust = TRUE)`.
- **useGroupHubs**: Logical: if TRUE, groups with 3 or more variables will be represented by the variable with the highest connectivity according to a signed weighted correlation network adjacency matrix among the corresponding rows. The connectivity is defined as the row sum of the adjacency matrix. The signed weighted adjacency matrix is defined as $A=(0.5+0.5*COR)^{power}$ where power is determined by the argument `connectivityPower` and COR denotes the matrix of pairwise correlation coefficients among the corresponding rows. Additional arguments to the underlying function `adjacency` can be specified using the argument `adjacencyArguments` below.
- **calibration**: Character string describing the method of calibration of the selection statistic among the data sets. Recognized values are "none" (no calibration) and "full quantile" (quantile normalization).
- **selectionStatisticFnc**: User-supplied function used to calculate the selection statistic when `method` above equals "function". The function must take arguments `x` (a matrix) and possibly other arguments that can be specified using `statisticFncArguments` below. The return value must be a vector with one component per column of `x` giving the selection statistic for each column.
- **connectivityPower**: Positive number (typically integer) for specifying the soft-thresholding power used to construct the signed weighted adjacency matrix, see the description of `useGroupHubs`. This option is only used if `useGroupHubs` is TRUE.
- **minProportionPresent**: A number between 0 and 1 specifying a filter of candidate probes. Specifically, for each group, the variable with the maximum consensus proportion of present
Only variables whose consensus proportion of present data is at least \texttt{minProportionPresent} times the maximum consensus proportion are retained as candidates for being a representative.

\begin{itemize}
\item \textbf{getRepresentativeData} \\
\quad Logical: should the representative data, i.e., \texttt{mdx} restricted to the representative variables, be returned?
\end{itemize}

\begin{itemize}
\item \textbf{statisticFncArguments} \\
\quad A list giving further arguments to the selection statistic function. Can be used to supply additional arguments to the user-specified \texttt{selectionStatisticFnc}; the value \texttt{list(robust = TRUE)} can be used with the built-in functions to use their robust variants.
\end{itemize}

\begin{itemize}
\item \textbf{adjacencyArguments} \\
\quad Further arguments to the function \texttt{adjacency}, e.g. \texttt{adjacencyArguments=list(corFnc = "bicor", corOptions = \ldots)}, will select the robust correlation \texttt{bicor} with a good set of options. Note that the \texttt{adjacency} arguments \texttt{type} and \texttt{power} cannot be changed.
\end{itemize}

\begin{itemize}
\item \textbf{verbose} \\
\quad Level of verbosity; 0 means silent, larger values will cause progress messages to be printed.
\end{itemize}

\begin{itemize}
\item \textbf{indent} \\
\quad Indent for the diagnostic messages; each unit equals two spaces.
\end{itemize}

\section*{Details}

This function was inspired by \texttt{collapseRows}, but there are also important differences. This function focuses on selecting representatives; when summarization is more important, \texttt{collapseRows} provides more flexibility since it does not require that a single representative be selected.

This function and \texttt{collapseRows} use different input and output conventions; user-specified functions need to be tailored differently for \texttt{collapseRows} than for \texttt{consensusRepresentatives}.

Missing data are allowed and are treated as missing at random. If \texttt{rowID} is \texttt{NULL}, it is replaced by the variable names in \texttt{mdx}.

All groups with a single variable are represented by that variable, unless the consensus proportion of present data in the variable is lower than \texttt{minProportionPresent}, in which case the variable and the group are excluded from the output.

For all variables belonging to groups with 2 variables (when \texttt{useGroupHubs=TRUE}) or with at least 2 variables (when \texttt{useGroupHubs=FALSE}), selection statistics are calculated in each set (e.g., the selection statistic may be the mean, variance, etc). This results in a matrix of selection statistics (one entry per variable per data set). The selection statistics are next optionally calibrated (normalized) between sets to make them comparable; currently the only implemented calibration method is quantile normalization.

For each variable, the consensus selection statistic is defined as the consensus of the (calibrated) selection statistics across the data sets is calculated. The 'consensus' of a vector (say 'x') is simply defined as the quantile with probability \texttt{consensusQuantile} of the vector \texttt{x}. Important exception: for the "MinMean" and "absMinMean" methods, the consensus is the quantile with probability 1-\texttt{consensusQuantile}, since the idea of the consensus is to select the worst (or close to worst) value across the data sets.

For each group, the representative is selected as the variable with the best (typically highest, but for "MinMean" and "absMinMean" methods the lowest) consensus selection statistic.
If `useGroupHubs=TRUE`, the intra-group connectivity is calculated for all variables in each set. The intra-group connectivities are optionally calibrated (normalized) between sets, and consensus intra-group connectivity is calculated similarly to the consensus selection statistic above. In each group, the variable with the highest consensus intra-group connectivity is chosen as the representative.

**Value**

- **representatives**
  A named vector giving, for each group, the selected representative (input rowID or the variable (column) name in mdx). Names correspond to groups.

- **varSelected**
  A logical vector with one entry per variable (column) in input mdx (possibly after restriction to variables occurring in colID), TRUE if the column was selected as a representative.

- **representativeData**
  Only present if `getRepresentativeData` is TRUE; the input mdx restricted to the representative variables, with column names changed to the corresponding groups.

**Author(s)**

Peter Langfelder, based on code by Jeremy Miller

**See Also**

- `multiData` for a description of the multiData structures; `collapseRows` that solves a related but different problem. Please note the differences in input and output!

---

**Description**

Calculation of a consensus network (topological overlap).

**Usage**

```r
consensusTOM(
 # Supply either ...
 # ... information needed to calculate individual TOMs
 multiExpr,

 # Data checking options
 checkMissingData = TRUE,

 # Blocking options
 blocks = NULL,
 maxBlockSize = 5000,
)```
blockSizePenaltyPower = 5,
nPreclusteringCenters = NULL,
randomSeed = 12345,

Network construction arguments: correlation options
corType = "pearson",
maxPOutliers = 1,
quickCor = 0,
pearsonFallback = "individual",
cosineCorrelation = FALSE,
replaceMissingAdjacencies = FALSE,

Adjacency function options
power = 6,
networkType = "unsigned",
checkPower = TRUE,

Topological overlap options
TOMType = "unsigned",
TOMDenom = "min",

Save individual TOMs?
saveIndividualTOMs = TRUE,
individualTOMFileNames = "individualTOM-Set%s-Block%b.RData",

... or individual TOM information
individualTOMInfo = NULL,
useIndivTOMSubset = NULL,

Consensus calculation options
useBlocks = NULL,

networkCalibration = c("single quantile", "full quantile", "none"),

Save calibrated TOMs?
saveCalibratedIndividualTOMs = FALSE,
calibratedIndividualTOMFilePattern = "calibratedIndividualTOM-Set%s-Block%b.RData",

Simple quantile calibration options
calibrationQuantile = 0.95,
sampleForCalibration = TRUE, sampleForCalibrationFactor = 1000,
getNetworkCalibrationSamples = FALSE,
Consensus definition
consensusQuantile = 0,
useMean = FALSE,
setWeights = NULL,

Return options
saveConsensusTOMs = TRUE,
consensusTOMFilePattern = "consensusTOM-Block%b.RData",
returnTOMs = FALSE,

Internal handling of TOMs
useDiskCache = NULL, chunkSize = NULL,
cacheDir = ".",
cacheBase = ".blockCons ModsCache",
nThreads = 1,

Diagnostic messages
verbose = 1,
indent = 0)

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one per set. Each set must contain a component data that contains the expression data, with rows corresponding to samples and columns to genes or probes.

checkMissingData logical: should data be checked for excessive numbers of missing entries in genes and samples, and for genes with zero variance? See details.

blocks optional specification of blocks in which hierarchical clustering and module detection should be performed. If given, must be a numeric vector with one entry per gene of multiExpr giving the number of the block to which the corresponding gene belongs.

maxBlockSize integer giving maximum block size for module detection. Ignored if blocks above is non-NULL. Otherwise, if the number of genes in datExpr exceeds maxBlockSize, genes will be pre-clustered into blocks whose size should not exceed maxBlockSize.

blockSizePenaltyPower number specifying how strongly blocks should be penalized for exceeding the maximum size. Set to a large number or Inf if not exceeding maximum block size is very important.

nPreclusteringCenters number of centers for pre-clustering. Larger numbers typically results in better but slower pre-clustering. The default is as.integer(min(nGenes/20, 100*nGenes/preferredSize)) and is an attempt to arrive at a reasonable number given the resources available.

randomSeed integer to be used as seed for the random number generator before the function
starts. If a current seed exists, it is saved and restored upon exit. If NULL is given, the function will not save and restore the seed.

corType character string specifying the correlation to be used. Allowed values are (unique abbreviations of) "pearson" and "bicor", corresponding to Pearson and bid-weight midcorrelation, respectively. Missing values are handled using the pairwise.complete.obs option.

maxPOutliers only used for corType=="bicor". Specifies the maximum percentile of data that can be considered outliers on either side of the median separately. For each side of the median, if higher percentile than maxPOutliers is considered an outlier by the weight function based on 9*mad(x), the width of the weight function is increased such that the percentile of outliers on that side of the median equals maxPOutliers. Using maxPOutliers=1 will effectively disable all weight function broadening; using maxPOutliers=0 will give results that are quite similar (but not equal to) Pearson correlation.

quickCor real number between 0 and 1 that controls the handling of missing data in the calculation of correlations. See details.

pearsonFallback Specifies whether the bicor calculation, if used, should revert to Pearson when median absolute deviation (mad) is zero. Recognized values are (abbreviations of) "none", "individual", "all". If set to "none", zero mad will result in NA for the corresponding correlation. If set to "individual", Pearson calculation will be used only for columns that have zero mad. If set to "all", the presence of a single zero mad will cause the whole variable to be treated in Pearson correlation manner (as if the corresponding robust option was set to FALSE). Has no effect for Pearson correlation. See bicor.

cosineCorrelation logical: should the cosine version of the correlation calculation be used? The cosine calculation differs from the standard one in that it does not subtract the mean.

power soft-thresholding power for network construction.

networkType network type. Allowed values are (unique abbreviations of) "unsigned", "signed", "signed hybrid". See adjacency.

checkPower logical: should basic sanity check be performed on the supplied power? If you would like to experiment with unusual powers, set the argument to FALSE and proceed with caution.

replaceMissingAdjacencies logical: should missing values in the calculation of adjacency be replaced by 0?

TOMType one of "none", "unsigned", "signed". If "none", adjacency will be used for clustering. If "unsigned", the standard TOM will be used (more generally, TOM function will receive the adjacency as input). If "signed", TOM will keep track of the sign of correlations between neighbors.

TOMDenom a character string specifying the TOM variant to be used. Recognized values are "min" giving the standard TOM described in Zhang and Horvath (2005), and "mean" in which the min function in the denominator is replaced by mean. The "mean" may produce better results but at this time should be considered experimental.
saveIndividualTOMs
 logical: should individual TOMs be saved to disk for later use?

individualTOMFileNames
 character string giving the file names to save individual TOMs into. The follow-
 ing tags should be used to make the file names unique for each set and block: %s
 will be replaced by the set number; %N will be replaced by the set name (taken
 from names(multiExpr)) if it exists, otherwise by set number; %b will be re-
 placed by the block number. If the file names turn out to be non-unique, an error
 will be generated.

individualTOMInfo
 Optional data for TOM matrices in individual data sets. This object is returned
 by the function blockwiseIndividualTOMs. If not given, appropriate topologi-
 cal overlaps will be calculated using the network construction options below.

useIndivTOMSubset
 If individualTOMInfo is given, this argument allows to only select a subset of
 the individual set networks contained in individualTOMInfo. It should be a
 numeric vector giving the indices of the individual sets to be used. Note that this
 argument is NOT applied to multiExpr.

useBlocks
 optional specification of blocks that should be used for the calucalations. The
 default is to use all blocks.

networkCalibration
 network calibration method. One of "single quantile", "full quantile", "none"
 (or a unique abbreviation of one of them).

saveCalibratedIndividualTOMs
 logical: should the calibrated individual TOMs be saved?

calibratedIndividualTOMFilePattern
 pattern of file names for saving calibrated individual TOMs.

calibrationQuantile
 if networkCalibration is "single quantile", topological overlaps (or adja-
 cencies if TOMs are not computed) will be scaled such that their calibrationQuantile
 quantiles will agree.

sampleForCalibration
 if TRUE, calibration quantiles will be determined from a sample of network simi-
 larities. Note that using all data can double the memory footprint of the function
 and the function may fail.

sampleForCalibrationFactor
 determines the number of samples for calibration: the number is 1/calibrationQuantile * sampleForCalibrationFactor
 Should be set well above 1 to ensure accuracy of the sampled quantile.

getNetworkCalibrationSamples
 logical: should the sampled values used for network calibration be returned?

consensusQuantile
 quantile at which consensus is to be defined. See details.

useMean
 logical: should the consensus be determined from a (possibly weighted) mean
 across the data sets rather than a quantile?

setWeights
 Optional vector (one component per input set) of weights to be used for weighted
 mean consensus. Only used when useMean above is TRUE.
saveConsensusTOMs
logical: should the consensus topological overlap matrices for each block be saved and returned?

consensusTOMFilePattern
character string containing the file names of files containing the consensus topological overlaps. The tag %b will be replaced by the block number. If the resulting file names are non-unique (for example, because the user gives a file name without a %b tag), an error will be generated. These files are standard R data files and can be loaded using the load function.

returnTOMs
logical: should calculated consensus TOM(s) be returned?

useDiskCache
should calculated network similarities in individual sets be temporarily saved to disk? Saving to disk is somewhat slower than keeping all data in memory, but for large blocks and/or many sets the memory footprint may be too big. If not given (the default), the function will determine the need of caching based on the size of the data. See chunkSize below for additional information.

chunkSize
network similarities are saved in smaller chunks of size chunkSize. If NULL, an appropriate chunk size will be determined from an estimate of available memory. Note that if the chunk size is greater than the memory required for storing intermediate results, disk cache use will automatically be disabled.

cacheDir
character string containing the directory into which cache files should be written. The user should make sure that the filesystem has enough free space to hold the cache files which can get quite large.

cacheBase
character string containing the desired name for the cache files. The actual file names will consist of cacheBase and a suffix to make the file names unique.

nThreads
non-negative integer specifying the number of parallel threads to be used by certain parts of correlation calculations. This option only has an effect on systems on which a POSIX thread library is available (which currently includes Linux and Mac OSX, but excludes Windows). If zero, the number of online processors will be used if it can be determined dynamically, otherwise correlation calculations will use 2 threads.

verbose
integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

indent
indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details
The function starts by optionally filtering out samples that have too many missing entries and genes that have either too many missing entries or zero variance in at least one set. Genes that are filtered out are left unassigned by the module detection. Returned eigengenes will contain NA in entries corresponding to filtered-out samples.

If blocks is not given and the number of genes exceeds maxBlocksize, genes are pre-clustered into blocks using the function consensusProjectiveKMeans; otherwise all genes are treated in a single block.

For each block of genes, the network is constructed and (if requested) topological overlap is calculated in each set. To minimize memory usage, calculated topological overlaps are optionally
saved to disk in chunks until they are needed again for the calculation of the consensus network topological overlap.

Before calculation of the consensus Topological Overlap, individual TOMs are optionally calibrated. Calibration methods include single quantile scaling and full quantile normalization.

Single quantile scaling raises individual TOM in sets 2, 3,... to a power such that the quantiles given by calibrationQuantile agree with the quantile in set 1. Since the high TOMs are usually the most important for module identification, the value of calibrationQuantile is close to (but not equal) 1. To speed up quantile calculation, the quantiles can be determined on a randomly-chosen component subset of the TOM matrices.

Full quantile normalization, implemented in normalize.quantiles, adjusts the TOM matrices such that all quantiles equal each other (and equal to the quantiles of the component-wise average of the individual TOM matrices).

Note that network calibration is performed separately in each block, i.e., the normalizing transformation may differ between blocks. This is necessary to avoid manipulating a full TOM in memory.

The consensus TOM is calculated as the component-wise consensusQuantile quantile of the individual (set) TOMs; that is, for each gene pair (TOM entry), the consensusQuantile quantile across all input sets. Alternatively, one can also use (weighted) component-wise mean across all input data sets. If requested, the consensus topological overlaps are saved to disk for later use.

Value

List with the following components:

- **consensusTOM**: only present if input returnTOMs is TRUE. A list containing consensus TOM for each block, stored as a distance structure.
- **TOMFiles**: only present if input saveConsensusTOMs is TRUE. A vector of file names, one for each block, in which the TOM for the corresponding block is stored. TOM is saved as a distance structure to save space.
- **saveConsensusTOMs**: a copy of the input saveConsensusTOMs.
- **individualTOMInfo**: information about individual set TOMs. A copy of the input individualTOMInfo if given; otherwise the result of calling blockwiseIndividualTOMs. See blockwiseIndividualTOMs for details.

Further components are retained for debugging and/or convenience.

- **useIndivTOMSubset**: a copy of the input useIndivTOMSubset.
- **goodSamplesAndGenes**: a list containing information about which samples and genes are "good" in the sense that they do not contain more than a certain fraction of missing data and (for genes) have non-zero variance. See goodSamplesGenesMS for details.
- **nGGenes**: number of "good" genes in goodSamplesGenes above.
- **nSets**: number of input sets.
saveCalibratedIndividualTOMs
 a copy of the input saveCalibratedIndividualTOMs.

calibratedIndividualTOMFileNames
 if input saveCalibratedIndividualTOMs is TRUE, this component will contain
 the file names of calibrated individual networks. The file names are arranged
 in a character matrix with each row corresponding to one input set and each
 column to one block.

networkCalibrationSamples
 if input getNetworkCalibrationSamples is TRUE, a list with one component
 per block. Each component is in turn a list with two components: sampleIndex
 is a vector contain the indices of the TOM samples (the indices refer to a flat-
 tened distance structure), and TOMSamples is a matrix of TOM samples with
 each row corresponding to a sample in sampleIndex, and each column to one
 input set.

consensusQuantile
 a copy of the input consensusQuantile.

originCount
 A vector of length nSets that contains, for each set, the number of (calibrated)
 elements that were less than or equal the consensus for that element.

Author(s)

Peter Langfelder

References

WGCNA methodology has been described in

Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17 PMID: 16646834

The original reference for the WGCNA package is

BMC Bioinformatics 2008, 9:559 PMID: 19114008

For consensus modules, see

Langfelder P, Horvath S (2007) "Eigengene networks for studying the relationships between co-
expression modules", BMC Systems Biology 2007, 1:54

This function uses quantile normalization described, for example, in

for high density oligonucleotide array data based on variance and bias", Bioinformatics. 2003 Jan
22;19(2):1

See Also

blockwiseIndividualTOMs for calculation of topological overlaps across multiple sets.

consensusTreeInputs
Get all elementary inputs in a consensus tree

Description
This function returns a flat vector or a structured list of elementary inputs to a given consensus tree, that is, inputs that are not consensus trees themselves.

Usage

```
consensusTreeInputs(consensusTree, flatten = TRUE)
```

Arguments

- `consensusTree`: A consensus tree of class `ConsensusTree`.
- `flatten`: Logical; if TRUE, the function returns a flat character vector of inputs; otherwise, a list whose structure reflects the structure of `consensusTree`.

Value
A character vector of inputs or a list of inputs whose structure reflects the structure of `consensusTree`.

Author(s)
Peter Langfelder

See Also
- `newConsensusTree` for creating consensus trees.

convertNumericColumnsToNumeric
Convert character columns that represent numbers to numeric

Description
This function converts to numeric those character columns in the input that can be converted to numeric without generating missing values except for the allowed NA representations.

Usage

```
convertNumericColumnsToNumeric(
  data,
  naStrings = c("NA", "NULL", "NO DATA"),
  unFactor = TRUE)
```
Arguments

data A data frame.
naStrings Character vector of values that are allowed to convert to NA (a missing numeric value).
unFactor Logical: should the function first convert all factor columns to character?

Value

A data frame with convertible columns converted to numeric.

Author(s)

Peter Langfelder

cor

Fast calculations of Pearson correlation.

Description

These functions implements a faster calculation of (weighted) Pearson correlation. The speedup against the R’s standard `cor` function will be substantial particularly if the input matrix only contains a small number of missing data. If there are no missing data, or the missing data are numerous, the speedup will be smaller.

Usage

```r
# Example usage

# Correlation using the 'cor' function

# Correlation using the 'corFast' function

# Correlation using the 'cor1' function
```
Arguments

- **x**: a numeric vector or a matrix. If `y` is null, `x` must be a matrix.
- **y**: a numeric vector or a matrix. If not given, correlations of columns of `x` will be calculated.
- **use**: a character string specifying the handling of missing data. The fast calculations currently support "all.obs" and "pairwise.complete.obs"; for other options, see R’s standard correlation function `cor`. Abbreviations are allowed.
- **method**: a character string specifying the method to be used. Fast calculations are currently available only for "pearson".
- **weights.x**: optional observation weights for `x`. A matrix of the same dimensions as `x`, containing non-negative weights. Only used in fast calculations: methods must be "pearson" and use must be one of "all.obs", "pairwise.complete.obs".
- **weights.y**: optional observation weights for `y`. A matrix of the same dimensions as `y`, containing non-negative weights. Only used in fast calculations: methods must be "pearson" and use must be one of "all.obs", "pairwise.complete.obs".
- **quick**: real number between 0 and 1 that controls the precision of handling of missing data in the calculation of correlations. See details.
- **cosine**: logical: calculate cosine correlation? Only valid for `method="pearson"`. Cosine correlation is similar to Pearson correlation but the mean subtraction is not performed. The result is the cosine of the angle(s) between (the columns of) `x` and `y`.
- **cosineX**: logical: use the cosine calculation for `x`? This setting does not affect `y` and can be used to give a hybrid cosine-standard correlation.
- **cosineY**: logical: use the cosine calculation for `y`? This setting does not affect `x` and can be used to give a hybrid cosine-standard correlation.
- **drop**: logical: should the result be turned into a vector if it is effectively one-dimensional?
- **nThreads**: non-negative integer specifying the number of parallel threads to be used by certain parts of correlation calculations. This option only has an effect on systems on which a POSIX thread library is available (which currently includes Linux and Mac OS X, but excludes Windows). If zero, the number of online processors will be used if it can be determined dynamically, otherwise correlation calculations will use 2 threads. Note that this option does not affect what is usually the most expensive part of the calculation, namely the matrix multiplication. The matrix multiplication is carried out by BLAS routines provided by R; these can be sped up by installing a fast BLAS and making R use it.
- **verbose**: Controls the level of verbosity. Values above zero will cause a small amount of diagnostic messages to be printed.
- **indent**: Indentation of printed diagnostic messages. Each unit above zero adds two spaces.

Details

The fast calculations are currently implemented only for `method="pearson"` and use either "all.obs" or "pairwise.complete.obs". The `corFast` function is a wrapper that calls the function `cor`. If
the combination of method and use is implemented by the fast calculations, the fast code is executed; otherwise, R's own correlation \texttt{cor} is executed.

The argument \texttt{quick} specifies the precision of handling of missing data. Zero will cause all calculations to be executed precisely, which may be significantly slower than calculations without missing data. Progressively higher values will speed up the calculations but introduce progressively larger errors. Without missing data, all column means and variances can be pre-calculated before the covariances are calculated. When missing data are present, exact calculations require the column means and variances to be calculated for each covariance. The approximate calculation uses the pre-calculated mean and variance and simply ignores missing data in the covariance calculation. If the number of missing data is high, the pre-calculated means and variances may be very different from the actual ones, thus potentially introducing large errors. The \texttt{quick} value times the number of rows specifies the maximum difference in the number of missing entries for mean and variance calculations on the one hand and covariance on the other hand that will be tolerated before a recalculation is triggered. The hope is that if only a few missing data are treated approximately, the error introduced will be small but the potential speedup can be significant.

\textbf{Value}

The matrix of the Pearson correlations of the columns of \texttt{x} with columns of \texttt{y} if \texttt{y} is given, and the correlations of the columns of \texttt{x} if \texttt{y} is not given.

\textbf{Note}

The implementation uses the BLAS library matrix multiplication function for the most expensive step of the calculation. Using a tuned, architecture-specific BLAS may significantly improve the performance of this function.

The values returned by the corFast function may differ from the values returned by R's function \texttt{cor} by rounding errors on the order of 1e-15.

\textbf{Author(s)}

Peter Langfelder

\textbf{References}

\textbf{See Also}

R's standard Pearson correlation function \texttt{cor}.

\textbf{Examples}

```r
## Test the speedup compared to standard function cor

# Generate a random matrix with 200 rows and 1000 columns
set.seed(10)
```
corAndPvalue

A faster, one-step calculation of Student correlation p-values for multiple correlations, properly taking into account the actual number of observations.

Usage

```r
corAndPvalue(x, y = NULL, 
              use = "pairwise.complete.obs", 
              alternative = c("two.sided", "less", "greater"), 
...)```

**Arguments**

- `x`: a vector or a matrix
corAndPvalue

y a vector or a matrix. If NULL, the correlation of columns of \( x \) will be calculated.

use determines handling of missing data. See cor for details.

alternative specifies the alternative hypothesis and must be (a unique abbreviation of) one of "two.sided", "greater" or "less". The initial letter. "greater" corresponds to positive association, "less" to negative association.

... other arguments to the function cor.

Details

The function calculates correlations of a matrix or of two matrices and the corresponding Student p-values. The output is not as full-featured as cor.test, but can work with matrices as input.

Value

A list with the following components, each a matrix:

cor the calculated correlations

p the Student p-values corresponding to the calculated correlations

Z Fisher transforms of the calculated correlations

t Student t statistics of the calculated correlations

nobs Numbers of observations for the correlation, p-values etc.

Author(s)

Peter Langfelder and Steve Horvath

References


See Also

cor for calculation of correlations only;
cor.test for another function for significance test of correlations

Examples

# generate random data with non-zero correlation
set.seed(1);
a = rnorm(100);
b = rnorm(100) + a;
x = cbind(a, b);
# Call the function and display all results
corAndPvalue(x)
# Set some components to NA
x[c(1:4), 1] = NA
corAndPvalue(x)
# Note that changed number of observations.
corPredictionSuccess  Quantification of success of gene screening

Description

This function calculates the success of gene screening.

Usage

corPredictionSuccess(corPrediction, corTestSet, topNumber = 100)

Arguments

corPrediction   a vector or a matrix of prediction statistics

corTestSet   correlation or other statistics on test set

topNumber   a vector of the number of top genes to consider

Details

For each column in corPrediction, the function evaluates the mean corTestSet for the number of top genes (ranked by the column in corPrediction) given in topNumber. The higher the mean corTestSet (for positive corPrediction) or negative (for negative corPrediction), the more successful the prediction.

Value

meanCorTestSetOverall  difference of meanCorTestSetPositive and meanCorTestSetNegative below

meanCorTestSetPositive  mean corTestSet on top genes with positive corPrediction

meanCorTestSetNegative  mean corTestSet on top genes with negative corPrediction

...

Author(s)

Steve Horvath

See Also

relativeCorPredictionSuccess
**corpvalueFisher**

*Fisher’s asymptotic p-value for correlation*

**Description**

Calculates Fisher’s asymptotic p-value for given correlations.

**Usage**

```r
corpvalueFisher(cor, nSamples, twoSided = TRUE)
```

**Arguments**

- `cor`: A vector of correlation values whose corresponding p-values are to be calculated
- `nSamples`: Number of samples from which the correlations were calculated
- `twoSided`: logical: should the calculated p-values be two sided?

**Value**

A vector of p-values of the same length as the input correlations.

**Author(s)**

Steve Horvath and Peter Langfelder

---

**corpvalueStudent**

*Student asymptotic p-value for correlation*

**Description**

Calculates Student asymptotic p-value for given correlations.

**Usage**

```r
corpvalueStudent(cor, nSamples)
```

**Arguments**

- `cor`: A vector of correlation values whose corresponding p-values are to be calculated
- `nSamples`: Number of samples from which the correlations were calculated

**Value**

A vector of p-values of the same length as the input correlations.

**Author(s)**

Steve Horvath and Peter Langfelder
correlationPreservation

Preservation of eigengene correlations

Description
Calculates a summary measure of preservation of eigengene correlations across data sets

Usage
correlationPreservation(multiME, setLabels, excludeGrey = TRUE, greyLabel = "grey")

Arguments
- multiME: consensus module eigengenes in a multi-set format. A vector of lists with one list corresponding to each set. Each list must contain a component data that is a data frame whose columns are consensus module eigengenes.
- setLabels: names to be used for the sets represented in multiME.
- excludeGrey: logical: exclude the 'grey' eigengene from preservation measure?
- greyLabel: module label corresponding to the 'grey' module. Usually this will be the character string "grey" if the labels are colors, and the number 0 if the labels are numeric.

Details
The function calculates the preservation of correlation of each eigengene with all other eigengenes (optionally except the 'grey' eigengene) in all pairs of sets.

Value
A data frame whose rows correspond to consensus module eigengenes given in the input multiME, and columns correspond to all possible set comparisons. The two sets compared in each column are indicated in the column name.

Author(s)
Peter Langfelder

References

See Also
multiSetMES and module checkSets in package moduleColor for more on eigengenes and the multi-set format
coxRegressionResiduals

Deviance- and martingale residuals from a Cox regression model

Description

The function inputs a censored time variable which is specified by two input variables \texttt{time} and \texttt{event}. It outputs i) the martingale residual and ii) deviance residual corresponding to a Cox regression model. By default, the Cox regression model is an intercept only Cox regression model. But optionally, the user can input covariates using the argument \texttt{datCovariates}. The function makes use of the \texttt{coxph} function in the \texttt{survival} library. See \texttt{help(residuals.coxph)} to learn more.

Usage

\begin{verbatim}
coxRegressionResiduals(time, event, datCovariates = NULL)
\end{verbatim}

Arguments

\begin{itemize}
\item \texttt{time} is a numeric variable that contains follow up time or time to event.
\item \texttt{event} is a binary variable that takes on values 1 and 0. 1 means that the event took place (e.g. person died, or tumor recurred). 0 means censored, i.e. event has not yet been observed or loss to follow up.
\item \texttt{datCovariates} a data frame whose columns correspond to covariates that should be used in the Cox regression model. By default, the only covariate the intercept term 1.
\end{itemize}

Details

Residuals are often used to investigate the lack of fit of a model. For Cox regression, there is no easy analog to the usual "observed minus predicted" residual of linear regression. Instead, several specialized residuals have been proposed for Cox regression analysis. The function calculates residuals that are well defined for an intercept only Cox regression model: the martingale and deviance residuals (Therneau et al 1990). The martingale residual of a subject (person) specifies excess failures beyond the expected baseline hazard. For example, a subject who was censored at 3 years, and whose predicted cumulative hazard at 3 years was 30. Another subject who had an event at 10 years, and whose predicted cumulative hazard at 10 years was 60. Since martingale residuals are not symmetrically distributed, even when the fitted model is correct, it is often advantageous to transform them into more symmetrically distributed residuals: deviance residuals. Thus, deviance residuals are defined as transformations of the martingale residual and the event variable. Deviance residuals are often symmetrically distributed around zero Deviance Residuals are similar to residuals from ordinary linear regression in that they are symmetrically distributed around 0 and have standard deviation of 1.0. A subject with a large deviance residual is poorly predicted by the model, i.e. is different from the baseline cumulative hazard. A negative value indicates a longer than expected survival time. When covariates are specified in \texttt{datCovariates}, then one can plot deviance (or martingale) residuals against the covariates. Unusual patterns may indicate poor fit of the Cox model. Cryptic comments: Deviance (or martingale) residuals can sometimes be used as (uncensored) quantitative variables instead of the original time censored variable. For example, they could be used as outcome in a regression tree or regression forest predictor.
cutreeStatic 127

Value

It outputs a data frame with 2 columns. The first and second column correspond to martingale and deviance residuals respectively.

Note

This function can be considered a wrapper of the coxph function.

Author(s)

Steve Horvath

References


Examples

library(survival)
# simulate time and event data
time1=sample(1:100)
event1=sample(c(1,0), 100, replace=TRUE)

event1[1:5]=NA
time1[1:5]=NA
# no covariates
datResiduals= coxRegressionResiduals(time=time1,event=event1)

# now we simulate a covariate
z= rnorm(100)
cor(datResiduals,use="p")
datResiduals=coxRegressionResiduals(time=time1,event=event1,datCovariates=data.frame(z))
cor(datResiduals,use="p")


cutreeStatic  Constant-height tree cut

Description

Module detection in hierarchical dendrograms using a constant-height tree cut. Only branches whose size is at least minSize are retained.

Usage

cutreeStatic(dendro, cutHeight = 0.9, minSize = 50)
**cutreeStaticColor**

**Arguments**

- **dendro**: a hierarchical clustering dendrogram such as returned by `hclust`.
- **cutHeight**: height at which branches are to be cut.
- **minSize**: minimum number of object on a branch to be considered a cluster.

**Details**

This function performs a straightforward constant-height cut as implemented by `cutree`, then calculates the number of objects on each branch and only keeps branches that have at least `minSize` objects on them.

**Value**

A numeric vector giving labels of objects, with 0 meaning unassigned. The largest cluster is conventionally labeled 1, the next largest 2, etc.

**Author(s)**

Peter Langfelder

**See Also**

`hclust` for hierarchical clustering, `cutree` and `cutreeStatic` for other constant-height branch cuts, `standardColors` to convert the returned numerical labels into colors for easier visualization.
The function plots a barplot using colors that label modules.

**Usage**

```r
displayColors(colors = NULL)
```

**Arguments**

- `colors` colors to be displayed. Defaults to all colors available for module labeling.

**Details**

To see the first n colors, use argument `colors = standardColors(n)`.

**Value**

None.

**Author(s)**

Peter Langfelder

**See Also**

- `hclust` for hierarchical clustering, `cutree` and `cutreeStatic` for other constant-height branch cuts, `standardColors` to see the sequence of color labels that can be assigned.

**Examples**

```r
displayColors(standardColors(10))
```
dynamicMergeCut  

Threshold for module merging

Description

Calculate a suitable threshold for module merging based on the number of samples and a desired Z quantile.

Usage

dynamicMergeCut(n, mergeCor = 0.9, Zquantile = 2.35)

Arguments

n  number of samples
mergeCor  theoretical correlation threshold for module merging
Zquantile  Z quantile for module merging

Details

This function calculates the threshold for module merging. The threshold is calculated as the lower boundary of the interval around the theoretical correlation mergeCor whose width is given by the Z value Zquantile.

Value

The correlation threshold for module merging: a single number.

Author(s)

Steve Horvath

See Also

moduleEigengenes, mergeCloseModules

Examples

dynamicMergeCut(20)
dynamicMergeCut(50)
dynamicMergeCut(100)
empiricalBayesLM

Description

This function removes variation in high-dimensional data due to unwanted covariates while preserving variation due to retained covariates. To prevent numerical instability, it uses Empirical Bayes-moderated linear regression, optionally in a robust (outlier-resistant) form.

Usage

empiricalBayesLM(
  data,
  removedCovariates,
  retainedCovariates = NULL,

  initialFitFunction = NULL,
  initialFitOptions = NULL,
  initialFitRequiresFormula = NULL,
  initialFit.returnWeightName = NULL,

  fitToSamples = NULL,

  weights = NULL,
  automaticWeights = c("none", "bicov"),
  aw.maxPOutliers = 0.1,
  weightType = c("apriori", "empirical"),
  stopOnSmallWeights = TRUE,

  minDesignDeviation = 1e-10,
  robustPriors = FALSE,
  tol = 1e-4, maxIterations = 1000,
  garbageCollectInterval = 50000,

  scaleMeanToSamples = NULL,
  getOLSAAdjustedData = TRUE,
  getResiduals = TRUE,
  getFittedValues = TRUE,
  getWeights = TRUE,
  getEBAdjustedData = TRUE,

  verbose = 0, indent = 0)

Arguments

data A 2-dimensional matrix or data frame of numeric data to be adjusted. Variables (for example, genes or methylation profiles) should be in columns and observa-
removedCovariates
A vector or two-dimensional object (matrix or data frame) giving the covariates whose effect on the data is to be removed. At least one such covariate must be given.

retainedCovariates
A vector or two-dimensional object (matrix or data frame) giving the covariates whose effect on the data is to be retained. May be NULL if there are no such "retained" covariates.

initialFitFunction
Function name to perform the initial fit. The default is to use the internal implementation of linear model fitting. The function must take arguments formula and data or x and y, plus possibly additional arguments. The return value must be a list with component coefficients, either scale or residuals, and weights must be returned in component specified by initialFit.returnWeightName. See \texttt{lm}, \texttt{rlm} and other standard fit functions for examples of suitable functions.

initialFitOptions
Optional specifications of extra arguments for initialFitFunction, apart from formula and data or x and y. Defaults are provided for functions \texttt{rlm} and \texttt{lmrob}, i.e., if either of these two functions are used as initialFitFunction, suitable initial fit options will be chosen automatically.

initialFitRequiresFormula
Logical: does the initial fit function need formula and data arguments? If TRUE, initialFitFunction will be called with arguments formula and data, otherwise with arguments x and y.

initialFit.returnWeightName
Name of the component of the return value of initialFitFunction that contains the weights used in the fit. Suitable default value will be chosen automatically for \texttt{rlm} and \texttt{lmrob}.

fitToSamples
Optional index of samples from which the linear model fits should be calculated. Defaults to all samples. If given, the models will be only fit to the specified samples but all samples will be transformed using the calculated coefficients.

weights
Optional 2-dimensional matrix or data frame of the same dimensions as data giving weights for each entry in data. These weights will be used in the initial fit and are are separate from the ones returned by initialFitFunction if it is specified.

automaticWeights
One of (unique abbreviations of) "none" or "bicov", instructing the function to calculate weights from the given data. Value "none" will result in trivial weights; value "bicov" will result in biweight midcovariance weights being used.

aw.maxPOutliers
If automaticWeights above is "bicov", this argument gets passed to the function \texttt{bicovWeights} and determines the maximum proportion of outliers in calculating the weights. See \texttt{bicovWeights} for more details.

weightType
One of (unique abbreviations of) "apriori" or "empirical". Determines whether a standard ("apriori") or a modified ("empirical") weighted regression is
used. The "apriori" choice is suitable for weights that have been determined without knowledge of the actual data, while "empirical" is appropriate for situations where one wants to down-weigh certain entries of data because they may be outliers. In either case, the weights should be determined in a way that is independent of the covariates (both retained and removed).

**stopOnSmallWeights**
Logical: should presence of small "apriori" weights trigger an error? Because standard weighted regression assumes that all weights are non-zero (otherwise estimates of standard errors will be biased), this function will by default complain about the presence of too small "apriori" weights.

**minDesignDeviation**
Minimum standard deviation for columns of the design matrix to be retained. Columns with standard deviations below this number will be removed (effectively removing the corresponding terms from the design).

**robustPriors**
Logical: should robust priors be used? This essentially means replacing mean by median and covariance by biweight mid-covariance.

**tol**
Convergence criterion used in the numerical equation solver. When the relative change in coefficients falls below this threshold, the system will be considered to have converged.

**maxIterations**
Maximum number of iterations to use.

**garbageCollectInterval**
Number of variables after which to call garbage collection.

**scaleMeanToSamples**
Optional specification of samples (given as a vector of indices) to whose means the resulting adjusted data should be scaled (more precisely, shifted). If not given, the mean of all samples will be used.

**getOLSAjustedData**
Logical: should data adjusted by ordinary least squares or by initialFitFunction, if specified, be returned?

**getResiduals**
Logical: should the residuals (adjusted values without the means) be returned?

**getFittedValues**
Logical: should fitted values be returned?

**getWeights**
Logical: should the final weights be returned?

**getEBAdjustedData**
Logical: should the EB step be performed and the adjusted data returned? If this is FALSE, the function acts as a rather slow but still potentially useful adjustment using standard fit functions.

**verbose**
Level of verbosity. Zero means silent, higher values result in more diagnostic messages being printed.

**indent**
Indentation of diagnostic messages. Each unit adds two spaces.

**Details**
This function uses Empirical Bayes-moderated (EB) linear regression to remove variation in data due to the variables in removedCovariates while retaining variation due to variables in retainedCovariates.
if any are given. The EB step uses simple normal priors on the regression coefficients and inverse gamma priors on the variances. The procedure starts with multivariate ordinary linear regression of individual columns in data on retainedCovariates and removedCovariates. Alternatively, the user may specify an initial fit function (e.g., robust linear regression). To make the coefficients comparable, columns of data are scaled to (weighted if weights are given) mean 0 and variance 1. The resulting regression coefficients are used to determine the parameters of the normal prior (mean, covariance, and inverse gamma or median and biweight mid-covariance if robust priors are used), and the variances are used to determine the parameters of the inverse gamma prior. The EB step then essentially shrinks the coefficients toward their means, with the amount of shrinkage determined by the prior covariance.

Using appropriate weights can make the data adjustment robust to outliers. This can be achieved automatically by using the argument automaticWeights = "bicov". When bicov weights are used, we also recommend setting the argument maxPOutliers to a maximum proportion of samples that could be outliers. This is especially important if some of the design variables are binary and can be expected to have a strong effect on some of the columns in data, since standard biweight midcorrelation (and its weights) do not work well on bimodal data.

The automatic bicov weights are determined from data only. It is implicitly assumed that there are no outliers in the retained and removed covariates. Outliers in the covariates are more difficult to work with since, even if the regression is made robust to them, they can influence the adjusted values for the sample in which they appear. Unless the covariate outliers can be attributed to a relevant variation in experimental conditions, samples with covariate outliers are best removed entirely before calling this function.

Value

A list with the following components (some of which may be missing depending on input options):

- adjustedData: A matrix of the same dimensions as the input data, giving the adjusted data. If input data has non-NULL dimnames, these are copied.
- residuals: A matrix of the same dimensions as the input data, giving the residuals, that is, adjusted data with zero means.
- coefficients: A matrix of regression coefficients. Rows correspond to the design matrix variables (mean, retained and removed covariates) and columns correspond to the variables (columns) in data.
- coefficients.scaled: A matrix of regression coefficients corresponding to columns in data scaled to mean 0 and variance 1.
- sigmaSq: Estimated error variances (one for each column of input data).
- sigmaSq.scaled: Estimated error variances corresponding to columns in data scaled to mean 0 and variance 1.
- fittedValues: Fitted values calculated from the means and coefficients corresponding to the removed covariates, i.e., roughly the values that are subtracted out of the data.
- adjustedData.OLS: A matrix of the same dimensions as the input data, giving the data adjusted by ordinary least squares. This component should only be used for diagnostic purposes, not as input for further downstream analyses, as the OLS adjustment is inferior to EB adjustment.
residuals.OLS A matrix of the same dimensions as the input data, giving the residuals obtained from ordinary least squares regression, that is, OLS-adjusted data with zero means.

coefficients.OLS A matrix of ordinary least squares regression coefficients. Rows correspond to the design matrix variables (mean, retained and removed covariates) and columns correspond to the variables (columns) in data.

coefficients.OLS.scaled A matrix of ordinary least squares regression coefficients corresponding to columns in data scaled to mean 0 and variance 1. These coefficients are used to calculate priors for the EB step.

sigmaSq.OLS Estimated OLS error variances (one for each column of input data).

sigmaSq.OLS.scaled Estimated OLS error variances corresponding to columns in data scaled to mean 0 and variance 1. These are used to calculate variance priors for the EB step.

fittedValues.OLS OLS fitted values calculated from the means and coefficients corresponding to the removed covariates.

weights A matrix of weights used in the regression models. The matrix has the same dimension as the input data.

dataColumnValid Logical vector with one element per column of input data, indicating whether the column was adjusted. Columns with zero variance or too many missing data cannot be adjusted.

dataColumnWithZeroVariance Logical vector with one element per column of input data, indicating whether the column had zero variance.

coefficientValid Logical matrix of the dimension (number of covariates +1) times (number of variables in data), indicating whether the corresponding regression coefficient is valid. Invalid regression coefficients may be returned as missing values or as zeroes.

Author(s)

Peter Langfelder

See Also

bicovWeights for suitable weights that make the adjustment robust to outliers.
Description

This function exports a network in edge and node list files in a format suitable for importing to Cytoscape.

Usage

```r
exportNetworkToCytoscape(
 adjMat,
 edgeFile = NULL,
 nodeFile = NULL,
 weighted = TRUE,
 threshold = 0.5,
 nodeNames = NULL,
 altNodeNames = NULL,
 nodeAttr = NULL,
 includeColNames = TRUE)
```

Arguments

- `adjMat`: adjacency matrix giving connection strengths among the nodes in the network.
- `edgeFile`: file name of the file to contain the edge information.
- `nodeFile`: file name of the file to contain the node information.
- `weighted`: logical: should the exported network be weighted?
- `threshold`: adjacency threshold for including edges in the output.
- `nodeNames`: names of the nodes. If not given, `dimnames` of `adjMat` will be used.
- `altNodeNames`: optional alternate names for the nodes, for example gene names if nodes are labeled by probe IDs.
- `nodeAttr`: optional node attribute, for example module color. Can be a vector or a data frame.
- `includeColNames`: logical: should column names be included in the output files? Note that Cytoscape can read files both with and without column names.

Details

If the corresponding file names are supplied, the edge and node data is written to the appropriate files. The edge and node data is also returned as return value (see below).
Value

A list with the following components:

edgeData a data frame containing the edge data, with one row per edge
nodeData a data frame containing the node data, with one row per node

Author(s)

Peter Langfelder

See Also

exportNetworkToVisANT

Description

Exports network data in a format readable and displayable by the VisANT software.

Usage

exportNetworkToVisANT(adjMat,
file = NULL,
weighted = TRUE,
threshold = 0.5,
maxNConnections = NULL,
probeToGene = NULL)

Arguments

adjMat adjacency matrix of the network to be exported.
file character string specifying the file name of the file in which the data should be written. If not given, no file will be created. The file is in a plain text format.
weighted logical: should the exported network by weighted?
threshold adjacency threshold for including edges in the output.
maxNConnections maximum number of exported adjacency edges. This can be used as another filter on the exported edges.
probeToGene optional specification of a conversion between probe names (that label columns and rows of adjacency) and gene names (that should label nodes in the output).
factorizeNonNumericColumns

Details

The adjacency matrix is checked for validity. The entries can be negative, however. The adjacency matrix is expected to also have valid names or dimnames[[2]] that represent the probe names of the corresponding edges.

Whether the output is a weighted network or not, only edges whose (absolute value of) adjacency are above threshold will be included in the output. If maxNConnections is given, at most maxNConnections will be included in the output.

If probeToGene is given, it is expected to have two columns, the first one corresponding to the probe names, the second to their corresponding gene names that will be used in the output.

Value

A data frame containing the network information suitable as input to VisANT. The same data frame is also written into a file specified by file, if given.

Author(s)

Peter Langfelder

References

VisANT software is available from http://visant.bu.edu/.

factorizeNonNumericColumns

Turn non-numeric columns into factors

Description

Given a data frame, this function turns non-numeric columns into factors.

Usage

factorizeNonNumericColumns(data)

Arguments

data A data frame. Non-data frame inputs (e.g., a matrix) are coerced to a data frame.

Details

A column is considered numeric if its storage mode is numeric or if it is a character vector, it only contains character representations of numbers and possibly missing values encoded as "NA", "NULL", "NO DATA".
fixDataStructure

Value

The input data frame with non-numeric columns turned into factors.

Author(s)

Peter Langfelder

fixDataStructure

Put single-set data into a form useful for multiset calculations.

Description

Encapsulates single-set data in a wrapper that makes the data suitable for functions working on multiset data collections.

Usage

fixDataStructure(data, verbose = 0, indent = 0)

Arguments

data A dataframe, matrix or array with two dimensions to be encapsulated.

verbose Controls verbosity. 0 is silent.

indent Controls indentation of printed progress messages. 0 means no indentation, every unit adds two spaces.

Details

For multiset calculations, many quantities (such as expression data, traits, module eigengenes etc) are presented by a common structure, a vector of lists (one list for each set) where each list has a component data that contains the actual (expression, trait, eigengene) data for the corresponding set in the form of a dataframe. This function creates a vector of lists of length 1 and fills the component data with the content of parameter data.

Value

As described above, input data in a format suitable for functions operating on multiset data collections.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

See Also

checkSets
Examples

singlesetdata = matrix(rnorm(100), 10, 10);
encapsdata = fixDataStructure(singlesetData);
length(encapsData)
names(encapsData[[1]])
dim(encapsData[[1]]$data)
alldata=equal(encapsData[[1]]$data, singlesetData);

formatLabels  
Break long character strings into multiple lines

Description

This function attempts to break long character strings into multiple lines by replacing a given pattern by a newline character.

Usage

formatLabels(
  labels,
  maxCharPerLine = 14,
  maxWidth = NULL,
  maxLines = Inf,
  cex = 1,
  split = " ",
  fixed = TRUE,
  newsplit = split,
  keepSplitAtEOL = TRUE,
  capitalMultiplier = 1.4,
  eol = "\n",
  ellipsis = "..."
)

Arguments

labels  Character strings to be formatted.
maxCharPerLine  Integer giving the maximum number of characters per line.
maxWidth  Maximum width in user coordinates. If given, overrides maxCharPerLine above and usually gives a much more efficient formatting.
maxLines  Maximum lines to retain. If a label extends past the maximum number of lines, ellipsis is added at the end of the last line.
cex  Character expansion factor that the user intends to use when adding labels to the current figure. Only used when maxWidth is specified.
split  Pattern to be replaced by newline ("\n") characters.
fixed Logical: Should the pattern be interpreted literally (TRUE) or as a regular expression (FALSE)? See `strsplit` and its argument `fixed`.

newsplit Character string to replace the occurrences of `split` above with.

keepSplitAtEOL When replacing an occurrence of `split` with a newline character, should the `newsplit` be added before the newline as well?

capitalMultiplier A multiplier for capital letters which typically occupy more space than lowercase letters.

eol Character string to separate lines in the output.

ellipsis Character string to add to the last line if the input label is longer than fits on `maxLines` lines.

Details
Each given element of `labels` is processed independently. The character string is split using `strsplit`, with `split` as the splitting pattern. The resulting shorter character strings are then concatenated together with `newsplit` as the separator. Whenever the length (adjusted using the capital letter multiplier) of the combined result from the start or the previous newline character exceeds `maxCharPerLine`, or `strwidth` exceeds `maxWidth`, the character specified by `eol` is inserted (at the previous split).

Note that individual segments (i.e., sections of the input between occurrences of `split`) whose number of characters exceeds `maxCharPerLine` will not be split.

Value
A character vector of the same length as input `labels`.

Author(s)
Peter Langfelder

Examples
```r
s = "A quick hare jumps over the brown fox";
formatLabels(s);
```
Description

This function computes fundamental network concepts (also known as network indices or statistics) based on an adjacency matrix and optionally a node significance measure. These network concepts are defined for any symmetric adjacency matrix (weighted and unweighted). The network concepts are described in Dong and Horvath (2007) and Horvath and Dong (2008). Fundamental network concepts are defined as a function of the off-diagonal elements of an adjacency matrix adj and/or a node significance measure GS.

Usage

fundamentalNetworkConcepts(adj, GS = NULL)

Arguments

adj an adjacency matrix, that is a square, symmetric matrix with entries between 0 and 1
GS a node significance measure: a vector of the same length as the number of rows (and columns) of the adjacency matrix.

Value

A list with the following components:

Connectivity a numerical vector that reports the connectivity (also known as degree) of each node. This fundamental network concept is also known as whole network connectivity. One can also define the scaled connectivity $K = \text{Connectivity}/\text{max(Connectivity)}$ which is used for computing the hub gene significance.

ScaledConnectivity the Connectivity vector scaled by the highest connectivity in the network, i.e., $\text{Connectivity}/\text{max(Connectivity)}$.

ClusterCoef a numerical vector that reports the cluster coefficient for each node. This fundamental network concept measures the cliquishness of each node.

MAR a numerical vector that reports the maximum adjacency ratio for each node. $\text{MAR}[i]$ equals 1 if all non-zero adjacencies between node $i$ and the remaining network nodes equal 1. This fundamental network concept is always 1 for nodes of an unweighted network. This is a useful measure for weighted networks since it allows one to determine whether a node has high connectivity because of many weak connections (small MAR) or because of strong (but few) connections (high MAR), see Horvath and Dong 2008.

Density the density of the network.

Centralization the centralization of the network.

Heterogeneity the heterogeneity of the network.

Author(s)

Steve Horvath
References


See Also

conformityBasedNetworkConcepts for calculation of conformity based network concepts for a network adjacency matrix;

networkConcepts, for calculation of conformity based and eigennode based network concepts for a correlation network.

GOenrichmentAnalysis  Calculation of GO enrichment (experimental)

Description

NOTE: GOenrichmentAnalysis is deprecated. Please use function enrichmentAnalysis from R package anRichment, available from https://labs.genetics.ucla.edu/horvath/htdocs/CoexpressionNetwork/GeneAnnotation/

WARNING: This function should be considered experimental. The arguments and resulting values (in particular, the enrichment p-values) are not yet finalized and may change in the future. The function should only be used to get a quick and rough overview of GO enrichment in the modules in a data set; for a publication-quality analysis, please use an established tool.

Using Bioconductor’s annotation packages, this function calculates enrichments and returns terms with best enrichment values.

Usage

GOenrichmentAnalysis(labels, entrezCodes, yeastORFs = NULL, organism = "human", ontologies = c("BP", "CC", "MF"), evidence = "all", includeOffspring = TRUE, backgroundType = "givenInGO", removeDuplicates = TRUE, leaveOutLabel = NULL, nBestP = 10, pCut = NULL, nBiggest = 0, getTermDetails = TRUE, verbose = 2, indent = 0)
Arguments

labels cluster (module, group) labels of genes to be analyzed. Either a single vector, or a matrix. In the matrix case, each column will be analyzed separately; analyzing a collection of module assignments in one function call will be faster than calling the function several times. For each row, the labels in all columns must correspond to the same gene specified in entrezCodes.

entrezCodes Entrez (a.k.a. LocusLink) codes of the genes whose labels are given in labels. A single vector; the i-th entry corresponds to row i of the matrix labels (or to the i-th entry if labels is a vector).

yeastORFs if organism="yeast" (below), this argument can be used to input yeast open reading frame (ORF) identifiers instead of Entrez codes. Since the GO mappings for yeast are provided in terms of ORF identifiers, this may lead to a more accurate GO enrichment analysis. If given, the argument entrezCodes is ignored.

organism character string specifying the organism for which to perform the analysis. Recognized values are (unique abbreviations of) "human", "mouse", "rat", "malaria", "yeast", "fly".

ontologies vector of character strings specifying GO ontologies to be included in the analysis. Can be any subset of "BP", "CC", "MF". The result will contain the terms with highest enrichment in each specified category, plus a separate list of terms with best enrichment in all ontologies combined.

evidence vector of character strings specifying admissible evidence for each gene in its specific term, or "all" for all evidence codes. See Details or http://www.geneontology.org/GO.evidence.shtml for available evidence codes and their meaning.

includeOffspring logical: should genes belonging to the offspring of each term be included in the term? As a default, only genes belonging directly to each term are associated with the term. Note that the calculation of enrichments with offspring included can be quite slow for large data sets.

backgroundType specification of the background to use. Recognized values are (unique abbreviations of) "allGiven", "allInGO", "givenInGO", meaning that the functions will take all genes given in labels as background ("allGiven"), all genes present in any of the GO categories ("allInGO"), or the intersection of given genes and genes present in GO ("givenInGO"). The default is recommended for genome-wide enrichment studies.

removeDuplicates logical: should duplicate entries in entrezCodes be removed? If TRUE, only the first occurrence of each unique Entrez code will be kept. The cluster labels labels will be adjusted accordingly.

leaveOutLabel optional specifications of module labels for which enrichment calculation is not desired. Can be a single label or a vector of labels to be ignored. However, if in any of the sets no labels are left to calculate enrichment of, the function will stop with an error.

nBestP specifies the number of terms with highest enrichment whose detailed information will be returned.
alternative specification of terms to be returned: all terms whose enrichment p-value is more significant than pCut will be returned. If pCut is given, nBestP is ignored.

nBiggest

in addition to returning terms with highest enrichment, terms that contain most of the genes in each cluster can be returned by specifying the number of biggest terms per cluster to be returned. This may be useful for development and testing purposes.

gTermDetails

logical indicating whether detailed information on the most enriched terms should be returned.

verbose

integer specifying the verbosity of the function. Zero means silent, positive values will cause the function to print progress reports.

indent

integer specifying indentation of the diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

This function is basically a wrapper for the annotation packages available from Bioconductor. It requires the packages GO.db, AnnotationDbi, and org.xx.eg.db, where xx is the code corresponding to the organism that the user wishes to analyze (e.g., Hs for human Homo Sapiens, Mm for mouse Mus Musculus etc). For each cluster specified in the input, the function calculates all enrichments in the specified ontologies, and collects information about the terms with highest enrichment. The enrichment p-value is calculated using Fisher exact test. As background we use all of the supplied genes that are present in at least one term in GO (in any of the ontologies).

For best results, the newest annotation libraries should be used. Because of the way Bioconductor is set up, to get the newest annotation libraries you may have to use the current version of R.

According to http://www.geneontology.org/GO.evidence.shtml, the following codes are used by GO:

Experimental Evidence Codes
EXP: Inferred from Experiment
IDA: Inferred from Direct Assay
IPI: Inferred from Physical Interaction
IMP: Inferred from Mutant Phenotype
IGI: Inferred from Genetic Interaction
IEP: Inferred from Expression Pattern

Computational Analysis Evidence Codes
ISS: Inferred from Sequence or Structural Similarity
ISO: Inferred from Sequence Orthology
ISA: Inferred from Sequence Alignment
ISM: Inferred from Sequence Model
IGC: Inferred from Genomic Context
IBA: Inferred from Biological aspect of Ancestor
IBD: Inferred from Biological aspect of Descendant
IKR: Inferred from Key Residues
IRD: Inferred from Rapid Divergence
RCA: inferred from Reviewed Computational Analysis
Author Statement Evidence Codes
   TAS: Traceable Author Statement
   NAS: Non-traceable Author Statement

Curator Statement Evidence Codes
   IC: Inferred by Curator
   ND: No biological Data available

Automatically-assigned Evidence Codes
   IEA: Inferred from Electronic Annotation

Obsolete Evidence Codes
   NR: Not Recorded

Value

A list with the following components:

keptForAnalysis
   logical vector with one entry per given gene. TRUE if the entry was used for enrichment analysis. Depending on the setting of removeDuplicates above, only a single entry per gene may be used.

inGO
   logical vector with one entry per given gene. TRUE if the gene belongs to any GO term, FALSE otherwise. Also FALSE for genes not used for the analysis because of duplication.

If input labels contained only one vector of labels, the following components:

countsInTerms
   a matrix whose rows correspond to given cluster, and whose columns correspond to GO terms, containing number of genes in the intersection of the corresponding module and GO term. Row and column names are set appropriately.

enrichmentP
   a matrix whose rows correspond to given cluster, and whose columns correspond to GO terms, containing enrichment p-values of each term in each cluster. Row and column names are set appropriately.

bestPTerms
   a list of lists with each inner list corresponding to an ontology given in ontologies in input, plus one component corresponding to all given ontologies combined. The name of each component is set appropriately. Each inner list contains two components: enrichment is a data frame containing the highest enriched terms for each module; and forModule is a list of lists with one inner list per module, appropriately named. Each inner list contains one component per term. If input getTermDetails is TRUE, this component is yet another list and contains components termName (term name), enrichmentP (enrichment P value), termDefinition (GO term definition), termOntology (GO term ontology), geneCodes (Entrez codes of module genes in this term), genePositions (indices of the genes listed in geneCodes within the given labels). Thus, to obtain information on say the second term of the 5th module in ontology BP, one can look at the appropriate row of bestPTerms$BP$enrichment, or one can
Filter genes with too many missing entries

Description

This function checks data for missing entries and returns a list of genes that have non-zero variance and pass two criteria on maximum number of missing values and values whose weight is below a threshold: the fraction of missing values must be below a given threshold and the total number of present samples must be at least equal to a given threshold. If weights are given, entries whose relative weight is below a threshold will be considered missing.

Usage

goodGenes(
  datExpr,
  weights = NULL,
  useSamples = NULL,
  useGenes = NULL,
  minFraction = 1/2,
  minNSamples = ..minNSamples,
  minNGenes = ..minNGenes,
  tol = NULL,
  minRelativeWeight = 0.1,
  verbose = 1, indent = 0)
Arguments

datExpr  expression data. A data frame in which columns are genes and rows are samples.
weights   optional observation weights in the same format (and dimensions) as datExpr.
useSamples optional specifications of which samples to use for the check. Should be a logical vector; samples whose entries are FALSE will be ignored for the missing value counts. Defaults to using all samples.
useGenes  optional specifications of genes for which to perform the check. Should be a logical vector; genes whose entries are FALSE will be ignored. Defaults to using all genes.
minFraction minimum fraction of non-missing samples for a gene to be considered good.
minNSamples minimum number of non-missing samples for a gene to be considered good.
minNGenes  minimum number of good genes for the data set to be considered fit for analysis. If the actual number of good genes falls below this threshold, an error will be issued.
tol        an optional 'small' number to compare the variance against. Defaults to the square of 1e-10 * max(abs(datExpr), na.rm = TRUE). The reason of comparing the variance to this number, rather than zero, is that the fast way of computing variance used by this function sometimes causes small numerical overflow errors which make variance of constant vectors slightly non-zero; comparing the variance to tol rather than zero prevents the retaining of such genes as 'good genes'.
minRelativeWeight observations whose relative weight is below this threshold will be considered missing. Here relative weight is weight divided by the maximum weight in the column (gene).
verbose    integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.
indent     indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

The constants ..minNSamples and ..minNGenes are both set to the value 4.
If weights are given, entries whose relative weight (i.e., weight divided by maximum weight in the column or gene) will be considered missing.
For most data sets, the fraction of missing samples criterion will be much more stringent than the absolute number of missing samples criterion.

Value

A logical vector with one entry per gene that is TRUE if the gene is considered good and FALSE otherwise. Note that all genes excluded by useGenes are automatically assigned FALSE.

Author(s)

Peter Langfelder and Steve Horvath
goodGenesMS

See Also

goodSamples, goodSamplesGenes

---

**goodGenesMS**

*Filter genes with too many missing entries across multiple sets*

**Description**

This function checks data for missing entries and returns a list of genes that have non-zero variance in all sets and pass two criteria on maximum number of missing values in each given set: the fraction of missing values must be below a given threshold and the total number of missing samples must be below a given threshold. If weights are given, entries whose relative weight is below a threshold will be considered missing.

**Usage**

```r
goodGenesMS(
 multiExpr,
 multiWeights = NULL,
 useSamples = NULL,
 useGenes = NULL,
 minFraction = 1/2,
 minNSamples = ..minNSamples,
 minNGenes = ..minNGenes,
 tol = NULL,
 minRelativeWeight = 0.1,
 verbose = 1, indent = 0)
```

**Arguments**

- `multiExpr`: expression data in the multi-set format (see `checkSets`). A vector of lists, one per set. Each set must contain a component `data` that contains the expression data, with rows corresponding to samples and columns to genes or probes.
- `multiWeights`: optional observation weights in the same format (and dimensions) as `multiExpr`.
- `useSamples`: optional specifications of which samples to use for the check. Should be a logical vector; samples whose entries are `FALSE` will be ignored for the missing value counts. Defaults to using all samples.
- `useGenes`: optional specifications of genes for which to perform the check. Should be a logical vector; genes whose entries are `FALSE` will be ignored. Defaults to using all genes.
- `minFraction`: minimum fraction of non-missing samples for a gene to be considered good.
- `minNSamples`: minimum number of non-missing samples for a gene to be considered good.
minNGenes  minimum number of good genes for the data set to be considered fit for analysis. If the actual number of good genes falls below this threshold, an error will be issued.

tol  an optional 'small' number to compare the variance against. For each set in multiExpr, the default value is 1e-10 * max(abs(multiExpr[[set]]$data), na.rm = TRUE). The reason of comparing the variance to this number, rather than zero, is that the fast way of computing variance used by this function sometimes causes small numerical overflow errors which make variance of constant vectors slightly non-zero; comparing the variance to tol rather than zero prevents the retaining of such genes as 'good genes'.

minRelativeWeight  observations whose relative weight is below this threshold will be considered missing. Here relative weight is weight divided by the maximum weight in the column (gene).

verbose  integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

indent  indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

The constants .minNSamples and .minNGenes are both set to the value 4.

If weights are given, entries whose relative weight (i.e., weight divided by maximum weight in the column or gene) will be considered missing.

For most data sets, the fraction of missing samples criterion will be much more stringent than the absolute number of missing samples criterion.

Value

A logical vector with one entry per gene that is TRUE if the gene is considered good and FALSE otherwise. Note that all genes excluded by useGenes are automatically assigned FALSE.

Author(s)

Peter Langfelder

See Also

goodGenes, goodSamples, goodSamplesGenes for cleaning individual sets separately;
goodSamplesMS, goodSamplesGenesMS for additional cleaning of multiple data sets together.
goodSamples

Filter samples with too many missing entries

Description

This function checks data for missing entries and returns a list of samples that pass two criteria on maximum number of missing values: the fraction of missing values must be below a given threshold and the total number of missing genes must be below a given threshold.

Usage

```r
goodSamples(
 datExpr,
 weights = NULL,
 useSamples = NULL,
 useGenes = NULL,
 minFraction = 1/2,
 minNSamples = ..minNSamples,
 minNGenes = ..minNGenes,
 minRelativeWeight = 0.1,
 verbose = 1, indent = 0)
```

Arguments

datExpr: expression data. A data frame in which columns are genes and rows are samples.
weights: optional observation weights in the same format (and dimensions) as `datExpr`.
useSamples: optional specifications of which samples to use for the check. Should be a logical vector; samples whose entries are FALSE will be ignored for the missing value counts. Defaults to using all samples.
useGenes: optional specifications of genes for which to perform the check. Should be a logical vector; genes whose entries are FALSE will be ignored. Defaults to using all genes.
minFraction: minimum fraction of non-missing samples for a gene to be considered good.
minNSamples: minimum number of good samples for the data set to be considered fit for analysis. If the actual number of good samples falls below this threshold, an error will be issued.
minNGenes: minimum number of non-missing samples for a sample to be considered good.
minRelativeWeight: observations whose weight divided by the maximum weight is below this threshold will be considered missing.
verbose: integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.
indent: indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.
Details

The constants `minNSamples` and `minNGenes` are both set to the value 4. For most data sets, the fraction of missing samples criterion will be much more stringent than the absolute number of missing samples criterion.

Value

A logical vector with one entry per sample that is TRUE if the sample is considered good and FALSE otherwise. Note that all samples excluded by `useSamples` are automatically assigned FALSE.

Author(s)

Peter Langfelder and Steve Horvath

See Also

goodSamples, goodSamplesGenes

---

goodSamplesGenes  
Iterative filtering of samples and genes with too many missing entries

Description

This function checks data for missing entries, entries with weights below a threshold, and zero-variance genes, and returns a list of samples and genes that pass criteria on maximum number of missing or low weight values. If necessary, the filtering is iterated.

Usage

goodSamplesGenes(
  datExpr,
  weights = NULL,
  minFraction = 1/2,
  minNSamples = `minNSamples`,
  minNGenes = `minNGenes`,
  tol = NULL,
  minRelativeWeight = 0.1,
  verbose = 1, indent = 0)

Arguments

datExpr expression data. A matrix or data frame in which columns are genes and rows are samples.

weights optional observation weights in the same format (and dimensions) as datExpr.

minFraction minimum fraction of non-missing samples for a gene to be considered good.

minNSamples minimum number of non-missing samples for a gene to be considered good.
goodSamplesGenes

minNGenes minimum number of good genes for the data set to be considered fit for analysis. If the actual number of good genes falls below this threshold, an error will be issued.

tol an optional 'small' number to compare the variance against. Defaults to the square of \(1e-10 \times \max(\text{abs(datExpr)}, \text{na.rm} = \text{TRUE})\). The reason of comparing the variance to this number, rather than zero, is that the fast way of computing variance used by this function sometimes causes small numerical overflow errors which make variance of constant vectors slightly non-zero; comparing the variance to \(\text{tol}\) rather than zero prevents the retaining of such genes as 'good genes'.

minRelativeWeight observations whose relative weight is below this threshold will be considered missing. Here relative weight is weight divided by the maximum weight in the column (gene).

verbose integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

This function iteratively identifies samples and genes with too many missing entries and genes with zero variance. If weights are given, entries with relative weight (weight divided by maximum weight in the column) below \(\text{minRelativeWeight}\) will be considered missing. The process is repeated until the lists of good samples and genes are stable. The constants \(\text{minNSamples}\) and \(\text{minNGenes}\) are both set to the value 4.

Value

A list with the following components:

goodSamples A logical vector with one entry per sample that is TRUE if the sample is considered good and FALSE otherwise.

goodGenes A logical vector with one entry per gene that is TRUE if the gene is considered good and FALSE otherwise.

Author(s)

Peter Langfelder

See Also

goodSamples, goodGenes
goodSamplesGenesMS

Iterative filtering of samples and genes with too many missing entries across multiple data sets

Description

This function checks data for missing entries and zero variance across multiple data sets and returns a list of samples and genes that pass criteria maximum number of missing values. If weights are given, entries whose relative weight is below a threshold will be considered missing. The filtering is iterated until convergence.

Usage

goodSamplesGenesMS(
  multiExpr,
  multiWeights = NULL,
  minFraction = 1/2,
  minNSamples = ..minNSamples,
  minNGenes = ..minNGenes,
  tol = NULL,
  minRelativeWeight = 0.1,
  verbose = 2, indent = 0)

Arguments

multiExpr    expression data in the multi-set format (see checkSets). A vector of lists, one per set. Each set must contain a component data that contains the expression data, with rows corresponding to samples and columns to genes or probes.
multiWeights optional observation weights in the same format (and dimensions) as multiExpr.
minFraction   minimum fraction of non-missing samples for a gene to be considered good.
minNSamples  minimum number of non-missing samples for a gene to be considered good.
minNGenes    minimum number of good genes for the data set to be considered fit for analysis. If the actual number of good genes falls below this threshold, an error will be issued.
tol          an optional 'small' number to compare the variance against. For each set in multiExpr, the default value is \(10^{-10} \times \max(\text{abs(multiExpr[[set]]$data)}, \text{na.rm = TRUE})\). The reason of comparing the variance to this number, rather than zero, is that the fast way of computing variance used by this function sometimes causes small numerical overflow errors which make variance of constant vectors slightly non-zero; comparing the variance to tol rather than zero prevents the retaining of such genes as 'good genes'.
minRelativeWeight observations whose relative weight is below this threshold will be considered missing. Here relative weight is weight divided by the maximum weight in the column (gene).
goodSamplesMS

verbose
text integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

indent
text indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

This function iteratively identifies samples and genes with too many missing entries, and genes with zero variance; iterations are necessary since excluding samples effectively changes criteria on genes and vice versa. The process is repeated until the lists of good samples and genes are stable. If weights are given, entries whose relative weight (i.e., weight divided by maximum weight in the column or gene) is below a threshold will be considered missing. The constants .minNSamples and .minNGenes are both set to the value 4.

Value

A list with the following components:

goodsamples
text A list with one component per given set. Each component is a logical vector with one entry per sample in the corresponding set that is TRUE if the sample is considered good and FALSE otherwise.

goodGenes
text A logical vector with one entry per gene that is TRUE if the gene is considered good and FALSE otherwise.

Author(s)

Peter Langfelder

See Also

goodGenes, goodSamples, goodSamplesGenes for cleaning individual sets separately;
goodSamplesMS, goodGenesMS for additional cleaning of multiple data sets together.

goodSamplesMS
Filter samples with too many missing entries across multiple data sets

Description

This function checks data for missing entries and returns a list of samples that pass two criteria on maximum number of missing values: the fraction of missing values must be below a given threshold and the total number of missing genes must be below a given threshold.
Usage

goodSamplesMS(multiExpr, 
  multiWeights = NULL, 
  useSamples = NULL, 
  useGenes = NULL, 
  minFraction = 1/2, 
  minNSamples = ..minNSamples, 
  minNGenes = ..minNGenes, 
  minRelativeWeight = 0.1, 
  verbose = 1, indent = 0)

Arguments

multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one per set. Each set must contain a component data that contains the expression data, with rows corresponding to samples and columns to genes or probes.

multiWeights optional observation weights in the same format (and dimensions) as multiExpr.

useSamples optional specifications of which samples to use for the check. Should be a logical vector; samples whose entries are FALSE will be ignored for the missing value counts. Defaults to using all samples.

useGenes optional specifications of genes for which to perform the check. Should be a logical vector; genes whose entries are FALSE will be ignored. Defaults to using all genes.

minFraction minimum fraction of non-missing samples for a gene to be considered good.

minNSamples minimum number of good samples for the data set to be considered fit for analysis. If the actual number of good samples falls below this threshold, an error will be issued.

minNGenes minimum number of non-missing samples for a sample to be considered good.

minRelativeWeight observations whose relative weight is below this threshold will be considered missing. Here relative weight is weight divided by the maximum weight in the column (gene).

verbose integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

The constants ..minNSamples and ..minNGenes are both set to the value 4.

If weights are given, entries whose relative weight (i.e., weight divided by maximum weight in the column or gene) will be considered missing.

For most data sets, the fraction of missing samples criterion will be much more stringent than the absolute number of missing samples criterion.
greenBlackRed

Value

A list with one component per input set. Each component is a logical vector with one entry per sample in the corresponding set, indicating whether the sample passed the missing value criteria.

Author(s)

Peter Langfelder and Steve Horvath

See Also

goodGenes, goodSamples, goodSamplesGenes for cleaning individual sets separately;
goodGenesMS, goodSamplesGenesMS for additional cleaning of multiple data sets together.

greenBlackRed

---

**Description**

Generate a green-black-red color sequence of a given length.

**Usage**

greenBlackRed(n, gamma = 1)

**Arguments**

- `n` number of colors to be returned
- `gamma` color correction power

**Details**

The function returns a color vector that starts with pure green, gradually turns into black and then to red. The power `gamma` can be used to control the behaviour of the quarter- and three quarter-values (between green and black, and black and red, respectively). Higher powers will make the mid-colors more green and red, respectively.

**Value**

A vector of colors of length `n`.

**Author(s)**

Peter Langfelder
Examples

```r
par(mfrow = c(3, 1))
displayColors(greenBlackRed(50));
displayColors(greenBlackRed(50, 2));
displayColors(greenBlackRed(50, 0.5));
```

---

greenWhiteRed  Green-white-red color sequence

Description

Generate a green-white-red color sequence of a given length.

Usage

```r
greenWhiteRed(n, gamma = 1, warn = TRUE)
```

Arguments

- `n`: number of colors to be returned
- `gamma`: color change power
- `warn`: logical: should the user be warned that this function produces a palette unsuitable for people with most common color blindness?

Details

The function returns a color vector that starts with green, gradually turns into white and then to red. The power `gamma` can be used to control the behaviour of the quarter- and three quarter-values (between green and white, and white and red, respectively). Higher powers will make the mid-colors more white, while lower powers will make the colors more saturated, respectively.

Typical use of this function is to produce (via function `numbers2colors`) a color representation of numbers within a symmetric interval around 0, for example, the interval \([-1, 1]\). Note though that since green and red are not distinguishable by people with the most common type of color blindness, we recommend using the analogous palette returned by the function `blueWhiteRed`.

Value

A vector of colors of length `n`.

Author(s)

Peter Langfelder

See Also

- `blueWhiteRed` for a color sequence more friendly to people with the most common type of color blindness;
- `numbers2colors` for a function that produces a color representation for continuous numbers.
Examples

```r
c(mfrow = c(3, 1))
dDisplayColors(greenWhiteRed(50));
title("gamma = 1")
displayColors(greenWhiteRed(50, 3));
title("gamma = 3")
displayColors(greenWhiteRed(50, 0.5));
title("gamma = 0.5")
```

---

**GTOMdist**

*Generalized Topological Overlap Measure*

**Description**

Generalized Topological Overlap Measure, taking into account interactions of higher degree.

**Usage**

```r
GTOMdist(adj Mat, degree = 1)
```

**Arguments**

- `adj Mat` adjacency matrix. See details below.
- `degree` integer specifying the maximum degree to be calculated.

**Value**

Matrix of the same dimension as the input `adj Mat`.

**Author(s)**

Steve Horvath and Andy Yip

**References**

Hierarchical consensus calculation with optional data calibration.

Usage

```r
hierarchicalConsensusCalculation(
 individualData,
 consensusTree,
 level = 1,
 useBlocks = NULL,
 randomSeed = NULL,
 saveCalibratedIndividualData = FALSE,
 calibratedIndividualDataFilePattern =
 "calibratedIndividualData-%a-Set%s-Block%s.RData",
 saveConsensusData = TRUE,
 consensusDataFileNames = "consensusData-%a-Block%s.RData",
 getCalibrationSamples = FALSE,
 keepIntermediateResults = FALSE,
 useDiskCache = NULL,
 chunkSize = NULL,
 cacheDir = ".",
 cacheBase = ".blockConsModsCache",
 collectGarbage = FALSE,
 verbose = TRUE, indent = 0)
```

Arguments

- `individualData` - Individual data from which the consensus is to be calculated. It can be either a list or a `multiData` structure. Each element in `individualData` can in turn either be a numeric object (vector, matrix or array) or a `BlockwiseData` structure.
- `consensusTree` - A list specifying the consensus calculation. See details.
level Integer which the user should leave at 1. This serves to keep default set names unique.

useBlocks When individualData contains BlockwiseData, this argument can be an integer vector with indices of blocks for which the calculation should be performed.

randomSeed If non-NULL, the function will save the current state of the random generator, set the given seed, and restore the random seed to its original state upon exit. If NULL, the seed is not set nor is it restored on exit.

saveCalibratedIndividualData Logical: should calibrated individual data be saved?

calibratedIndividualDataFilePattern Pattern from which file names for saving calibrated individual data are determined. The conversions %a, %s and %b will be replaced by analysis name, set number and block number, respectively.

saveConsensusData Logical: should final consensus be saved (TRUE) or returned in the return value (FALSE)?

consensusDataFileNames Pattern from which file names for saving the final consensus are determined. The conversions %a and %b will be replaced by analysis name and block number, respectively.

getCalibrationSamples When calibration method in the consensusOptions component of ConsensusTree is "single quantile", this logical argument determines whether the calibration samples should be returned within the return value.

keepIntermediateResults Logical: should results of intermediate consensus calculations (if any) be kept? These are always returned as BlockwiseData whose data are saved to disk.

useDiskCache Logical: should disk cache be used for consensus calculations? The disk cache can be used to store chunks of calibrated data that are small enough to fit one chunk from each set into memory (blocks may be small enough to fit one block of one set into memory, but not small enough to fit one block from all sets in a consensus calculation into memory at the same time). Using disk cache is slower but lessens the memory footprint of the calculation. As a general guide, if individual data are split into blocks, we recommend setting this argument to TRUE. If this argument is NULL, the function will decide whether to use disk cache based on the number of sets and block sizes.

chunkSize Integer giving the chunk size. If left NULL, a suitable size will be chosen automatically.

cacheDir Directory in which to save cache files. The files are deleted on normal exit but persist if the function terminates abnormally.

cacheBase Base for the file names of cache files.

collectGarbage Logical: should garbage collection be forced after each major calculation?

verbose Integer level of verbosity of diagnostic messages. Zero means silent, higher values make the output progressively more and more verbose.

indent Indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.
Details

This function calculates consensus in a hierarchical manner, using a separate (and possibly different) set of consensus options at each step. The "recipe" for the consensus calculation is supplied in the argument consensustree.

The argument consensustree should have the following components: (1) inputs must be either a character vector whose components match names(inputData), or consensus trees in the own right. (2) consensusOptions must be a list of class "ConsensusOptions" that specifies options for calculating the consensus. A suitable set of options can be obtained by calling newConsensusOptions. (3) Optionally, the component analysisName can be a single character string giving the name for the analysis. When intermediate results are returned, they are returned in a list whose names will be set from analysisName components, if they exist.

The actual consensus calculation at each level of the consensus tree is carried out in function consensusCalculation. The consensus options for each individual consensus calculation are independent from one another, i.e., the consensus options for different steps can be different.

Value

A list containing the output of the top level call to consensusCalculation; if keepIntermediateResults is TRUE, component inputs contains a (possibly recursive) list of the results of intermediate consensus calculations. Names of the inputs list are taken from the corresponding analysisName components if they exist, otherwise from names of the corresponding inputs components of the supplied consensustree. See example below for an example of a relatively simple consensus tree.

Author(s)

Peter Langfelder

See Also

newConsensusOptions for obtaining a suitable list of consensus options; consensusCalculation for the actual calculation of a consensus that underpins this function.

Examples

# We generate 3 simple matrices
set.seed(5)
data = replicate(3, matrix(rnorm(10*100), 10, 100))
names(data) = c("Set1", "Set2", "Set3");
# Put together a consensus tree. In this example the final consensus uses
# as input set 1 and a consensus of sets 2 and 3.

# First define the consensus of sets 2 and 3:
consTree.23 = newConsensusTree(  
  inputs = c("Set2", "Set3"),
  consensusOptions = newConsensusOptions(calibration = "none",
      consensusQuantile = 0.25),
  analysisName = "Consensus of sets 1 and 2");

# Now define the final consensus
Calculation of measures of fuzzy module membership (KME) in hierarchical consensus modules

Description

This function calculates several measures of fuzzy module membership in hierarchical consensus modules.

Usage

hierarchicalConsensusKME(
  multiExpr,
  moduleLabels,
  multiWeights = NULL,
  multiEigengenes = NULL,
  consensusTree,
  signed = TRUE,
  useModules = NULL,
  metaAnalysisWeights = NULL,
  corAndPvalueFnc = corAndPvalue, corOptions = list(),
  corComponent = "cor", getFDR = FALSE,
  useRankPvalue = TRUE,
  rankPvalueOptions = list(calculateQvalue = getFDR, pValueMethod = "scale"),
  setNames = names(multiExpr), excludeGrey = TRUE,
  greyLabel = if (is.numeric(moduleLabels)) 0 else "grey",
  reportWeightType = NULL,
  getOwnModuleZ = TRUE,
  getBestModuleZ = TRUE,
  getOwnConsensusKME = TRUE,
  getBestConsensusKME = TRUE,
  getAverageKME = FALSE,
  getConsensusKME = TRUE,
getMetaP = FALSE,
getMetaFDR = getMetaP & getFDR,

getSetKME = TRUE,
getSetZ = FALSE,
getSetP = FALSE,
getSetFDR = getSetP & getFDR,

includeID = TRUE,
additionalGeneInfo = NULL,
includeWeightTypeInColnames = TRUE)

Arguments

multiExpr  Expression data in the multi-set format (see checkSets). A vector of lists, one per set. Each set must contain a component data that contains the expression data, with rows corresponding to samples and columns to genes or probes.

moduleLabels  A vector with one entry per column (gene or probe) in multiExpr, giving the module labels.

multiWeights  optional observation weights for data in multiExpr, in the same format (and dimensions) as multiExpr. These weights are used in calculation of KME, i.e., the correlation of module eigengenes with data in multiExpr. The module eigengenes are not weighted in this calculation.

multiEigengenes  Optional specification of module eigengenes of the modules (moduleLabels) in data sets within multiExpr. If not given, will be calculated.

consensusTree  A list specifying the consensus calculation. See details.

signed  Logical: should module membership be considered signed? Signed membership should be used for signed (including signed hybrid) networks and means that negative module membership means the gene is not a member of the module. In other words, in signed networks negative kME values are not considered significant and the corresponding p-values will be one-sided. In unsigned networks, negative kME values are considered significant and the corresponding p-values will be two-sided.

useModules  Optional vector specifying which modules should be used. Defaults to all modules except the unassigned module.

metaAnalysisWeights  Optional specification of meta-analysis weights for each input set. If given, must be a numeric vector of length equal the number of input data sets (i.e., length(multiExpr)). These weights will be used in addition to constant weights and weights proportional to number of samples (observations) in each set.

corAndPvalueFnc  Function that calculates associations between expression profiles and eigengenes. See details.

corOptions  List giving additional arguments to function corAndPvalueFnc. See details.
corComponent  Name of the component of output of corAndPvalueFnc that contains the actual correlation.
getFDR Logical: should FDR be calculated?
useRankPvalue Logical: should the rankPvalue function be used to obtain alternative meta-analysis statistics?
rankPvalueOptions Additional options for function rankPvalue. These include na.last (default "keep"), ties.method (default "average"), calculateQvalue (default copied from input getQvalues), and pValueMethod (default "scale"). See the help file for rankPvalue for full details.
setNames Names for the input sets. If not given, will be taken from names(multiExpr). If those are NULL as well, the names will be "Set_1", "Set_2", ....
excludeGrey logical: should the grey module be excluded from the kME tables? Since the grey module is typically not a real module, it makes little sense to report kME values for it.
greyLabel label that labels the grey module.
reportWeightType One of "equal", "rootDoF", "DoF", "user". Indicates which of the weights should be reported in the output. If not given, all available weight types will be reported; this always includes "equal", "rootDoF", "DoF", while "user" weights are reported if metaAnalysisWeights above is given.
getOwnModuleZ Logical: should meta-analysis Z statistic in own module be returned as a column of the output?
getBestModuleZ Logical: should highest meta-analysis Z statistic across all modules and the corresponding module be returned as columns of the output?
getOwnConsensusKME Logical: should consensus KME (eigengene-based connectivity) statistic in own module be returned as a column of the output?
getBestConsensusKME Logical: should highest consensus KME across all modules and the corresponding module be returned as columns of the output?
getAverageKME Logical: Should average KME be calculated?
getConsensusKME Logical: should consensus KME be calculated?
getMetaP Logical: should meta-analysis p-values corresponding to the KME meta-analysis Z statistics be calculated?
getMetaFDR Logical: should FDR estimates for the meta-analysis p-values corresponding to the KME meta-analysis Z statistics be calculated?
getSetKME Logical: should KME values for individual sets be returned?
getSetZ Logical: should Z statistics corresponding to KME for individual sets be returned?
getSetP Logical: should p values corresponding to KME for individual sets be returned?
getSetFDR Logical: should FDR estimates corresponding to KME for individual sets be returned?
includeID Logical: should gene ID (taken from column names of multiExpr) be included as the first column in the output?

additionalGeneInfo Optional data frame with rows corresponding to genes in multiExpr that should be included as part of the output.

includeWeightTypeInColnames Logical: should weight type ("equal", "rootDoF", "DoF", "user") be included in appropriate meta-analysis column names?

Details

This function calculates several measures of (hierarchical) consensus KME (eigengene-based intramodular connectivity or fuzzy module membership) for all genes in all modules.

First, it calculates the meta-analysis Z statistics for correlations between genes and module eigengenes; this is known as the consensus module membership Z statistic. The meta-analysis weights can be specified by the user either explicitly or implicitly ("equal", "RootDoF" or "DoF").

Second, it can calculate the consensus KME, i.e., the hierarchical consensus of the KMEs (correlations with eigengenes) across the individual sets. The consensus calculation is specified in the argument consensusTree; typically, the consensusTree used here will be the same as the one used for the actual consensus network construction and module identification. See newConsensusTree for details on how to specify consensus trees.

Third, the function can also calculate the (weighted) average KME using the meta-analysis weights; the average KME can be interpreted as the meta-analysis of the KMEs in the individual sets. This is related to but somewhat distinct from the meta-analysis Z statistics.

In addition to these, optional output also includes, for each gene, KME values in the module to which the gene is assigned as well as the maximum KME values and modules for which the maxima are attained. For most genes, the assigned module will be the one with highest KME values, but for some genes the assigned module and module of maximum KME may be different.

The function corAndPvalueFnc is currently is expected to accept arguments x (gene expression profiles), y (eigengene expression profiles), and alternative with possibilities at least "greater", "two.sided". If weights are given, these are passed to corAndPvalueFnc as argument weights.x. Any additional arguments can be passed via corOptions.

The function corAndPvalueFnc should return a list which at the least contains (1) a matrix of associations of genes and eigengenes (this component should have the name given by corComponent), and (2) a matrix of the corresponding p-values, named "p" or "p.value". Other components are optional but for full functionality should include (3) nObs giving the number of observations for each association (which is the number of samples less number of missing data - this can in principle vary from association to association), and (4) Z giving a Z static for each observation. If these are missing, nObs is calculated in the main function, and calculations using the Z statistic are skipped.

Value

Data frame with the following components, some of which may be missing depending on input options (for easier readability the order here is not the same as in the actual output):

ID Gene ID, taken from the column names of the first input data set
If given, a copy of `additionalGeneInfo`.

- `Z.kME.inOwnModule` Meta-analysis Z statistic for membership in assigned module.
- `maxZ.kME` Maximum meta-analysis Z statistic for membership across all modules.
- `moduleOfMaxZ.kME` Module in which the maximum meta-analysis Z statistic is attained.
- `consKME.inOwnModule` Consensus KME in assigned module.
- `maxConsKME` Maximum consensus KME across all modules.
- `moduleOfMaxConsKME` Module in which the maximum consensus KME is attained.
- `consensus.kME.1, consensus.kME.2, ...` Consensus KME (that is, the requested quantile of the kMEs in the individual data sets) in each module for each gene across the input data sets. The module labels (here 1, 2, etc.) correspond to those in `moduleLabels`.
- `weightedAverage.equalWeights.kME1, weightedAverage.equalWeights.kME2, ...` Average kME in each module for each gene across the input data sets.
- `weightedAverage.RootDoFWeights.kME1, weightedAverage.RootDoFWeights.kME2, ...` Weighted average kME in each module for each gene across the input data sets. The weight of each data set is proportional to the square root of the number of samples in the set.
- `weightedAverage.DoFWeights.kME1, weightedAverage.DoFWeights.kME2, ...` Weighted average kME in each module for each gene across the input data sets. The weight of each data set is proportional to the number of samples in the set.
- `weightedAverage.userWeights.kME1, weightedAverage.userWeights.kME2, ...` (Only present if input `metaAnalysisWeights` is non-NULL.) Weighted average kME in each module for each gene across the input data sets. The weight of each data set is given in `metaAnalysisWeights`.
- `meta.Z.equalWeights.kME1, meta.Z.equalWeights.kME2, ...` Meta-analysis Z statistic for kME in each module, obtained by weighing the Z scores in each set equally. Only returned if the function `corAndPvalueFnc` returns the Z statistics corresponding to the correlations.
- `meta.Z.RootDoFWeights.kME1, meta.Z.RootDoFWeights.kME2, ...` Meta-analysis Z statistic for kME in each module, obtained by weighing the Z scores in each set by the square root of the number of samples. Only returned if the function `corAndPvalueFnc` returns the Z statistics corresponding to the correlations.
- `meta.Z.DoFWeights.kME1, meta.Z.DoFWeights.kME2, ...` Meta-analysis Z statistic for kME in each module, obtained by weighing the Z scores in each set by the number of samples. Only returned if the function `corAndPvalueFnc` returns the Z statistics corresponding to the correlations.
- `meta.Z.userWeights.kME1, meta.Z.userWeights.kME2, ...` Meta-analysis Z statistic for kME in each module, obtained by weighing the Z scores in each set by `metaAnalysisWeights`. Only returned if `metaAnalysisWeights` is non-NULL and the function `corAndPvalueFnc` returns the Z statistics corresponding to the correlations.
<table>
<thead>
<tr>
<th>hierarchicalConsensusKME</th>
</tr>
</thead>
<tbody>
<tr>
<td>meta.p.equalWeights.kME1, meta.p.equalWeights.kME2, ...</td>
</tr>
<tr>
<td>p-values obtained from the equal-weight meta-analysis Z statistics. Only returned if the function corAndPvalueFnc returns the Z statistics corresponding to the correlations.</td>
</tr>
<tr>
<td>meta.p.RootDoFWeights.kME1, meta.p.RootDoFWeights.kME2, ...</td>
</tr>
<tr>
<td>p-values obtained from the meta-analysis Z statistics with weights proportional to the square root of the number of samples. Only returned if the function corAndPvalueFnc returns the Z statistics corresponding to the correlations.</td>
</tr>
<tr>
<td>meta.p.DoFWeights.kME1, meta.p.DoFWeights.kME2, ...</td>
</tr>
<tr>
<td>p-values obtained from the degree-of-freedom weight meta-analysis Z statistics. Only returned if the function corAndPvalueFnc returns the Z statistics corresponding to the correlations.</td>
</tr>
<tr>
<td>meta.p.userWeights.kME1, meta.p.userWeights.kME2, ...</td>
</tr>
<tr>
<td>p-values obtained from the user-supplied weight meta-analysis Z statistics. Only returned if metaAnalysisWeights is non-NULL and the function corAndPvalueFnc returns the Z statistics corresponding to the correlations.</td>
</tr>
<tr>
<td>meta.q.equalWeights.kME1, meta.q.equalWeights.kME2, ...</td>
</tr>
<tr>
<td>q-values obtained from the equal-weight meta-analysis p-values. Only present if getQvalues is TRUE and the function corAndPvalueFnc returns the Z statistics corresponding to the kME values.</td>
</tr>
<tr>
<td>meta.q.RootDoFWeights.kME1, meta.q.RootDoFWeights.kME2, ...</td>
</tr>
<tr>
<td>q-values obtained from the meta-analysis p-values with weights proportional to the square root of the number of samples. Only present if getQvalues is TRUE and the function corAndPvalueFnc returns the Z statistics corresponding to the kME values.</td>
</tr>
<tr>
<td>meta.q.DoFWeights.kME1, meta.q.DoFWeights.kME2, ...</td>
</tr>
<tr>
<td>q-values obtained from the degree-of-freedom weight meta-analysis p-values. Only present if getQvalues is TRUE and the function corAndPvalueFnc returns the Z statistics corresponding to the kME values.</td>
</tr>
<tr>
<td>meta.q.userWeights.kME1, meta.q.userWeights.kME2, ...</td>
</tr>
<tr>
<td>q-values obtained from the user-specified weight meta-analysis p-values. Only present if metaAnalysisWeights is non-NULL, getQvalues is TRUE and the function corAndPvalueFnc returns the Z statistics corresponding to the kME values.</td>
</tr>
</tbody>
</table>

The next set of columns contain the results of function rankPvalue and are only present if input userRankPvalue is TRUE. Some columns may be missing depending on the options specified in rankPvalueOptions. We explicitly list columns that are based on weighing each set equally; names of these columns carry the suffix .equalWeights

| pValueExtremeRank.ME1.equalWeights, pValueExtremeRank.ME2.equalWeights, ... |
| This is the minimum between pValueLowRank and pValueHighRank, i.e. min(pValueLow, pValueHigh) |
| pValueLowRank.ME1.equalWeights, pValueLowRank.ME2.equalWeights, ... |
| Asymptotic p-value for observing a consistently low value based on the rank method. |
| pValueHighRank.ME1.equalWeights, pValueHighRank.ME2.equalWeights, ... |
| Asymptotic p-value for observing a consistently low value across the columns of data based on the rank method. |
pValueExtremeScale.ME1.equalWeights, pValueExtremeScale.ME2.equalWeights, ...
This is the minimum between pValueLowScale and pValueHighScale, i.e. min(pValueLow, pValueHigh)
pValueLowScale.ME1.equalWeights, pValueLowScale.ME2.equalWeights, ...
Asymptotic p-value for observing a consistently low value across the columns of datS based on the Scale method.
pValueHighScale.ME1.equalWeights, pValueHighScale.ME2.equalWeights, ...
Asymptotic p-value for observing a consistently low value across the columns of datS based on the Scale method.
qValueExtremeRank.ME1.equalWeights, qValueExtremeRank.ME2.equalWeights, ...
local false discovery rate (q-value) corresponding to the p-value pValueExtremeRank
qValueLowRank.ME1.equalWeights, qValueLowRank.ME2.equalWeights, ...
local false discovery rate (q-value) corresponding to the p-value pValueLowRank
qValueHighRank.ME1.equalWeights, qValueHighRank.ME2.equalWeights, ...
local false discovery rate (q-value) corresponding to the p-value pValueHighRank
qValueExtremeScale.ME1.equalWeights, qValueExtremeScale.ME2.equalWeights, ...
local false discovery rate (q-value) corresponding to the p-value pValueExtremeScale
qValueLowScale.ME1.equalWeights, qValueLowScale.ME2.equalWeights, ...
local false discovery rate (q-value) corresponding to the p-value pValueLowScale
qValueHighScale.ME1.equalWeights, qValueHighScale.ME2.equalWeights, ...
local false discovery rate (q-value) corresponding to the p-value pValueHighScale
...
Analogous columns corresponding to weighing individual sets by the square root of the number of samples, by number of samples, and by user weights (if given). The corresponding column name suffixes are .RootDoFWeights, .DoFWeights, and .userWeights.

The following set of columns summarize kME in individual input data sets.

kME1.Set_1, kME1.Set_2, ..., kME2.Set_1, kME2.Set_2, ...
kME values for each gene in each module in each given data set.
p.kME1.Set_1, p.kME1.Set_2, ..., p.kME2.Set_1, p.kME2.Set_2, ...
p-values corresponding to kME values for each gene in each module in each given data set.
q.kME1.Set_1, q.kME1.Set_2, ..., q.kME2.Set_1, q.kME2.Set_2, ...
q-values corresponding to kME values for each gene in each module in each given data set. Only returned if getQvalues is TRUE.
Z.kME1.Set_1, Z.kME1.Set_2, ..., Z.kME2.Set_1, Z.kME2.Set_2, ...
Z statistics corresponding to kME values for each gene in each module in each given data set. Only present if the function corAndPvalueFnc returns the Z statistics corresponding to the kME values.

Author(s)
Peter Langfelder
hierarchicalConsensusMEDissimilarity

Hierarchical consensus calculation of module eigengene dissimilarity

Description
Hierarchical consensus calculation of module eigengene dissimilarities, or more generally, correlation-based dissimilarities of sets of vectors.

Usage
hierarchicalConsensusMEDissimilarity(
  MEs,
  networkOptions,
  consensusTree,
  greyName = "ME0",
  calibrate = FALSE)

Arguments
MEs A multiData structure containing vectors (usually module eigengenes) whose consensus dissimilarity is to be calculated.

networkOptions A multiData structure containing, for each input data set, a list of class NetworkOptions giving options for network calculation for all of the networks.

consensusTree A list specifying the consensus calculation. See details.

greyName Name of the "grey" module eigengene. Currently not used.

calibrate Logical: should the dissimilarities be calibrated using the calibration method specified in consensusTree? See details.

Details
This function first calculates the similarities of the ME vectors from their correlations, using the appropriate options in networkOptions (correlation type and options, signed or unsigned dissimilarity etc). This results in a similarity matrix in each of the input data sets.

Next, a hierarchical consensus of the similarities is calculated via a call to hierarchicalConsensusCalculation, using the consensus specification and options in consensusTree. In typical use, consensusTree contains the same consensus specification as the consensus network calculation that gave rise to the consensus modules whose eigengenes are contained in MEs but this is not mandatory.
The argument consensusTree should have the following components: (1) inputs must be either a character vector whose components match names(inputData), or consensus trees in the own right. (2) consensusOptions must be a list of class "ConsensusOptions" that specifies options for calculating the consensus. A suitable set of options can be obtained by calling newConsensusOptions. (3) Optionally, the component analysisName can be a single character string giving the name for the analysis. When intermediate results are returned, they are returned in a list whose names will be set from analysisName components, if they exist.

In the final step, the consensus similarity is turned into a dissimilarity by subtracting it from 1.

Value

A matrix with rows and columns corresponding to the variables (modules) in MEs, containing the consensus dissimilarities.

Author(s)

Peter Langfelder

See Also

hierarchicalConsensusCalculation for the actual consensus calculation.

---

**hierarchicalConsensusModules**

*Hierarchical consensus network construction and module identification*

**Description**

Hierarchical consensus network construction and module identification across multiple data sets.

**Usage**

```r
hierarchicalConsensusModules(
 multiExpr,
 multiWeights = NULL,
 multiExpr.imputed = NULL,

 # Data checking options
 checkMissingData = TRUE,

 # Blocking options
 blocks = NULL,
 maxBlockSize = 5000,
 blockSizePenaltyPower = 5,
 nPreclusteringCenters = NULL,
 randomSeed = 12345,
```

# Network construction options.
networkOptions,

# Save individual TOMs?
saveIndividualTOMs = TRUE,
individualTOMFileNames = "individualTOM-Set%s-Block%b.RData",
keepIndividualTOMs = FALSE,

# Consensus calculation options
consensusTree = NULL,

# Return options
saveConsensusTOM = TRUE,
consensusTOMFilePattern = "consensusTOM-%a-Block%b.RData",

# Keep the consensus?
keepConsensusTOM = saveConsensusTOM,

# Internal handling of TOMs
useDiskCache = NULL, chunkSize = NULL,
cacheBase = ".blockConsModsCache",
cacheDir = ".",

# Alternative consensus TOM input from a previous calculation
consensusTOMInfo = NULL,

# Basic tree cut options
deepSplit = 2,
detectCutHeight = 0.995, minModuleSize = 20,
checkMinModuleSize = TRUE,

# Advanced tree cut options
maxCoreScatter = NULL, minGap = NULL,
maxAbsCoreScatter = NULL, minAbsGap = NULL,
minSplitHeight = NULL, minAbsSplitHeight = NULL,

useBranchEigenNodeDissim = FALSE,
minBranchEigenNodeDissim = mergeCutHeight,

stabilityLabels = NULL,
stabilityCriterion = c("Individual fraction", "Common fraction"),
minStabilityDissim = NULL,

pamStage = TRUE, pamRespectsDendo = TRUE,

iteratePruningAndMerging = FALSE,
minCoreKME = 0.5, minCoreKMESize = minModuleSize/3,
hierarchicalConsensusModules

minKMEtoStay = 0.2,

# Module eigengene calculation options
impute = TRUE,
trapErrors = FALSE,

# Module merging options
calibrateMergingSimilarities = FALSE,
mergeCutHeight = 0.15,

# General options
collectGarbage = TRUE,
verbose = 2, indent = 0,
...

Arguments

multiExpr  Expression data in the multi-set format (see checkSets). A vector of lists, one per set. Each set must contain a component data that contains the expression data, with rows corresponding to samples and columns to genes or probes.

multiWeights  optional observation weights in the same format (and dimensions) as multiExpr. These weights are used for correlation calculations with data in multiExpr.

multiExpr.imputed  If multiExpr contain missing data, this argument can be used to supply the expression data with missing data imputed. If not given, the impute.knn function will be used to impute the missing data.

checkMissingData  Logical: should data be checked for excessive numbers of missing entries in genes and samples, and for genes with zero variance? See details.

blocks  Optional specification of blocks in which hierarchical clustering and module detection should be performed. If given, must be a numeric vector with one entry per gene of multiExpr giving the number of the block to which the corresponding gene belongs.

maxBlockSize  Integer giving maximum block size for module detection. Ignored if blocks above is non-NULL. Otherwise, if the number of genes in datExpr exceeds maxBlockSize, genes will be pre-clustered into blocks whose size should not exceed maxBlockSize.

blockSizePenaltyPower  Number specifying how strongly blocks should be penalized for exceeding the maximum size. Set to a large number or Inf if not exceeding maximum block size is very important.

nPreclusteringCenters  Number of centers to be used in the preclustering. Defaults to smaller of nGenes/20 and 100*nGenes/maxBlockSize, where nGenes is the number of genes (variables) in multiExpr.
randomSeed  Integer to be used as seed for the random number generator before the function starts. If a current seed exists, it is saved and restored upon exit. If NULL is given, the function will not save and restore the seed.

networkOptions  A single list of class NetworkOptions giving options for network calculation for all of the networks, or a multData structure containing one such list for each input data set.

saveIndividualTOMs  Logical: should individual TOMs be saved to disk (TRUE) or returned directly in the return value (FALSE)?

individualTOMFileNames  Character string giving the file names to save individual TOMs into. The following tags should be used to make the file names unique for each set and block: %s will be replaced by the set number; %N will be replaced by the set name (taken from names(multiExpr)) if it exists, otherwise by set number; %b will be replaced by the block number. If the file names turn out to be non-unique, an error will be generated.

keepIndividualTOMs  Logical: should individual TOMs be retained after the calculation is finished?

consensusTree  A list specifying the consensus calculation. See details.

saveConsensusTOM  Logical: should the consensus TOM be saved to disk?

consensusTOMFilePattern  Character string giving the file names to save consensus TOMs into. The following tags should be used to make the file names unique for each set and block: %s will be replaced by the set number; %N will be replaced by the set name (taken from names(multiExpr)) if it exists, otherwise by set number; %b will be replaced by the block number. If the file names turn out to be non-unique, an error will be generated.

keepConsensusTOM  Logical: should consensus TOM be retained after the calculation ends? Depending on saveConsensusTOM, the retained TOM is either saved to disk or returned within the return value.

useDiskCache  Logical: should disk cache be used for consensus calculations? The disk cache can be used to store chunks of calibrated data that are small enough to fit one chunk from each set into memory (blocks may be small enough to fit one block of one set into memory, but not small enough to fit one block from all sets in a consensus calculation into memory at the same time). Using disk cache is slower but lessens the memory footprint of the calculation. As a general guide, if individual data are split into blocks, we recommend setting this argument to TRUE. If this argument is NULL, the function will decide whether to use disk cache based on the number of sets and block sizes.

chunkSize  Integer giving the chunk size. If left NULL, a suitable size will be chosen automatically.

cacheDir  Directory in which to save cache files. The files are deleted on normal exit but persist if the function terminates abnormally.

cacheBase  Base for the file names of cache files.
consensusTOMInfo
If the consensus TOM has been pre-calculated using function `hierarchicalConsensusTOM`, this argument can be used to supply it. If given, the consensus TOM calculation options above are ignored.

deepSplit Numeric value between 0 and 4. Provides a simplified control over how sensitive module detection should be to module splitting, with 0 least and 4 most sensitive. See `cutreeDynamic` for more details.

detectCutHeight Dendrogram cut height for module detection. See `cutreeDynamic` for more details.

minModuleSize Minimum module size for module detection. See `cutreeDynamic` for more details.

checkMinModuleSize logical: should sanity checks be performed on `minModuleSize`?

maxCoreScatter maximum scatter of the core for a branch to be a cluster, given as the fraction of `cutHeight` relative to the 5th percentile of joining heights. See `cutreeDynamic` for more details.

minGap minimum cluster gap given as the fraction of the difference between `cutHeight` and the 5th percentile of joining heights. See `cutreeDynamic` for more details.

maxAbsCoreScatter maximum scatter of the core for a branch to be a cluster given as absolute heights. If given, overrides `maxCoreScatter`. See `cutreeDynamic` for more details.

minAbsGap minimum cluster gap given as absolute height difference. If given, overrides `minGap`. See `cutreeDynamic` for more details.

minSplitHeight Minimum split height given as the fraction of the difference between `cutHeight` and the 5th percentile of joining heights. Branches merging below this height will automatically be merged. Defaults to zero but is used only if `minAbsSplitHeight` below is NULL.

minAbsSplitHeight Minimum split height given as an absolute height. Branches merging below this height will automatically be merged. If not given (default), will be determined from `minSplitHeight` above.

useBranchEigennodeDissim Logical: should branch eigennode (eigengene) dissimilarity be considered when merging branches in Dynamic Tree Cut?

minBranchEigennodeDissim Minimum consensus branch eigennode (eigengene) dissimilarity for branches to be considered separate. The branch eigennode dissimilarity in individual sets is simply 1-correlation of the eigennodes; the consensus is defined as quantile with probability `consensusQuantile`.

stabilityLabels Optional matrix of cluster labels that are to be used for calculating branch dissimilarity based on split stability. The number of rows must equal the number of genes in `multiExpr`; the number of columns (clusterings) is arbitrary. See `branchSplitFromStabilityLabels` for details.
stabilityCriterion

One of c("Individual fraction", "Common fraction"), indicating which method for assessing stability similarity of two branches should be used. We recommend "Individual fraction" which appears to perform better; the "Common fraction" method is provided for backward compatibility since it was the (only) method available prior to WGCNA version 1.60.

minStabilityDissim

Minimum stability dissimilarity criterion for two branches to be considered separate. Should be a number between 0 (essentially no dissimilarity required) and 1 (perfect dissimilarity or distinguishability based on stabilityLabels). See branchSplitFromStabilityLabels for details.

pamStage

logical. If TRUE, the second (PAM-like) stage of module detection will be performed. See cutreeDynamic for more details.

pamRespectsDendro

Logical, only used when pamStage is TRUE. If TRUE, the PAM stage will respect the dendrogram in the sense an object can be PAM-assigned only to clusters that lie below it on the branch that the object is merged into. See cutreeDynamic for more details.

iteratePruningAndMerging

Logical: should pruning of low-KME genes and module merging be iterated? For backward compatibility, the default is FALSE but it setting it to TRUE may lead to better-defined modules.

minCoreKME

a number between 0 and 1. If a detected module does not have at least minModuleKMEsize genes with eigengene connectivity at least minCoreKME, the module is disbanded (its genes are unlabeled and returned to the pool of genes waiting for module detection).

minCoreKMEsize

see minCoreKME above.

minKMEtoStay

genes whose eigengene connectivity to their module eigengene is lower than minKMEtoStay are removed from the module.

impute

logical: should imputation be used for module eigengene calculation? See moduleEigengenes for more details.

trapErrors

logical: should errors in calculations be trapped?

calibrateMergingSimilarities

Logical: should module eigengene similarities be calibrated before calculating the consensus? Although calibration is in principle desirable, the calibration methods currently available assume large data and do not work very well on eigengene similarities.

mergeCutHeight

Dendrogram cut height for module merging.

collectGarbage

Logical: should garbage be collected after some of the memory-intensive steps?

verbose

integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

indent

indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

... Other arguments. Currently ignored.
Details

This function calculates a consensus network with a flexible, possibly hierarchical consensus specification, identifies (consensus) modules in the network, and calculates their eigengenes. "Block-wise" calculation is available for large data sets for which a full network (TOM or adjacency matrix) would not fit into available RAM.

The input can be either several numerical data sets (expression etc) in the argument `multiExpr` together with all necessary network construction options, or a pre-calculated network, typically the result of a call to `hierarchicalConsensusTOM`.

Steps in the network construction include the following: (1) optional filtering of variables (genes) and observations (samples) that contain too many missing values or have zero variance; (2) optional pre-clustering to split data into blocks of manageable size; (3) calculation of adjacencies and optionally of TOMs in each individual data set; (4) calculation of consensus network from the individual networks; (5) hierarchical clustering and module identification; (6) trimming of modules by removing genes with low correlation with the eigengene of the module; and (7) merging of modules whose eigengenes are strongly correlated.

Steps 1-4 (up to and including the calculation of consensus network from the individual networks) are handled by the function `hierarchicalConsensusTOM`.

Variables (genes) are clustered using average-linkage hierarchical clustering and modules are identified in the resulting dendrogram by the Dynamic Hybrid tree cut.

Found modules are trimmed of genes whose consensus module membership kME (that is, correlation with module eigengene) is less than `minKMEToStay`. Modules in which fewer than `minCoreKMESize` genes have consensus KME higher than `minCoreKME` are disbanded, i.e., their constituent genes are pronounced unassigned.

After all blocks have been processed, the function checks whether there are genes whose KME in the module they assigned is lower than KME to another module. If p-values of the higher correlations are smaller than those of the native module by the factor `reassignThresholdP5` (in every set), the gene is re-assigned to the closer module.

In the last step, modules whose eigengenes are highly correlated are merged. This is achieved by clustering module eigengenes using the dissimilarity given by one minus their correlation, cutting the dendrogram at the height `mergeCutHeight` and merging all modules on each branch. The process is iterated until no modules are merged. See `mergeCloseModules` for more details on module merging.

The module trimming and merging process is optionally iterated. Iterations are recommended but are (for now) not the default for backward compatibility.

Value

List with the following components:

- `labels` A numeric vector with one component per variable (gene), giving the module label of each variable (gene). Label 0 is reserved for unassigned variables; module labels are sequential and smaller numbers are used for larger modules.

- `unmergedLabels` A numeric vector with one component per variable (gene), giving the unmerged module label of each variable (gene), i.e., module labels before the call to module merging.
colors

A character vector with one component per variable (gene), giving the module colors. The labels are mapped to colors using `labels2colors`.

unmergedColors

A character vector with one component per variable (gene), giving the unmerged module colors.

multiMEs

Module eigengenes corresponding to the modules returned in `colors`, in multiset format. A vector of lists, one per set, containing eigengenes, proportion of variance explained and other information. See `multisetMEs` for a detailed description.

dendrograms

A list with one component for each block of genes. Each component is the hierarchical clustering dendrogram obtained by clustering the consensus gene dissimilarity in the corresponding block.

consensusTOMInfo

A list detailing various aspects of the consensus TOM. See `hierarchicalConsensusTOM` for details.

blockInfo

A list with information about blocks as well as the variables and observations (genes and samples) retained after filtering out those with zero variance and too many missing values.

moduleIdentificationArguments

A list with the module identification arguments supplied to this function. Contains `deepsplit`, `detectCutHeight`, `minModuleSize`, `maxCoreScatter`, `minGap`, `maxAbsCoreScatter`, `minAbsGap`, `minSplitHeight`, `useBranchEigenNodeDissim`, `minBranchEigenNodeDissim`, `minStabilityDissim`, `pamStage`, `pamRespectsDendro`, `minCoreKME`, `minCoreKMEsize`, `minKMEToStay`, `calibrateMergingSimilarities`, and `mergeCutHeight`.

Note

If the input datasets have large numbers of genes, consider carefully the `maxBlockSize` as it significantly affects the memory footprint (and whether the function will fail with a memory allocation error). From a theoretical point of view it is advantageous to use blocks as large as possible; on the other hand, using smaller blocks is substantially faster and often the only way to work with large numbers of genes. As a rough guide, when 4GB of memory are available, blocks should be no larger than 8,000 genes; with 8GB one can handle some 13,000 genes; with 16GB around 20,000; and with 32GB around 30,000. Depending on the operating system and its setup, these numbers may vary substantially.

Author(s)

Peter Langfelder

References


More in-depth discussion of selected topics can be found at http://www.peterlangfelder.com/, and an FAQ at https://flabs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/faq.html.
hierarchicalConsensusTOM

Calculation of hierarchical consensus topological overlap matrix

Description

This function calculates consensus topological overlap in a hierarchical manner.

Usage

hierarchicalConsensusTOM(
  # ... information needed to calculate individual TOMs
  multiExpr,
  multiWeights = NULL,

  # Data checking options
  checkMissingData = TRUE,

  # Blocking options
  blocks = NULL,
  maxBlockSize = 20000,
  blockSizePenaltyPower = 5,
  nPreclusteringCenters = NULL,
  randomSeed = 12345,

  # Network construction options
  networkOptions,

  # Save individual TOMs?
  keepIndividualTOMs = TRUE,
  individualTOMFileNames = "individualTOM-Set%s-Block%b.RData",

  # ... or information about individual (more precisely, input) TOMs
  individualTOMInfo = NULL,

  # Consensus calculation options
```r
consensusTree,

useBlocks = NULL,

Save calibrated TOMs?
saveCalibratedIndividualTOMs = FALSE,
calibratedIndividualTOMFilePattern = "calibratedIndividualTOM-Set%s-Block%b.RData",

Return options
saveConsensusTOM = TRUE,
consensusTOMFilePattern = "consensusTOM-%a-Block%b.RData",
getCalibrationSamples = FALSE,

Return the intermediate results as well?
keepIntermediateResults = saveConsensusTOM,

Internal handling of TOMs
useDiskCache = NULL,
chunkSize = NULL,
cacheDir = ".",
cacheBase = ".blockConsModsCache",

Behavior
collectGarbage = TRUE,
verbose = 1,
indent = 0)
```

**Arguments**

- `multiExpr` Expression data in the multi-set format (see `checkSets`). A vector of lists, one per set. Each set must contain a component data that contains the expression data, with rows corresponding to samples and columns to genes or probes.

- `multiWeights` Optional observation weights in the same format (and dimensions) as `multiExpr`. These weights are used for correlation calculations with data in `multiExpr`.

- `checkMissingData` Logical: should data be checked for excessive numbers of missing entries in genes and samples, and for genes with zero variance? See details.

- `blocks` Optional specification of blocks in which hierarchical clustering and module detection should be performed. If given, must be a numeric vector with one entry per gene of `multiExpr` giving the number of the block to which the corresponding gene belongs.

- `maxBlockSize` Integer giving maximum block size for module detection. Ignored if `blocks` above is non-NULL. Otherwise, if the number of genes in `datExpr` exceeds `maxBlockSize`, genes will be pre-clustered into blocks whose size should not exceed `maxBlockSize`.

- `blockSizePenaltyPower` Number specifying how strongly blocks should be penalized for exceeding the
maximum size. Set to a large number or Inf if not exceeding maximum block size is very important.

nPreclusteringCenters
Number of centers to be used in the preclustering. Defaults to smaller of nGenes/20 and 100*nGenes/maxBlockSize, where nGenes is the number of genes (variables) in multiExpr.

randomSeed
Integer to be used as seed for the random number generator before the function starts. If a current seed exists, it is saved and restored upon exit. If NULL is given, the function will not save and restore the seed.

networkOptions
A single list of class NetworkOptions giving options for network calculation for all of the networks, or a multiData structure containing one such list for each input data set.

keepIndividualTOMs
Logical: should individual TOMs be retained after the calculation is finished?

individualTOMFileNames
Character string giving the file names to save individual TOMs into. The following tags should be used to make the file names unique for each set and block: %s will be replaced by the set number; %N will be replaced by the set name (taken from names(multiExpr)) if it exists, otherwise by set number; %b will be replaced by the block number. If the file names turn out to be non-unique, an error will be generated.

individualTOMInfo
A list, typically returned by individualTOMs, containing information about the topological overlap matrices in the individual data sets in multiExpr. See the output of individualTOMs for details on the content of the list.

consensusTree
A list specifying the consensus calculation. See details.

useBlocks
Optional vector giving the blocks that should be used for the calculations. If NULL, all all blocks will be used.

saveCalibratedIndividualTOMs
Logical: should the calibrated individual TOMs be saved?

calibratedIndividualTOMFilePattern
Specification of file names in which calibrated individual TOMs should be saved.

saveConsensusTOM
Logical: should the consensus TOM be saved to disk?

consensusTOMFilePattern
Character string giving the file names to save consensus TOMs into. The following tags should be used to make the file names unique for each set and block: %s will be replaced by the set number; %N will be replaced by the set name (taken from names(multiExpr)) if it exists, otherwise by set number; %b will be replaced by the block number. If the file names turn out to be non-unique, an error will be generated.

getCalibrationSamples
Logical: should the sampled values used for network calibration be returned?

keepIntermediateResults
Logical: should intermediate consensus TOMs be saved as well?
hierarchicalConsensusTOM

useDiskCache Logical: should disk cache be used for consensus calculations? The disk cache can be used to store chunks of calibrated data that are small enough to fit one chunk from each set into memory (blocks may be small enough to fit one block of one set into memory, but not small enough to fit one block from all sets in a consensus calculation into memory at the same time). Using disk cache is slower but lessens the memory footprint of the calculation. As a general guide, if individual data are split into blocks, we recommend setting this argument to TRUE. If this argument is NULL, the function will decide whether to use disk cache based on the number of sets and block sizes.

chunkSize network similarities are saved in smaller chunks of size chunkSize. If NULL, an appropriate chunk size will be determined from an estimate of available memory. Note that if the chunk size is greater than the memory required for storing intermediate results, disk cache use will automatically be disabled.

cacheDir character string containing the directory into which cache files should be written. The user should make sure that the filesystem has enough free space to hold the cache files which can get quite large.

cacheBase character string containing the desired name for the cache files. The actual file names will consists of cacheBase and a suffix to make the file names unique.

collectGarbage Logical: should garbage be collected after memory-intensive operations?

verbose integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

This function is essentially a wrapper for hierarchicalConsensusCalculation, with a few additional operations specific to calculations of topological overlaps.

Value

A list that contains the output of hierarchicalConsensusCalculation and two extra components:

individualTOMInfo A copy of the input individualTOMInfo if it was non-NULL, or the result of individualTOMs.

consensusTree A copy of the input consensusTree.

Author(s)

Peter Langfelder

See Also

hierarchicalConsensusCalculation for the actual hierarchical consensus calculation;
individualTOMs for the calculation of individual TOMs in a format suitable for consensus calculation.
hierarchicalMergeCloseModules

Merge close (similar) hierarchical consensus modules

Description

Merges hierarchical consensus modules that are too close as measured by the correlation of their eigengenes.

Usage

hierarchicalMergeCloseModules(
  # input data
  multiExpr,
  multiExpr.imputed = NULL,
  labels,

  # Optional starting eigengenes
  MEs = NULL,

  unassdColor = if (is.numeric(labels)) 0 else "grey",
  # If missing data are present, impute them?
  impute = TRUE,

  # Options for eigengene network construction
  networkOptions,

  # Options for constructing the consensus
  consensusTree,
  calibrateMESimulation = FALSE,

  # Merging options
  cutHeight = 0.2,
  iterate = TRUE,

  # Output options
  relabel = FALSE,
  colorSeq = NULL,
  getNewMEs = TRUE,
  getNewUnassdME = TRUE,

  # Options controlling behaviour of the function
  trapErrors = FALSE,
  verbose = 1, indent = 0)
Arguments

multiExpr  Expression data in the multi-set format (see multiData). A vector of lists, one per set. Each set must contain a component data that contains the expression data, with rows corresponding to samples and columns to genes or probes.

multiExpr.imputed  If multiExpr contain missing data, this argument can be used to supply the expression data with missing data imputed. If not given, the impute.knn function will be used to impute the missing data within each module (see imputeByModule).

labels  A vector (numeric, character or a factor) giving module labels for genes (variables) in multiExpr.

MEs  If module eigengenes have been calculated before, the user can save some computational time by inputting them. MEs should have the same format as multiExpr. If they are not given, they will be calculated.

unassdColor  The label (value in labels) that represents unassigned genes. Module of this label will not enter the module eigengene clustering and will not be merged with other modules.

impute  Should missing values be imputed in eigengene calculation? If imputation is disabled, the presence of NA entries will cause the eigengene calculation to fail and eigengenes will be replaced by their hubgene approximation. See moduleEigengenes for more details.

networkOptions  A single list of class NetworkOptions giving options for network calculation for all of the networks, or a multiData structure containing one such list for each input data set.

consensusTree  A list specifying the consensus calculation. See newConsensusTree for details.

calibrateMESimilarities  Logical: should module eigengene similarities be calibrated? This setting overrides the calibration options in consensusTree.

cutHeight  Maximum dissimilarity (i.e., 1-correlation) that qualifies modules for merging.

iterate  Controls whether the merging procedure should be repeated until there is no change. If FALSE, only one iteration will be executed.

relabel  Controls whether, after merging, color labels should be ordered by module size.

colorSeq  Color labels to be used for relabeling. Defaults to the standard color order used in this package if colors are not numeric, and to integers starting from 1 if colors is numeric.

getNewMEs  Controls whether module eigengenes of merged modules should be calculated and returned.

getNewUnassdME  When doing module eigengene manipulations, the function does not normally calculate the eigengene of the 'module' of unassigned ('grey') genes. Setting this option to TRUE will force the calculation of the unassigned eigengene in the returned newMEs, but not in the returned oldMEs.

trapErrors  Controls whether computational errors in calculating module eigengenes, their dissimilarity, and merging trees should be trapped. If TRUE, errors will be trapped and the function will return the input colors. If FALSE, errors will cause the function to stop.
verbose Controls verbosity of printed progress messages. 0 means silent, up to (about) 5 the verbosity gradually increases.

indent A single non-negative integer controlling indentation of printed messages. 0 means no indentation, each unit above that adds two spaces.

Details

This function merges input modules that are closely related. The similarities are quantified by correlations of module eigengenes; a “consensus” similarity is calculated using hierarchicalConsensusMEDissimilarity according to the recipe in consensusTree. Once the (dis-)similarities are calculated, average linkage hierarchical clustering of the module eigengenes is performed, the dendrogram is cut at the height cutHeight and modules on each branch are merged. The process is (optionally) repeated until no more modules are merged.

If, for a particular module, the module eigengene calculation fails, a hubgene approximation will be used.

The user should be aware that if a computational error occurs and trapErrors==TRUE, the returned list (see below) will not contain all of the components returned upon normal execution.

Value

If no errors occurred, a list with components

labels Labels for the genes corresponding to merged modules. The function attempts to mimic the mode of the input labels: if the input labels is numeric, character and factor, respectively, so is the output. Note, however, that if the function performs relabeling, a standard sequence of labels will be used: integers starting at 1 if the input labels is numeric, and a sequence of color labels otherwise (see colorSeq above).

dendro Hierarchical clustering dendrogram (average linkage) of the eigengenes of the most recently computed tree. If iterate was set TRUE, this will be the dendrogram of the merged modules, otherwise it will be the dendrogram of the original modules.

oldDendro Hierarchical clustering dendrogram (average linkage) of the eigengenes of the original modules.

cutHeight The input cutHeight.

oldMEs Module eigengenes of the original modules in the sets given by useSets.

newMEs Module eigengenes of the merged modules in the sets given by useSets.

allok A logical set to TRUE.

If an error occurred and trapErrors==TRUE, the list only contains these components:

colors A copy of the input colors.

allok a logical set to FALSE.

Author(s)

Peter Langfelder
hubGeneSignificance

See Also

multiSetMEs for calculation of (consensus) module eigengenes across multiple data sets;
newConsensusTree for information about consensus trees;
hierarchicalConsensusMEDissimilarity for calculation of hierarchical consensus eigengene dissimilarity.

hubGeneSignificance  Hubgene significance

Description

Calculate approximate hub gene significance for all modules in network.

Usage

hubGeneSignificance(datKME, GS)

Arguments

datKME  a data frame (or a matrix-like object) containing eigengene-based connectivities of all genes in the network.
GS  a vector with one entry for every gene containing its gene significance.

Details

In datKME rows correspond to genes and columns to modules.

Value

A vector whose entries are the hub gene significances for each module.

Author(s)

Steve Horvath

References

ImmunePathwayLists  

**Immune Pathways with Corresponding Gene Markers**

**Description**

This matrix gives a predefined set of marker genes for many immune response pathways, as assembled by Brian Modena (a member of Daniel R Salomon’s lab at Scripps Research Institute), and colleagues. It is used with userListEnrichment to search user-defined gene lists for enrichment.

**Usage**

```r
data(ImmunePathwayLists)
```

**Format**

A 3597 x 2 matrix of characters containing Gene / Category pairs. The first column (Gene) lists genes corresponding to a given category (second column). Each Category entry is of the form `<Immune Pathway>__ImmunePathway`. Note that the matrix is sorted first by Category and then by Gene, such that all genes related to the same category are listed sequentially.

**Source**

For more information about this list, please see `userListEnrichment`

**Examples**

```r
data(ImmunePathwayLists)
head(ImmunePathwayLists)
```

---

**imputeByModule**  
**Impute missing data separately in each module**

**Description**

Use `impute.knn` to impute missing data, separately in each module.

**Usage**

```r
imputeByModule(
 data,
 labels,
 excludeUnassigned = FALSE,
 unassignedLabel = if (is.numeric(labels)) 0 else "grey",
 scale = TRUE,
 ...
)
```
individualTOMs

Arguments

- **data**: Data to be imputed, with variables (genes) in columns and observations (samples) in rows.
- **labels**: Module labels. A vector with one entry for each column in data.
- **excludeUnassigned**: Logical: should unassigned variables (genes) be excluded from the imputation?
- **unassignedLabel**: The value in labels that represents unassigned variables.
- **scale**: Logical: should data be scaled to mean 0 and variance 1 before imputation?
- **...**: Other arguments to `impute.knn`.

Value

The input data with missing values imputed.

Note

This function is potentially faster but could give different imputed values than applying `impute.knn` directly to (scaled) data.

Author(s)

Peter Langfelder

See Also

`impute.knn` that does the actual imputation.

Description

This function calculates correlation network matrices (adjacencies or topological overlaps), after optionally first pre-clustering input data into blocks.

Usage

```r
individualTOMs(
 multiExpr,
 multiWeights = NULL,
 multiExpr.imputed = NULL,

 # Data checking options
 checkMissingData = TRUE,
```
# Blocking options
blocks = NULL,
maxBlockSize = 5000,
blockSizePenaltyPower = 5,
nPreclusteringCenters = NULL,
randomSeed = 12345,

# Network construction options
networkOptions,

# Save individual TOMs?
saveTOMs = TRUE,
individualTOMFileNames = "individualTOM-Set%s-Block%b.RData",

# Behaviour options
collectGarbage = TRUE,
verbose = 2, indent = 0)

Arguments

multiExpr  expression data in the multi-set format (see checkSets). A vector of lists, one per set. Each set must contain a component data that contains the expression data, with rows corresponding to samples and columns to genes or probes.
multiWeights  optional observation weights in the same format (and dimensions) as multiExpr. These weights are used for correlation calculations with data in multiExpr.
multiExpr.imputed  Optional version of multiExpr with missing data imputed. If not given and multiExpr contains missing data, they will be imputed using the function impute.knn.
checkMissingData  logical: should data be checked for excessive numbers of missing entries in genes and samples, and for genes with zero variance? See details.
blocks  optional specification of blocks in which hierarchical clustering and module detection should be performed. If given, must be a numeric vector with one entry per gene of multiExpr giving the number of the block to which the corresponding gene belongs.
maxBlockSize  integer giving maximum block size for module detection. Ignored if blocks above is non-NULL. Otherwise, if the number of genes in datExpr exceeds maxBlockSize, genes will be pre-clustered into blocks whose size should not exceed maxBlockSize.
blockSizePenaltyPower  number specifying how strongly blocks should be penalized for exceeding the maximum size. Set to a large number or Inf if not exceeding maximum block size is very important.
nPreclusteringCenters  number of centers to be used in the preclustering. Defaults to smaller of nGenes/20 and 100*nGenes/maxBlockSize, where nGenes is the number of genes (variables) in multiExpr.
randomSeed: integer to be used as seed for the random number generator before the function starts. If a current seed exists, it is saved and restored upon exit. If NULL is given, the function will not save and restore the seed.

networkOptions: A single list of class `NetworkOptions` giving options for network calculation for all of the networks, or a `multiData` structure containing one such list for each input data set.

saveTOMs: logical: should individual TOMs be saved to disk (TRUE) or returned directly in the return value (FALSE)?

individualTOMFileNames: character string giving the file names to save individual TOMs into. The following tags should be used to make the file names unique for each set and block: %s will be replaced by the set number; %N will be replaced by the set name (taken from `names(multiExpr)`) if it exists, otherwise by set number; %b will be replaced by the block number. If the file names turn out to be non-unique, an error will be generated.

collectGarbage: Logical: should garbage collection be called after each block calculation? This can be useful when the data are large, but could unnecessarily slow down calculation with small data.

verbose: Integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

indent: Indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

The function starts by optionally filtering out samples that have too many missing entries and genes that have either too many missing entries or zero variance in at least one set. Genes that are filtered out are excluded from the network calculations.

If `blocks` is not given and the number of genes (columns) in `multiExpr` exceeds `maxBlockSize`, genes are pre-clustered into blocks using the function `consensusProjectiveKMeans`; otherwise all genes are treated in a single block. Any missing data in `multiExpr` will be imputed; if imputed data are already available, they can be supplied separately.

For each block of genes, the network adjacency is constructed and (if requested) topological overlap is calculated in each set. The topological overlaps can be saved to disk as RData files, or returned directly within the return value (see below). Note that the matrices can be big and returning them within the return value can quickly exhaust the system’s memory. In particular, if the block-wise calculation is necessary, it is usually impossible to return all matrices in the return value.

Value

A list with the following components:

- `blockwiseAdjacencies`: A `multiData` structure containing (possibly blockwise) network matrices for each input data set. The network matrices are stored as `BlockwiseData` objects.
- `setNames`: A copy of `names(multiExpr)`.
- `nSets`: Number of sets in `multiExpr`.
blockInfo  A list of class BlockInformation, giving information about blocks and gene and sample filtering.

networkOptions  The input networkOptions, returned as a multiData structure with one entry per input data set.

Author(s)
Peter Langfelder

See Also
Input arguments and output components of this function use multiData, NetworkOptions, BlockwiseData, and BlockInformation.
Underlying functions of interest include consensusProjectiveKMeans, TOMsimilarityFromExpr.

Description
These functions provide an inline display of progress.

Usage
initProgInd(leadStr = "..", trailStr = "", quiet = !interactive())
updateProgInd(newFrac, progInd, quiet = !interactive())

Arguments
leadStr  character string that will be printed before the actual progress number.
trailStr  character string that will be printed after the actual progress number.
quiet  can be used to silence the indicator for non-interactive sessions whose output is typically redirected to a file.
newFrac  new fraction of progress to be displayed.
progInd  an object of class progressIndicator that encodes previously printed message.

Details
A progress indicator is a simple inline display of progress intended to satisfy impatient users during lengthy operations. The function initProgInd initializes a progress indicator (at zero); updateProgInd updates it to a specified fraction.
Note that excessive use of updateProgInd may lead to a performance penalty (see examples).
Value

Both functions return an object of class `progressIndicator` that holds information on the last printed value and should be used for subsequent updates of the indicator.

Author(s)

Peter Langfelder

Examples

```r
max = 10;
prog = initProgInd("Counting: ", "done");
for (c in 1:max)
{
 Sys.sleep(0.10);
 prog = updateProgInd(c/max, prog);
}
printflush("\n");

printflush("Example 2:");
prog = initProgInd();
for (c in 1:max)
{
 Sys.sleep(0.10);
 prog = updateProgInd(c/max, prog);
}
printflush("\n");

Example of a significant slowdown:

Without progress indicator:

system.time({ a = 0; for (i in 1:10000) a = a+1; })

With progress indicator, some 50 times slower:

system.time(
{
 prog = initProgInd("Counting: ", "done");
 a = 0;
 for (i in 1:10000)
 {
 a = a+1;
 prog = updateProgInd(i/10000, prog);
 }
}
)
intramodularConnectivity

Calculation of intramodular connectivity

Description

Calculates intramodular connectivity, i.e., connectivity of nodes to other nodes within the same module.

Usage

```r
intramodularConnectivity(adjMat, colors, scaleByMax = FALSE)

intramodularConnectivity.fromExpr(datExpr, colors, corFnc = "cor", corOptions = "use = 'p'", weights = NULL, distFnc = "dist", distOptions = "method = 'euclidean'", networkType = "unsigned", power = if (networkType == "distance") 1 else 6, scaleByMax = FALSE, ignoreColors = if (is.numeric(colors)) 0 else "grey", getWholeNetworkConnectivity = TRUE)
```

Arguments

- **adjMat**: adjacency matrix, a square, symmetric matrix with entries between 0 and 1.
- **colors**: module labels. A vector of length `ncol(adjMat)` giving a module label for each gene (node) of the network.
- **scaleByMax**: logical: should intramodular connectivities be scaled by the maximum IM connectivity in each module?
- **datExpr**: data frame or matrix containing expression data. Columns correspond to genes and rows to samples.
- **corFnc**: character string specifying the function to be used to calculate co-expression similarity for correlation networks. Defaults to Pearson correlation. Any function returning values between -1 and 1 can be used.
- **corOptions**: character string specifying additional arguments to be passed to the function given by corFnc. Use "use = 'p', method = 'spearman'" to obtain Spearman correlation.
- **weights**: optional matrix of the same dimensions as datExpr, giving the weights for individual observations in datExpr. These will be passed on to the correlation function.
- **distFnc**: character string specifying the function to be used to calculate co-expression similarity for distance networks. Defaults to the function `dist`. Any function returning non-negative values can be used.
isMultiData

isMultiData(x, strict = TRUE)

Description

Attempts to determine whether the supplied object is a valid multiData structure (see Details).

Usage

isMultiData(x, strict = TRUE)

distOptions character string specifying additional arguments to be passed to the function given by distFunc. For example, when the function dist is used, the argument method can be used to specify various ways of computing the distance.

networkType network type. Allowed values are (unique abbreviations of) "unsigned", "signed", "signed hybrid", "distance".

power soft thresholding power.

ignoreColors level(s) of colors that identifies unassigned genes. The intramodular connectivity in this "module" will not be calculated.

getWholeNetworkConnectivity logical: should whole-network connectivity be computed as well? For large networks, this can be quite time-consuming.

Details

The module labels can be numeric or character. For each node (gene), the function sums adjacency entries (excluding the diagonal) to other nodes within the same module. Optionally, the connectivities can be scaled by the maximum connectivity in each module.

Value

If input getWholeNetworkConnectivity is TRUE, a data frame with 4 columns giving the total connectivity, intramodular connectivity, extra-modular connectivity, and the difference of the intra- and extra-modular connectivities for all genes; otherwise a vector of intramodular connectivities.

Author(s)

Steve Horvath and Peter Langfelder

References

See Also

adjacency
Arguments

- **x**: An object.
- **strict**: Logical: should the structure of multiData be checked for "strict" compliance?

Details

A multiData structure is intended to store (the same type of) data for multiple, possibly independent, realizations (for example, expression data for several independent experiments). It is a list where each component corresponds to an (independent) data set. Each component is in turn a list that can hold various types of information but must have a data component. In a "strict" multiData structure, the data components are required to each be a matrix or a data frame and have the same number of columns. In a "loose" multiData structure, the data components can be anything (but for most purposes should be of comparable type and content).

This function checks whether the supplied x is a multiData structure in the "strict" (when strict = TRUE or "loose" strict = FALSE sense).

Value

Logical: TRUE if the input x is a multiData structure, FALSE otherwise.

Author(s)

Peter Langfelder

See Also

Other multiData handling functions whose names start with mtd.

keepCommonProbes

Keep probes that are shared among given data sets

Description

This function strips out probes that are not shared by all given data sets, and orders the remaining common probes using the same order in all sets.

Usage

```r
keepCommonProbes(multiExpr, orderBy = 1)
```

Arguments

- **multiExpr**: expression data in the multi-set format (see checkSets). A vector of lists, one per set. Each set must contain a component data that contains the expression data, with rows corresponding to samples and columns to genes or probes.
- **orderBy**: index of the set by which probes are to be ordered.
Value

Expression data in the same format as the input data, containing only common probes.

Author(s)

Peter Langfelder

See Also

checkSets

kmEcomparisonScatterplot

Function to plot kME values between two comparable data sets.

Description

Plots the kME values of genes in two groups of expression data for each module in an inputted color vector.

Usage

kmEcomparisonScatterplot(
 datExpr1, datExpr2, colorh,
 inA = NULL, inB = NULL, MESA = NULL, MEB = NULL,
 nameA = "A", nameB = "B",
 plotAll = FALSE, noGrey = TRUE, maxPlot = 1000, pch = 19,
 fileName = if (plotAll) paste("kME_correlations_between_","nameA","_and_",
 nameB, ",_all.pdf",sep"") else
 paste("kME_correlations_between_","nameA","_and_",
 nameB, ",_inMod.pdf",sep""), ...
)

Arguments

datExpr1 The first expression matrix (samples=rows, genes=columns). This can either include only the data for group A (in which case datExpr2 must be entered), or can contain all of the data for groups A and B (in which case inA and inB must be entered).
datExpr2 The second expression matrix, or set to NULL if all data is from same expression matrix. If entered, datExpr2 must contain the same genes as datExpr1 in the same order.
colorh The common color vector (module labels) corresponding to both sets of expression data.
inA, inB Vectors of TRUE/FALSE indicating whether a sample is in group A/B, or a vector of numeric indices indicating which samples are in group A/B. If datExpr2 is entered, these inputs are ignored (thus default = NULL). For these and all other A/B inputs, "A" corresponds to datExpr1 and "B" corresponds to datExpr2 if datExpr2 is entered; otherwise "A" corresponds to datExpr1[inA,] while "B" corresponds to datExpr1[inB,].

MEsA, MEsB Either the module eigengenes or NULL (default) in which case the module eigengenes will be calculated. In inputted, MEs MUST be calculated using "moduleEigengenes(<parameters>)$eigengenes" for function to work properly.

nameA, nameB The names of these groups (defaults = "A" and "B"). The resulting file name (see below) and x and y axis labels for each scatter plot depend on these names.

plotAll If TRUE, plot gene-ME correlations for all genes. If FALSE, plot correlations for only genes in the plotted module (default). Note that the output file name will be different depending on this parameter, so both can be run without overwriting results.

noGrey If TRUE (default), the grey module genes are ignored. This parameter is only used if MEsA and MEsB are calculated.

maxPlot The maximum number of random genes to include (default=1000). Smaller values lead to smaller and less cluttered plots, usually without significantly affecting the resulting correlations. This parameter is only used if plotAll=TRUE.

pch See help file for "points". Setting pch=19 (default) produces solid circles.

fileName Name of the file to hold the plots. Since the output format is pdf, the extension should be .pdf.

... Other plotting parameters that are allowable inputs to verboseScatterplot.

Value

The default output is a file called "kME_correlations_between_[nameA]_and_[nameB]_[all/inMod].pdf", where [nameA] and [nameB] correspond to the nameA and nameB input parameters, and [all/inMod] depends on whether plotAll=TRUE or FALSE. This output file contains all of the plots as separate pdf images, and will be located in the current working directory.

Note

The function "pdf", which can be found in the grDevices library, is required to run this function.

Author(s)

Jeremy Miller

Examples

Example output file ("kME_correlations_between_A_and_B_inMod.pdf") using simulated data.

set.seed = 100
ME=matrix(0,50,5)
for (i in 1:5) ME[,i]=sample(1:100,50)
labeledBarplot

Barplot with text or color labels.

Description

Produce a barplot with extra annotation.

Usage

labeledBarplot(
 Matrix, labels,
 colorLabels = FALSE,
 colored = TRUE,
 setStdMargins = TRUE,
 stdErrors = NULL,
 cex.lab = NULL,
 xLabelsAngle = 45,
 ...
)

Arguments

Matrix	vector or a matrix to be plotted.
labels	labels to annotate the bars underneath the barplot.
colorLabels.logical: should the labels be interpreted as colors? If TRUE, the bars will be labeled by colored squares instead of text. See details.
colored.logical: should the bars be divided into segments and colored? If TRUE, assumes the labels can be interpreted as colors, and the input Matrix is square and the rows have the same labels as the columns. See details.
setStdMargins	if TRUE, the function will set margins c(3, 3, 2, 2)+0.2.
stdErrors	if given, error bars corresponding to 1.96*stdErrors will be plotted on top of the bars.
cex.lab	character expansion factor for axis labels, including the text labels underneath the barplot.
xLabelsAngle	angle at which text labels under the barplot will be printed.
...
other parameters for the function barplot.
Details

Individual bars in the barplot can be identified either by printing the text of the corresponding entry in `labels` underneath the bar at the angle specified by `xLabelsAngle`, or by interpreting the `labels` entry as a color (see below) and drawing a correspondingly colored square underneath the bar.

For reasons of compatibility with other functions, `labels` are interpreted as colors after stripping the first two characters from each label. For example, the label "M8turquoise" is interpreted as the color turquoise.

If `colored` is set, the code assumes that `labels` can be interpreted as colors, and the input `Matrix` is square and the rows have the same labels as the columns. Each bar in the barplot is then sectioned into contributions from each row entry in `Matrix` and is colored by the color given by the entry in `labels` that corresponds to the row.

Value

None.

Author(s)

Peter Langfelder

labeledHeatmap

Produce a labeled heatmap plot

Description

Plots a heatmap plot with color legend, row and column annotation, and optional text within the heatmap.

Usage

```r
labeledHeatmap(Matrix, 
    xLabels = NULL, yLabels = NULL, 
    xSymbols = NULL, ySymbols = NULL, 
    colorLabels = NULL, 
    xColorLabels = FALSE, yColorLabels = FALSE, 
    checkColorsValid = TRUE, 
    invertColors = FALSE, 
    setStdMargins = TRUE, 
    xLabelsPosition = "bottom", 
    xLabelsAngle = 45, 
    xLabelsAdj = 1, 
    yLabelsPosition = "left", 
    xColorWidth = 2 * strheight("M"), 
    yColorWidth = 2 * strwidth("M"), 
    xColorOffset = strheight("M")/3, 
    ...)```

Arguments

Matrix numerical matrix to be plotted in the heatmap.
xLabels labels for the columns. See Details.
yLabels labels for the rows. See Details.
xSymbols additional labels used when xLabels are interpreted as colors. See Details.
ySymbols additional labels used when yLabels are interpreted as colors. See Details.
colorLabels logical: should xLabels and yLabels be interpreted as colors? If given, overrides xColorLabels and yColorLabels below.
xColorLabels logical: should xLabels be interpreted as colors?
yColorLabels logical: should yLabels be interpreted as colors?
checkColorsValid logical: should given colors be checked for validity against the output of colors()?
  If this argument is FALSE, invalid color specification will trigger an error.
invertColors logical: should the color order be inverted?
setStdMargins logical: should standard margins be set before calling the plot function? Standard margins depend on colorLabels: they are wider for text labels and narrower for color labels. The defaults are static, that is the function does not attempt to guess the optimal margins.
xLabelsPosition a character string specifying the position of labels for the columns. Recognized values are (unique abbreviations of) "top", "bottom".
xLabelsAngle angle by which the column labels should be rotated.
xLabelsAdj justification parameter for column labels. See par and the description of parameter "adj".
yLabelsPosition a character string specifying the position of labels for the columns. Recognized values are (unique abbreviations of) "left", "right".
xColorWidth width of the color labels for the x axis expressed in user coordinates.
yColorWidth width of the color labels for the y axis expressed in user coordinates.
xColorOffset gap between the y axis and color labels, in user coordinates.
yColorOffset gap between the x axis and color labels, in user coordinates.
colors color pallette to be used in the heatmap. Defaults to heat.colors.
nColor color to be used for encoding missing data.
textMatrix optional text entries for each cell. Either a matrix of the same dimensions as Matrix or a vector of the same length as the number of entries in Matrix.
cex.text character expansion factor for textMatrix.
textAdj Adjustment for the entries in the text matrix. See the adj argument to text.
cex.lab character expansion factor for text labels labeling the axes.
cex.lab.x character expansion factor for text labels labeling the x axis. Overrides cex.lab above.
cex.lab.y character expansion factor for text labels labeling the y axis. Overrides cex.lab above.
colors.lab.x colors for character labels or symbols along x axis.
colors.lab.y colors for character labels or symbols along y axis.
font.lab.x integer specifying font for labels or symbols along x axis. See text.
font.lab.y integer specifying font for labels or symbols along y axis. See text.
bg.lab.x background color for the margin along the x axis.
bg.lab.y background color for the margin along the y axis.
x.adj.lab.y Justification of labels for the y axis along the x direction. A value of 0 produces left-justified text, 0.5 (the default) centered text and 1 right-justified text.

plotLegend logical: should a color legend be plotted?

keepLegendSpace logical: if the color legend is not drawn, should the space be left empty (TRUE), or should the heatmap fill the space (FALSE)?

verticalSeparator.x indices of columns after which separator lines (vertical lines between columns) should be drawn. NULL means no lines will be drawn.

verticalSeparator.col color(s) of the vertical separator lines. Recycled if need be.

verticalSeparator.lty line type of the vertical separator lines. Recycled if need be.

verticalSeparator.lwd line width of the vertical separator lines. Recycled if need be.

verticalSeparator.ext number giving the extension of the separator line into the margin as a fraction of the margin width. 0 means no extension, 1 means extend all the way through the margin.

horizontalSeparator.y indices of columns after which separator lines (horizontal lines between columns) should be drawn. NULL means no lines will be drawn.

horizontalSeparator.col color(s) of the horizontal separator lines. Recycled if need be.

horizontalSeparator.lty line type of the horizontal separator lines. Recycled if need be.

horizontalSeparator.lwd line width of the horizontal separator lines. Recycled if need be.

horizontalSeparator.ext number giving the extension of the separator line into the margin as a fraction of the margin width. 0 means no extension, 1 means extend all the way through the margin.

showRows A numeric vector giving the indices of rows that are actually to be shown. Defaults to all rows.

showCols A numeric vector giving the indices of columns that are actually to be shown. Defaults to all columns.

... other arguments to function heatmap.

Details

The function basically plots a standard heatmap plot of the given Matrix and embellishes it with row and column labels and/or with text within the heatmap entries. Row and column labels can be either character strings or color squares, or both.

To get simple text labels, use colorLabels=FALSE and pass the desired row and column labels in yLabels and xLabels, respectively.
To label rows and columns by color squares, use `colorLabels=TRUE`; `yLabels` and `xLabels` are then expected to represent valid colors. For reasons of compatibility with other functions, each entry in `yLabels` and `xLabels` is expected to consist of a color designation preceded by 2 characters: an example would be `meturquoise`. The first two characters can be arbitrary, they are stripped. Any labels that do not represent valid colors will be considered text labels and printed in full, allowing the user to mix text and color labels.

It is also possible to label rows and columns by both color squares and additional text annotation. To achieve this, use the above technique to get color labels and, additionally, pass the desired text annotation in the `xSymbols` and `ySymbols` arguments.

### Value

None.

### Author(s)

Peter Langfelder

### See Also

`heatmap, colors`

### Examples

```r
This example illustrates 4 main ways of annotating columns and rows of a heatmap.
Copy and paste the whole example into an R session with an interactive plot window;
alternatively, you may replace the command `sizeGrWindow` below by opening
another graphical device such as pdf.

Generate a matrix to be plotted

nCol = 8; nRow = 7;
mat = matrix(runif(nCol*nRow, min = -1, max = 1), nRow, nCol);

rowColors = standardColors(nRow);
colColors = standardColors(nRow + nCol)[(nRow+1):(nRow + nCol)];

sizeGrWindow(9, 7)
par(mfrow = c(2,2))
par(mar = c(4, 5, 4, 6));

Label rows and columns by text:

labeledHeatmap(mat, xLabels = colColors, yLabels = rowColors,
colors = greenWhiteRed(50),
setStdMargins = FALSE,
textMatrix = signif(mat, 2),
```
main = "Text-labeled heatmap";

# Label rows and columns by colors:
rowLabels = paste("ME", rowColors, sep="");
collLabels = paste("ME", colColors, sep="");

labeledHeatmap(mat, xLabels = collLabels, yLabels = rowLabels,
   colorLabels = TRUE,
   colors = greenWhiteRed(50),
   setStdMargins = FALSE,
   textMatrix = signif(mat, 2),
   main = "Color-labeled heatmap");

# Mix text and color labels:
rowLabels[3] = "Row 3";
collLabels[1] = "Column 1";

labeledHeatmap(mat, xLabels = collLabels, yLabels = rowLabels,
   colorLabels = TRUE,
   colors = greenWhiteRed(50),
   setStdMargins = FALSE,
   textMatrix = signif(mat, 2),
   main = "Mix-labeled heatmap");

# Color labels and additional text labels
rowLabels = paste("ME", rowColors, sep="");
collLabels = paste("ME", colColors, sep="");

extraRowLabels = paste("Row", c(1:nRow));
extraCollLabels = paste("Column", c(1:nCol));

# Extend margins to fit all labels
par(mar = c(6, 6, 4, 6));
labeledHeatmap(mat, xLabels = collLabels, yLabels = rowLabels,
   xSymbols = extraCollLabels,
ySymbols = extraRowLabels,
   colorLabels = TRUE,
   colors = greenWhiteRed(50),
   setStdMargins = FALSE,
   textMatrix = signif(mat, 2),
   main = "Text- + color-labeled heatmap");

labeledHeatmap.multiPage
Labeled heatmap divided into several separate plots.
Description

This function produces labeled heatmaps divided into several plots. This is useful for large heatmaps where labels on individual columns and rows may become unreadably small (or overlap).

Usage

labeledHeatmap.multiPage(
  # Input data and ornaments
  Matrix,
  xLabels, yLabels = NULL,
  xSymbols = NULL, ySymbols = NULL,
  textMatrix = NULL,

  # Paging options
  rowsPerPage = NULL, maxRowsPerPage = 20,
  colsPerPage = NULL, maxColsPerPage = 10,
  addPageNumberToMain = TRUE,

  # Further arguments to labeledHeatmap
  zlim = NULL,
  signed = TRUE,
  main = "",

  # Separator line specification
  verticalSeparator.x = NULL,
  verticalSeparator.col = 1,
  verticalSeparator.lty = 1,
  verticalSeparator.lwd = 1,
  verticalSeparator.ext = 0,

  horizontalSeparator.y = NULL,
  horizontalSeparator.col = 1,
  horizontalSeparator.lty = 1,
  horizontalSeparator.lwd = 1,
  horizontalSeparator.ext = 0,

  ...
)

Arguments

- Matrix: numerical matrix to be plotted in the heatmap.
- xLabels: labels for the columns. See Details.
- yLabels: labels for the rows. See Details.
- xSymbols: additional labels used when xLabels are interpreted as colors. See Details.
- ySymbols: additional labels used when yLabels are interpreted as colors. See Details.
- textMatrix: optional text entries for each cell. Either a matrix of the same dimensions as Matrix or a vector of the same length as the number of entries in Matrix.
rowsPerPage: optional list in which each component is a vector specifying which rows should appear together in each plot. If not given, will be generated automatically based on maxRowsPerPage below and the number of rows in matrix.

maxRowsPerPage: integer giving maximum number of rows appearing on each plot (page).

colsPerPage: optional list in which each component is a vector specifying which columns should appear together in each plot. If not given, will be generated automatically based on maxColsPerPage below and the number of rows in matrix.

maxColsPerPage: integer giving maximum number of columns appearing on each plot (page).

addPageNumberToMain: logical: should plot/page number be added to the main title of each plot?

zlim: Optional specification of the extreme values for the color scale. If not given, will be determined from the input matrix.

main: Main title for each plot/page, optionally with the plot/page number added.

signed: logical: should the input matrix be converted to colors using a scale centered at zero?

verticalSeparator.x: indices of columns after which separator lines (vertical lines between columns) should be drawn. NULL means no lines will be drawn.

verticalSeparator.col: color(s) of the vertical separator lines. Recycled if need be.

verticalSeparator.lty: line type of the vertical separator lines. Recycled if need be.

verticalSeparator.lwd: line width of the vertical separator lines. Recycled if need be.

verticalSeparator.ext: number giving the extension of the separator line into the margin as a fraction of the margin width. 0 means no extension, 1 means extend all the way through the margin.

horizontalSeparator.y: indices of columns after which separator lines (horizontal lines between columns) should be drawn. NULL means no lines will be drawn.

horizontalSeparator.col: color(s) of the horizontal separator lines. Recycled if need be.

horizontalSeparator.lty: line type of the horizontal separator lines. Recycled if need be.

horizontalSeparator.lwd: line width of the horizontal separator lines. Recycled if need be.

horizontalSeparator.ext: number giving the extension of the separator line into the margin as a fraction of the margin width. 0 means no extension, 1 means extend all the way through the margin.

... other arguments to function labeledHeatmap.
**Details**

The function `labeledHeatmap` is used to produce each plot/page; most arguments are described in more detail in the help file for that function.

In each plot/page `labeledHeatmap` plots a standard heatmap plot of an appropriate sub-rectangle of `Matrix` and embellishes it with row and column labels and/or with text within the heatmap entries. Row and column labels can be either character strings or color squares, or both.

To get simple text labels, use `colorLabels=FALSE` and pass the desired row and column labels in `yLabels` and `xLabels`, respectively.

To label rows and columns by color squares, use `colorLabels=TRUE`; `yLabels` and `xLabels` are then expected to represent valid colors. For reasons of compatibility with other functions, each entry in `yLabels` and `xLabels` is expected to consist of a color designation preceded by 2 characters: an example would be `#ETurquoise`. The first two characters can be arbitrary, they are stripped. Any labels that do not represent valid colors will be considered text labels and printed in full, allowing the user to mix text and color labels.

It is also possible to label rows and columns by both color squares and additional text annotation. To achieve this, use the above technique to get color labels and, additionally, pass the desired text annotation in the `xSymbols` and `ySymbols` arguments.

If `rowsPerPage` (`colsPerPage`) is not given, rows (columns) are allocated automatically as uniformly as possible, in contiguous blocks of size at most `maxRowsPerPage` (`maxColsPerPage`). The allocation is performed by the function `allocateJobs`.

**Value**

None.

**Author(s)**

Peter Langfelder

**See Also**

The workhorse function `labeledHeatmap` for the actual heatmap plot; function `allocateJobs` for the allocation of rows/columns to each plot.

---

**Description**

Given scatterplot point coordinates, the function tries to place labels near the points such that the labels overlap as little as possible. User beware: the algorithm implemented here is quite primitive and while it will help in many cases, it is by no means perfect. Consider this function experimental. We hope to improve the algorithm in the future to make it useful in a broader range of situations.
Usage

```r
labelPoints(
 x, y, labels,
 cex = 0.7, offs = 0.01, xpd = TRUE,
 jiggle = 0, protectEdges = TRUE,
 doPlot = TRUE, ...
)
```

Arguments

- **x**: a vector of x coordinates of the points
- **y**: a vector of y coordinates of the points
- **labels**: labels to be placed next to the points
- **cex**: character expansion factor for the labels
- **offs**: offset of the labels from the plotted coordinates in inches
- **xpd**: logical: controls truncating labels to fit within the plotting region. See `par`.
- **jiggle**: amount of random noise to be added to the coordinates. This may be useful if the scatterplot is too regular (such as all points on one straight line).
- **protectEdges**: logical: should labels be shifted inside the (actual or virtual) frame of the plot?
- **doPlot**: logical: should the labels be actually added to the plot? Value `FALSE` may be useful if the user would like to simply compute the best label positions the function can come up with.
- **...**: other arguments to function `text`.

Details

The algorithm basically works by finding the direction of most surrounding points, and attempting to place the label in the opposite direction. There are (not uncommon) situations in which this placement is suboptimal; the author promises to further develop the function sometime in the future.

Note that this function does not plot the actual scatterplot; only the labels are plotted. Plotting the scatterplot is the responsibility of the user.

The argument `offs` needs to be carefully tuned to the size of the plotted symbols. Sorry, no automation here yet.

The argument `protectEdges` can be used to shift labels that would otherwise extend beyond the plot to within the plot. Sometimes this may cause some overlapping with other points or labels; use with care.

Value

Invisibly, a data frame with 3 columns, giving the x and y positions of the labels, and the labels themselves.

Author(s)

Peter Langfelder
See Also

plot.default, text

Examples

# generate some random points
set.seed(11);
  n = 20;
  x = runif(n);
  y = runif(n);

# Create a basic scatterplot
  col = standardColors(n);
  plot(x, y, pch = 21, col = 1, bg = col, cex = 2.6,
       xlim = c(-0.1, 1.1), ylim = c(-0.1, 1.0));
  labelPoints(x, y, paste("Pt", c(1:n), sep=""), offs = 0.10, cex = 1);

# label points using longer text labels. Note the positioning is not perfect, but close enough.
  plot(x, y, pch = 21, col = 1, bg = col, cex = 2.6,
       xlim = c(-0.1, 1.1), ylim = c(-0.1, 1.0));
  labelPoints(x, y, col, offs = 0.10, cex = 0.8);

labels2colors

Convert numerical labels to colors.

Description

Converts a vector or array of numerical labels into a corresponding vector or array of colors corresponding to the labels.

Usage

labels2colors(labels, zeroIsGrey = TRUE, colorSeq = NULL, naColor = "grey",
            commonColorCode = TRUE)

Arguments

labels Vector or matrix of non-negative integer or other (such as character) labels. See details.
zeroIsGrey If TRUE, labels 0 will be assigned color grey. Otherwise, labels below 1 will trigger an error.
colorSeq Color sequence corresponding to labels. If not given, a standard sequence will be used.
naColor Color that will encode missing values.
commonColorCode logical: if labels is a matrix, should each column have its own colors?
Details

If `labels` is numeric, it is used directly as index to the standard color sequence. If 0 is present among the labels and `zeroIsGrey=TRUE`, labels 0 are given grey color.

If `labels` is not numeric, its columns are turned into factors and the numeric representation of each factor is used to assign the corresponding colors. In this case `commonColorCode` governs whether each column gets its own color code, or whether the color code will be universal.

The standard sequence start with well-distinguishable colors, and after about 40 turns into a quasi-random sampling of all colors available in R with the exception of all shades of grey (and gray).

If the input `labels` have a dimension attribute, it is copied into the output, meaning the dimensions of the returned value are the same as those of the input `labels`.

Value

A vector or array of character strings of the same length or dimensions as `labels`.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

Examples

```r
labels = c(0:20);
labels2colors(labels);
labels = matrix(letters[1:9], 3, 3);
labels2colors(labels)
Note the difference when commonColorCode = FALSE
labels2colors(labels, commonColorCode = FALSE)
```

Description

`list2multiData` converts a list to a multiData structure; `multiData2list` does the inverse.

Usage

```r
list2multiData(data)
multiData2list(multiData)
```

Arguments

data A list to be converted to a multiData structure.

multiData A multiData structure to be converted to a list.
lowerTri2matrix

Details

A multiData structure is a vector of lists (one list for each set) where each list has a component data containing some useful information.

Value

For list2multiData, a multiData structure; for multiData2list, the corresponding list.

Author(s)

Peter Langfelder

lowerTri2matrix  Reconstruct a symmetric matrix from a distance (lower-triangular) representation

Description

Assuming the input vector contains a vectorized form of the distance representation of a symmetric matrix, this function creates the corresponding matrix. This is useful when re-forming symmetric matrices that have been vectorized to save storage space.

Usage

lowerTri2matrix(x, diag = 1)

Arguments

x  a numeric vector

diag  value to be put on the diagonal. Recycled if necessary.

Details

The function assumes that x contains the vectorized form of the distance representation of a symmetric matrix. In particular, x must have a length that can be expressed as \( n^2(n-1)/2 \), with n an integer. The result of the function is then an n times n matrix.

Value

A symmetric matrix whose lower triangle is given by x.

Author(s)

Peter Langfelder
Examples

# Create a symmetric matrix
m = matrix(c(1:16), 4, 4)
mat = (m + t(m));
diag(mat) = 0;

# Print the matrix
mat

# Take the lower triangle and vectorize it (in two ways)
x1 = mat[lower.tri(mat)]
x2 = as.vector(as.dist(mat))

all.equal(x1, x2) # The vectors are equal

# Turn the vectors back into matrices
new.mat = lowerTri2matrix(x1, diag = 0);

# Did we get back the same matrix?
all.equal(mat, new.mat)

matchLabels

Relabel module labels to best match the given reference labels

Description

Given a source and reference vectors of module labels, the function produces a module labeling that is equivalent to source, but individual modules are re-labeled so that modules with significant overlap in source and reference have the same labels.

Usage

matchLabels(source,
reference,
pThreshold = 5e-2,
na.rm = TRUE,
ignoreLabels = if (is.numeric(reference)) 0 else "grey",
extraLabels = if (is.numeric(reference)) c(1:1000) else standardColors()
)

Arguments

source a vector or a matrix of reference labels. The labels may be numeric or character.
reference a vector of reference labels.
pThreshold threshold of Fisher’s exact test for considering modules to have a significant overlap.
**matrixToNetwork**

na.rm logical: should missing values in either source or reference be removed? If not, missing values may be treated as a standard label or the function may throw an error (exact behaviour depends on whether the input labels are numeric or not).

ignoreLabels labels in source and reference to be considered unmatchable. These labels are excluded from the re-labeling procedure.

extraLabels a vector of labels for modules in source that cannot be matched to any modules in reference. The user should ensure that this vector contains enough labels since the function automatically removes a values that occur in either source, reference or ignoreLabels, to avoid possible confusion.

**Details**

Each column of source is treated separately. Unlike in previous version of this function, source and reference labels can be any labels, not necessarily of the same type.

The function calculates the overlap of the source and reference modules using Fisher’s exact test. It then attempts to relabel source modules such that each source module gets the label of the reference module that it overlaps most with, subject to not renaming two source modules to the same reference module. (If two source modules point to the same reference module, the one with the more significant overlap is chosen.)

Those source modules that cannot be matched to a reference module are labeled using those labels from extraLabels that do not occur in either of source, reference or ignoreLabels.

**Value**

A vector (if the input source labels are a vector) or a matrix (if the input source labels are a matrix) of the new labels.

**Author(s)**

Peter Langfelder

**See Also**

overlapTable for calculation of overlap counts and p-values;

standardColors for standard non-numeric WGCNA labels.
Usage

```r
matrixToNetwork(
 mat,
 symmetrizeMethod = c("average", "min", "max"),
 signed = TRUE,
 min = NULL, max = NULL,
 power = 12,
 diagEntry = 1)
```

Arguments

- **mat**: matrix to be turned into a network. Must be square.
- **symmetrizeMethod**: method for symmetrizing the matrix. The method will be applied to each component of mat and its transpose.
- **signed**: logical: should the resulting network be signed? Unsigned networks are constructed from `abs(mat)`.
- **min**: minimum allowed value for mat. If NULL, the actual attained minimum of mat will be used. Missing data are ignored. Values below min are truncated to min.
- **max**: maximum allowed value for mat. If NULL, the actual attained maximum of mat will be used. Missing data are ignored. Values below max are truncated to max.
- **power**: the soft-thresholding power.
- **diagEntry**: the value of the entries on the diagonal in the result. This is usually 1 but some applications may require a zero (or even NA) diagonal.

Details

If signed is FALSE, the matrix mat is first converted to its absolute value.

This function then symmetrizes the matrix using the symmetrizeMethod component-wise on mat and t(mat) (i.e., the transpose of mat).

In the next step, the symmetrized matrix is linearly scaled to the interval [0,1] using either min and max (each either supplied or determined from the matrix). Values outside of the [min, max] range are truncated to min or max.

Lastly, the adjacency is calculated by rasing the matrix to power. The diagonal of the result is set to diagEntry. Note that most WGCNA functions expect the diagonal of an adjacency matrix to be 1.

Value

The adjacency matrix that encodes the network.

Author(s)

Peter Langfelder
mergeCloseModules

See Also

adjacency for calculation of a correlation network (adjacency) from a numeric matrix such as expression data
adjacencyFromSimilarity for simpler calculation of a network from a symmetric similarity matrix.

mergeCloseModules : Merge close modules in gene expression data

Description

Merges modules in gene expression networks that are too close as measured by the correlation of their eigengenes.

Usage

mergeCloseModules(
  exprData, colors, 
  MEs = NULL, 
  useSets = NULL, 
  impute = TRUE, 
  checkDataFormat = TRUE, 
  unassdColor = if (is.numeric(colors)) 0 else "grey", 
  corFnc = cor, corOptions = list(use = 'p'), 
  useAbs = FALSE, 
  equalizeQuantiles = FALSE, 
  quantileSummary = "mean", 
  consensusQuantile = 0, 
  cutHeight = 0.2, 
  iterate = TRUE,
)
# Output options
rlabel = FALSE,
colorSeq = NULL,
getNewMEs = TRUE,
getNewUnassdME = TRUE,

# Options controlling behaviour of the function
trapErrors = FALSE,
verbose = 1, indent = 0)

Arguments

exprData          Expression data, either a single data frame with rows corresponding to samples and columns to genes, or in a multi-set format (see checkSets). See checkDataStructure below.

colors            A vector (numeric, character or a factor) giving module colors for genes. The method only makes sense when genes have the same color label in all sets, hence a single vector.

MEs               If module eigengenes have been calculated before, the user can save some computational time by inputting them. MEs should have the same format as exprData. If they are not given, they will be calculated.

useSets           A vector of scalar allowing the user to specify which sets will be used to calculate the consensus dissimilarity of module eigengenes. Defaults to all given sets.

impute            Should missing values be imputed in eigengene calculation? If imputation is disabled, the presence of NA entries will cause the eigengene calculation to fail and eigengenes will be replaced by their hubgene approximation. See moduleEigengenes for more details.

checkDataFormat   If TRUE, the function will check exprData and MEs for correct multi-set structure. If single set data is given, it will be converted into a format usable for the function. If FALSE, incorrect structure of input data will trigger an error.

unassdColor       Specifies the string that labels unassigned genes. Module of this color will not enter the module eigengene clustering and will not be merged with other modules.

corFnc            Correlation function to be used to calculate correlation of module eigengenes.

corOptions        Can be used to specify options to the correlation function, in addition to argument x which is used to pass the actual data to calculate the correlation of.

useAbs            Specifies whether absolute value of correlation or plain correlation (of module eigengenes) should be used in calculating module dissimilarity.

equalizeQuantiles Logical: should quantiles of the eigengene dissimilarity matrix be equalized ("quantile normalized")? The default is FALSE for reproducibility of old code; when there are many eigengenes (e.g., at least 50), better results may be achieved if quantile equalization is used.
**mergeCloseModules**

quantileSummary

One of "mean" or "median". Controls how a reference dissimilarity is computed from the input ones (using mean or median, respectively).

consensusQuantile

A number giving the desired quantile to use in the consensus similarity calculation (see details).

cutHeight

Maximum dissimilarity (i.e., 1-correlation) that qualifies modules for merging.

iterate

Controls whether the merging procedure should be repeated until there is no change. If FALSE, only one iteration will be executed.

relabel

Controls whether, after merging, color labels should be ordered by module size.

colorSeq

Color labels to be used for relabeling. Defaults to the standard color order used in this package if colors are not numeric, and to integers starting from 1 if colors is numeric.

getNewMEs

Controls whether module eigengenes of merged modules should be calculated and returned.

getNewUnassdME

When doing module eigengene manipulations, the function does not normally calculate the eigengene of the 'module' of unassigned ('grey') genes. Setting this option to TRUE will force the calculation of the unassigned eigengene in the returned newMEs, but not in the returned oldMEs.

trapErrors

Controls whether computational errors in calculating module eigengenes, their dissimilarity, and merging trees should be trapped. If TRUE, errors will be trapped and the function will return the input colors. If FALSE, errors will cause the function to stop.

verbose

Controls verbosity of printed progress messages. 0 means silent, up to (about) 5 the verbosity gradually increases.

indent

A single non-negative integer controlling indentation of printed messages. 0 means no indentation, each unit above that adds two spaces.

**Details**

This function merges input modules that are closely related. The similarities are measured by correlations of module eigengenes; a “consensus” measure is defined as the “consensus quantile” over the corresponding relationship in each set. Once the (dis-)similarity is calculated, average linkage hierarchical clustering of the module eigengenes is performed, the dendrogram is cut at the height cutHeight and modules on each branch are merged. The process is (optionally) repeated until no more modules are merged.

If, for a particular module, the module eigengene calculation fails, a hubgene approximation will be used.

The user should be aware that if a computational error occurs and trapErrors==TRUE, the returned list (see below) will not contain all of the components returned upon normal execution.

**Value**

If no errors occurred, a list with components
colors Color labels for the genes corresponding to merged modules. The function attempts to mimic the mode of the input colors: if the input colors is numeric, character and factor, respectively, so is the output. Note, however, that if the function performs relabeling, a standard sequence of labels will be used: integers starting at 1 if the input colors is numeric, and a sequence of color labels otherwise (see colorSeq above).

dendro Hierarchical clustering dendrogram (average linkage) of the eigengenes of the most recently computed tree. If iterate was set TRUE, this will be the dendrogram of the merged modules, otherwise it will be the dendrogram of the original modules.

oldDendro Hierarchical clustering dendrogram (average linkage) of the eigengenes of the original modules.

cutHeight The input cutHeight.

oldMEs Module eigengenes of the original modules in the sets given by useSets.

newMEs Module eigengenes of the merged modules in the sets given by useSets.

allOK A boolean set to TRUE.

If an error occurred and trapErrors==TRUE, the list only contains these components:

colors A copy of the input colors.

allOK a boolean set to FALSE.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

---

**metaAnalysis**

*Meta-analysis of binary and continuous variables*

**Description**

This is a meta-analysis complement to functions `standardscreeningbinarytrait` and `standardscreeningnumerictrait`. Given expression (or other) data from multiple independent data sets, and the corresponding clinical traits or outcomes, the function calculates multiple screening statistics in each data set, then calculates meta-analysis Z scores, p-values, and optionally q-values (False Discovery Rates). Three different ways of calculating the meta-analysis Z scores are provided: the Stouffer method, weighted Stouffer method, and using user-specified weights.

**Usage**

```r
metaAnalysis(multiExpr, multiTrait,
 binary = NULL,
 metaAnalysisWeights = NULL,
 corFnc = cor, corOptions = list(use = "p"),
 getQvalues = FALSE,
 getAreaUnderROC = FALSE,
```
useRankPvalue = TRUE,
rankPvalueOptions = list(),
setNames = NULL,
kruskalTest = FALSE, var.equal = FALSE,
metaKruskal = kruskalTest, na.action = "na.exclude")

Arguments

multiExpr   Expression data (or other data) in multi-set format (see checkSets). A vector of lists; in each list there must be a component named data whose content is a matrix or dataframe or array of dimension 2.
multiTrait  Trait or outcome data in multi-set format. Only one trait is allowed; consequently, the data component of each component list can be either a vector or a dataframe (matrix, array of dimension 2).
binary      Logical: is the trait binary (TRUE) or continuous (FALSE)? If not given, the decision will be made based on the content of multiTrait.
metaAnalysisWeights  Optional specification of set weights for meta-analysis. If given, must be a vector of non-negative weights, one entry for each set contained in multiExpr.
corFnc      Correlation function to be used for screening. Should be either the default cor or its robust alternative, bicor.
corOptions  A named list giving extra arguments to be passed to the correlation function.
getQvalues  Logical: should q-values (FDRs) be calculated?
getAreaUnderROC  Logical: should area under the ROC be calculated? Caution, enabling the calculation will slow the function down considerably for large data sets.
useRankPvalue  Logical: should the rankPvalue function be used to obtain alternative meta-analysis statistics?
rankPvalueOptions  Additional options for function rankPvalue. These include na.last (default "keep"), ties.method (default "average"), calculateQvalue (default copied from input getQvalues), and pValueMethod (default "all"). See the help file for rankPvalue for full details.
setNames     Optional specification of set names (labels). These are used to label the corresponding components of the output. If not given, will be taken from the names attribute of multiExpr. If names(multiExpr) is NULL, generic names of the form Set_1, Set2, ... will be used.
kruskalTest  Logical: should the Kruskal test be performed in addition to t-test? Only applies to binary traits.
var.equal    Logical: should the t-test assume equal variance in both groups? If TRUE, the function will warn the user that the returned test statistics will be different from the results of the standard t.test function.
metaKruskal  Logical: should the meta-analysis be based on the results of Kruskal test (TRUE) or Student t-test (FALSE)?
a.action     Specification of what should happen to missing values in t.test.
Details

The Stouffer method of combines Z statistics by simply taking a mean of input Z statistics and multiplying it by $\sqrt{n}$, where $n$ is the number of input data sets. We refer to this method as \texttt{Stouffer.equalWeights}. In general, a better (i.e., more powerful) method of combining Z statistics is to weigh them by the number of degrees of freedom (which approximately equals $n$). We refer to this method as \texttt{weightedStouffer}. Finally, the user can also specify custom weights, for example if a data set needs to be downweighted due to technical concerns; however, specifying own weights by hand should be done carefully to avoid possible selection biases.

Value

Data frame with the following components:

- \texttt{ID} Identifier of the input genes (or other variables)
- \texttt{Z.equalWeights} Meta-analysis Z statistics obtained using Stouffer’s method with equal weights
- \texttt{p.equalWeights} p-values corresponding to \texttt{Z.Stouffer.equalWeights}
- \texttt{q.equalWeights} q-values corresponding to \texttt{p.Stouffer.equalWeights}, only present if \texttt{getQvalues} is TRUE.
- \texttt{Z.RootDoFWeights} Meta-analysis Z statistics obtained using Stouffer’s method with weights given by the square root of the number of (non-missing) samples in each data set
- \texttt{p.RootDoFWeights} p-values corresponding to \texttt{Z.DoFWeights}
- \texttt{q.RootDoFWeights} q-values corresponding to \texttt{p.DoFWeights}, only present if \texttt{getQvalues} is TRUE.
- \texttt{Z.DoFWeights} Meta-analysis Z statistics obtained using Stouffer’s method with weights given by the number of (non-missing) samples in each data set
- \texttt{p.DoFWeights} p-values corresponding to \texttt{Z.DoFWeights}
- \texttt{q.DoFWeights} q-values corresponding to \texttt{p.DoFWeights}, only present if \texttt{getQvalues} is TRUE.
- \texttt{Z.userWeights} Meta-analysis Z statistics obtained using Stouffer’s method with user-defined weights. Only present if input \texttt{metaAnalysisWeights} are present.
- \texttt{p.userWeights} p-values corresponding to \texttt{Z.userWeights}
- \texttt{q.userWeights} q-values corresponding to \texttt{p.userWeights}, only present if \texttt{getQvalues} is TRUE.

The next set of columns is present only if input \texttt{useRankPvalue} is TRUE and contain the output of the function \texttt{rankPvalue} with the same column weights as the above meta-analysis. Depending on the input options \texttt{calculateQvalue} and \texttt{pValueMethod} in \texttt{rankPvalueOptions}, some columns may be missing. The following columns are calculated using equal weights for each data set.

- \texttt{pValueExtremeRank.equalWeights} This is the minimum between \texttt{pValueLowRank} and \texttt{pValueHighRank}, i.e. \texttt{min(pValueLow, pValueHigh)}
- \texttt{pValueLowRank.equalWeights} Asymptotic p-value for observing a consistently low value across the columns of datS based on the rank method.
Asymptotic p-value for observing a consistently low value across the columns of datS based on the rank method.

This is the minimum between pValueLowScale and pValueHighScale, i.e. \( \min(pValueLow, pValueHigh) \)

Asymptotic p-value for observing a consistently low value across the columns of datS based on the Scale method.

Asymptotic p-value for observing a consistently low value across the columns of datS based on the rank method.

Asymptotic p-value for observing a consistently low value across the columns of datS based on the Scale method.

local false discovery rate (q-value) corresponding to the p-value \( pValueExtremeRank \)

local false discovery rate (q-value) corresponding to the p-value \( pValueLowRank \)

local false discovery rate (q-value) corresponding to the p-value \( pValueHighRank \)

local false discovery rate (q-value) corresponding to the p-value \( pValueExtremeScale \)

local false discovery rate (q-value) corresponding to the p-value \( pValueLowScale \)

local false discovery rate (q-value) corresponding to the p-value \( pValueHighScale \)

Analogous columns calculated by weighting each input set using the square root of the number of samples, number of samples, and user weights (if given). The corresponding column names carry the suffixes RootDoFWeights, DoFWeights, userWeights.

The following columns contain results returned by `standardScreeningBinaryTrait` or `standardScreeningNumericTrait` (depending on whether the input trait is binary or continuous).

For binary traits, the following information is returned for each set:

Pearson correlation with a binary numeric version of the input variable. The numeric variable equals 1 for level 1 and 2 for level 2. The levels are given by `levels(factor(y))`.

Student t-test statistic

two-sided Student t-test p-value.

(q-value) corresponding to the p-value based on the Student T-test p-value (Storey et al 2004).
foldChange.Set_1, foldChange.Set_2, ...

a (signed) ratio of mean values. If the mean in the first group (corresponding to level 1) is larger than that of the second group, it equals meanFirstGroup/meanSecondGroup. But if the mean of the second group is larger than that of the first group it equals -meanSecondGroup/meanFirstGroup (notice the minus sign).

meanFirstGroup.Set_1, meanSecondGroup.Set_2, ...

means of columns in input datExpr across samples in the second group.

SE.FirstGroup.Set_1, SE.FirstGroup.Set_2, ...

standard errors of columns in input datExpr across samples in the first group. Recall that SE(x)=sqrt(var(x)/n) where n is the number of non-missing values of x.

SE.SecondGroup.Set_1, SE.SecondGroup.Set_2, ...

standard errors of columns in input datExpr across samples in the second group.

areaUnderROC.Set_1, areaUnderROC.Set_2, ...

the area under the ROC, also known as the concordance index or C.index. This is a measure of discriminatory power. The measure lies between 0 and 1 where 0.5 indicates no discriminatory power. 0 indicates that the "opposite" predictor has perfect discriminatory power. To compute it we use the function rcorr.cens with outx=TRUE (from Frank Harrel’s package Hmisc).

npresentSamples.Set_1, npresentSamples.Set_2, ...

number of samples with finite measurements for each gene.

If input kruskalTest is TRUE, the following columns further summarize results of Kruskal-Wallis test:

stat.Kruskal.Set_1, stat.Kruskal.Set_2, ...

Kruskal-Wallis test statistic.

stat.Kruskal.signed.Set_1, stat.Kruskal.signed.Set_2,...

(Warning: experimental) Kruskal-Wallis test statistic including a sign that indicates whether the average rank is higher in second group (positive) or first group (negative).

pvaluekruskal.Set_1, pvaluekruskal.Set_2, ...

Kruskal-Wallis test p-value.

qkruskal.Set_1, qkruskal.Set_2, ...

q-values corresponding to the Kruskal-Wallis test p-value (if input qValues==TRUE).

Z.Set1, Z.Set2, ...

Z statistics obtained from pvalueStudent.Set1, pvalueStudent.Set2, ... or from pvaluekruskal.Set1, pvaluekruskal.Set2, ..., depending on input metaKruskal.

For numeric traits, the following columns are returned:

cor.Set_1, cor.Set_2, ...

correlations of all genes with the trait

Z.Set1, Z.Set2, ...

Fisher Z statistics corresponding to the correlations

pvalueStudent.Set_1, pvalueStudent.Set_2, ...

Student p-values of the correlations
**metaZfunction**

```
qvalueStudent.Set_1, qvalueStudent.Set_1, ...
 (if input qValues==TRUE) q-values of the correlations calculated from the p-values
AreaUnderROC.Set_1, AreaUnderROC.Set_2, ...
 area under the ROC
nPresentSamples.Set_1, nPresentSamples.Set_2, ...
 number of samples present for the calculation of each association.
```

**Author(s)**

Peter Langfelder

**References**

For Stouffer’s method, see


A discussion of weighted Stouffer’s method can be found in

Whitlock, M. C., Combining probability from independent tests: the weighted Z-method is superior to Fisher’s approach, Journal of Evolutionary Biology 18:5 1368 (2005)

**See Also**

`standardScreeningBinaryTrait, standardScreeningNumericTrait` for screening functions for individual data sets

---

**Description**

The function calculates a meta analysis Z statistic based on an input data frame of Z statistics.

**Usage**

```
metaZfunction(datZ, columnweights = NULL)
```

**Arguments**

- `datZ` Matrix or data frame of Z statistics (assuming standard normal distribution under the null hypothesis). Rows correspond to genes, columns to independent data sets.
- `columnweights` optional vector of non-negative numbers for weighing the columns of `datZ`. 
Details
For example, if datZ has 3 columns whose columns are labelled Z1,Z2,Z3 then ZMeta= (Z1+Z2+Z3)/sqrt(3).
Under the null hypothesis (where all Z statistics follow a standard normal distribution and the Z statistics are independent), ZMeta also follows a standard normal distribution. To calculate a 2 sided p-value, one an use the following code pvalue=2*pnorm(-abs(ZMeta))

Value
Vector of meta analysis Z statistic. Under the null hypothesis this should follow a standard normal distribution.

Author(s)
Steve Horvath

---

minWhichMin

Fast joint calculation of row- or column-wise minima and indices of minimum elements

Description
Fast joint calculation of row- or column-wise minima and indices of minimum elements. Missing data are removed.

Usage
minWhichMin(x, byRow = FALSE, dims = 1)

Arguments
x A numeric matrix or array.
byRow Logical: should the minima and indices be found for columns (FALSE) or rows (TRUE)?
dims Specifies dimensions for which to find the minima and indices. For byRow = FALSE, they are calculated for dimensions dims+1 to n=length(dim(x)); for For byRow = TRUE, they are calculated for dimensions 1,...,dims.

Value
A list with two components, min and which; each is a vector or array with dimensions
dim(x)[(dims+1):n] if byRow = FALSE, and
dim(x)[1:dims] if byRow = TRUE.

Author(s)
Peter Langfelder
moduleColor.getMEprefix

Get the prefix used to label module eigengenes.

Description

Returns the currently used prefix used to label module eigengenes. When returning module eigengenes in a dataframe, names of the corresponding columns will start with the given prefix.

Usage

moduleColor.getMEprefix()

Details

Returns the prefix used to label module eigengenes. When returning module eigengenes in a dataframe, names of the corresponding columns will consist of the corresponding color label preceded by the given prefix. For example, if the prefix is "PC" and the module is turquoise, the corresponding module eigengene will be labeled "PCTurquoise". Most of old code assumes "PC", but "ME" is more instructive and used in some newer analyses.

Value

A character string.

Note

Currently the standard prefix is "ME" and there is no way to change it.

Author(s)

Peter Langfelder, <peter.langfelder@gmail.com>

See Also

moduleEigengenes
moduleEigengenes  

*Calculate module eigengenes.*

**Description**

Calculates module eigengenes (1st principal component) of modules in a given single dataset.

**Usage**

```r
moduleEigengenes(expr,
 colors,
 impute = TRUE,
 nPC = 1,
 align = "along average",
 excludeGrey = FALSE,
 grey = if (is.numeric(colors)) 0 else "grey",
 subHubs = TRUE,
 trapErrors = FALSE,
 returnValidOnly = trapErrors,
 softPower = 6,
 scale = TRUE,
 verbose = 0, indent = 0)
```

**Arguments**

- `expr`  
  Expression data for a single set in the form of a data frame where rows are samples and columns are genes (probes).

- `colors`  
  A vector of the same length as the number of probes in `expr`, giving module color for all probes (genes). Color "grey" is reserved for unassigned genes.

- `impute`  
  If `TRUE`, expression data will be checked for the presence of `NA` entries and if the latter are present, numerical data will be imputed, using function `impute.knn` and probes from the same module as the missing datum. The function `impute.knn` uses a fixed random seed giving repeatable results.

- `nPC`  
  Number of principal components and variance explained entries to be calculated. Note that only the first principal component is returned; the rest are used only for the calculation of proportion of variance explained. The number of returned variance explained entries is currently `min(nPC, 10)`. If given `nPC` is greater than 10, a warning is issued.

- `align`  
  Controls whether eigengenes, whose orientation is undetermined, should be aligned with average expression (`align = "along average"`, the default) or left as they are (`align = ""`). Any other value will trigger an error.

- `excludeGrey`  
  Should the improper module consisting of 'grey' genes be excluded from the eigengenes?

- `grey`  
  Value of `colors` designating the improper module. Note that if `colors` is a factor of numbers, the default value will be incorrect.
subHubs  Controls whether hub genes should be substituted for missing eigengenes. If TRUE, each missing eigengene (i.e., eigengene whose calculation failed and the error was trapped) will be replaced by a weighted average of the most connected hub genes in the corresponding module. If this calculation fails, or if subHubs==FALSE, the value of trapErrors will determine whether the offending module will be removed or whether the function will issue an error and stop.

trapErrors  Controls handling of errors from that may arise when there are too many NA entries in expression data. If TRUE, errors from calling these functions will be trapped without abnormal exit. If FALSE, errors will cause the function to stop. Note, however, that subHubs takes precedence in the sense that if subHubs==TRUE and trapErrors==FALSE, an error will be issued only if both the principal component and the hubgene calculations have failed.

returnValidOnly  logical; controls whether the returned data frame of module eigengenes contains columns corresponding only to modules whose eigengenes or hub genes could be calculated correctly (TRUE), or whether the data frame should have columns for each of the input color labels (FALSE).

softPower  The power used in soft-thresholding the adjacency matrix. Only used when the hubgene approximation is necessary because the principal component calculation failed. It must be non-negative. The default value should only be changed if there is a clear indication that it leads to incorrect results.

scale  logical; can be used to turn off scaling of the expression data before calculating the singular value decomposition. The scaling should only be turned off if the data has been scaled previously, in which case the function can run a bit faster. Note however that the function first imputes, then scales the expression data in each module. If the expression contain missing data, scaling outside of the function and letting the function impute missing data may lead to slightly different results than if the data is scaled within the function.

verbose  Controls verbosity of printed progress messages. 0 means silent, up to (about) 5 the verbosity gradually increases.

indent  A single non-negative integer controlling indentation of printed messages. 0 means no indentation, each unit above that adds two spaces.

Details

Module eigengene is defined as the first principal component of the expression matrix of the corresponding module. The calculation may fail if the expression data has too many missing entries. Handling of such errors is controlled by the arguments subHubs and trapErrors. If subHubs==TRUE, errors in principal component calculation will be trapped and a substitute calculation of hubgenes will be attempted. If this fails as well, behaviour depends on trapErrors: if TRUE, the offending module will be ignored and the return value will allow the user to remove the module from further analysis; if FALSE, the function will stop.

From the user’s point of view, setting trapErrors==FALSE ensures that if the function returns normally, there will be a valid eigengene (principal component or hubgene) for each of the input colors. If the user sets trapErrors==TRUE, all calculational (but not input) errors will be trapped, but the user should check the output (see below) to make sure all modules have a valid returned eigengene.
While the principal component calculation can fail even on relatively sound data (it does not take all that many "well-placed" NA to torpedo the calculation), it takes many more irregularities in the data for the hubgene calculation to fail. In fact such a failure signals there likely is something seriously wrong with the data.

**Value**

A list with the following components:

- **eigengenes**: Module eigengenes in a dataframe, with each column corresponding to one eigengene. The columns are named by the corresponding color with an "ME" prepended, e.g., METurquoise etc. If `returnValidOnly==FALSE`, module eigengenes whose calculation failed have all components set to NA.

- **averageExpr**: If `align == "along average"`, a dataframe containing average normalized expression in each module. The columns are named by the corresponding color with an "AE" prepended, e.g., AETurquoise etc.

- **varExplained**: A dataframe in which each column corresponds to a module, with the component `varExplained[PC, module]` giving the variance of module explained by the principal component no. PC. The calculation is exact irrespective of the number of computed principal components. At most 10 variance explained values are recorded in this dataframe.

- **nPC**: A copy of the input nPC.

- **validMEs**: A boolean vector. Each component (corresponding to the columns in data) is TRUE if the corresponding eigengene is valid, and FALSE if it is invalid. Valid eigengenes include both principal components and their hubgene approximations. When `returnValidOnly==FALSE`, by definition all returned eigengenes are valid and the entries of `validMEs` are all TRUE.

- **validColors**: A copy of the input colors with entries corresponding to invalid modules set to grey if given, otherwise 0 if `colors` is numeric and "grey" otherwise.

- **allOK**: Boolean flag signalling whether all eigengenes have been calculated correctly, either as principal components or as the hubgene average approximation.

- **allPC**: Boolean flag signalling whether all returned eigengenes are principal components.

- **isPC**: Boolean vector. Each component (corresponding to the columns in `eigengenes`) is TRUE if the corresponding eigengene is the first principal component and FALSE if it is the hubgene approximation or is invalid.

- **ishub**: Boolean vector. Each component (corresponding to the columns in `eigengenes`) is TRUE if the corresponding eigengene is the hubgene approximation and FALSE if it is the first principal component or is invalid.

- **validAEs**: Boolean vector. Each component (corresponding to the columns in `eigengenes`) is TRUE if the corresponding module average expression is valid.

- **allAEOK**: Boolean flag signalling whether all returned module average expressions contain valid data. Note that `returnValidOnly==TRUE` does not imply `allAEOK==TRUE`: some invalid average expressions may be returned if their corresponding eigengenes have been calculated correctly.
moduleMergeUsingKME

Author(s)
Steve Horvath <Shorvath@mednet.ucla.edu>, Peter Langfelder <peter.Langfelder@gmail.com>

References

See Also
svd, impute.knn

moduleMergeUsingKME Merge modules and reassign genes using kME.

Description
This function takes an expression data matrix (and other user-defined parameters), calculates the module membership (kME) values, and adjusts the module assignments, merging modules that are not sufficiently distinct and reassigning modules that were originally assigned suboptimally.

Usage
moduleMergeUsingKME(
  datExpr, colorh, ME = NULL,
  threshPercent = 50, mergePercent = 25,
  reassignModules = TRUE,
  convertGrey = TRUE,
  omitColors = "grey",
  reassignScale = 1,
  threshNumber = NULL)

Arguments

datExpr An expression data matrix, with samples as rows, genes (or probes) as column.
colorh The color vector (module assignments) corresponding to the columns of datExpr.
ME Either NULL (default), at which point the module eigengenes will be calculated, or pre-calculated module eigengenes for each of the modules, with samples as rows (corresponding to datExpr), and modules corresponding to columns (column names MUST be module colors or module colors prefixed by "ME" or "PC").
threshPercent Threshold percent of the number of genes in the module that should be included for the various analyses. For example, in a module with 200 genes, if threshPercent=50 (default), then 50 genes will be checked for reassignment and used to test whether two modules should be merged. See also threshNumber.
mergePercent  If greater than this percent of the assigned genes are above the threshold are in a
module other than the assigned module, then these two modules will be merged.
For example, if mergePercent=25 (default), and the 70 out of 200 genes in the
blue module were more highly correlated with the black module eigengene, then
all genes in the blue module would be reassigned to the black module.
reassignModules
If TRUE (default), genes are reassigned to the module with which they have the
highest module membership (kME), but only if their kME is above the thresh-
Percent (or threshNumber) threshold of that module.
convertGrey If TRUE (default), unassigned (grey) genes are assigned as in "reassignMod-
ules"
omitColors These are all of the module assignments which indicate genes that are not as-
signed to modules (default="grey"). These genes will all be assigned as "grey"
by this function.
reassignScale A value between 0 and 1 (default) which determines how the threshPercent gets
scaled for reassigning genes. Smaller values reassign more genes, but does not
affect the merging process.
threshNumber Either NULL (default) or, if entered, every module is counted as having exactly
threshNumber genes, and threshPercent it ignored. This parameter should have the effect of
Value
moduleColors The NEW color vector (module assignments) corresponding to the columns of
datExpr, after module merging and reassignments.
mergeLog A log of the order in which modules were merged, for reference.
Note
Note that this function should be considered "experimental" as it has only been beta tested. Please
e-mail jeremyinla@gmail.com if you have any issues with the function.
Author(s)
Jeremy Miller
Examples

```r
First simulate some data and the resulting network dendrogram
set.seed(100)
MEturquoise = sample(1:100, 50)
Mblue = sample(1:100, 50)
Mbrown = sample(1:100, 50)
MEyellow = sample(1:100, 50)
MEgreen = c(MEyellow[1:30], sample(1:100, 20))
MERed = c(MEbrown[1:20], sample(1:100, 30))
#MEblack = c(MEblue [1:25], sample(1:100, 25))
ME = data.frame(MEturquoise, Mblue, MBrown, MEyellow, MEgreen, MERed, #, MEblack)
```
moduleNumber

```r
dat1 = simulateDatExpr(ME, 400, c(0.15, 0.13, 0.12, 0.10, 0.09, 0.09, 0.1), signed=TRUE)
TOM1 = TOMsimilarityFromExpr(dat1$datExpr, networkType="signed")
tree1 = fastcluster::hclust(as.dist(1-TOM1), method="average")

Here is an example using different mergePercentages, # setting an inclusive threshPercent (91)
colorh1 <- colorPlot <- labels2colors(dat1$allLabels)
merges = c(65,40,20,5)
for (m in merges)
 colorPlot = cbind(colorPlot,
 moduleMergeUsingKME(dat1$datExpr, colorh1,
 threshPercent=91, mergePercent=m)$moduleColors)
plotDendroAndColors(tree1, colorPlot, c("ORIG", merges), dendroLabels=FALSE)

Here is an example using a lower reassignScale (so that more genes get reassigned)
colorh1 <- colorPlot <- labels2colors(dat1$allLabels)
merges = c(65,40,20,5)
for (m in merges)
 colorPlot = cbind(colorPlot,
 moduleMergeUsingKME(dat1$datExpr, colorh1,threshPercent=91,
 reassignScale=0.7, mergePercent=m)$moduleColors)
plotDendroAndColors(tree1, colorPlot, c("ORIG", merges), dendroLabels=FALSE)

Here is an example using a less-inclusive threshPercent (75), # little if anything is merged.
colorh1 <- colorPlot <- labels2colors(dat1$allLabels)
merges = c(65,40,20,5)
for (m in merges)
 colorPlot = cbind(colorPlot,
 moduleMergeUsingKME(dat1$datExpr, colorh1,
 threshPercent=75, mergePercent=m)$moduleColors)
plotDendroAndColors(tree1, colorPlot, c("ORIG", merges), dendroLabels=FALSE)
(Note that with real data, the default threshPercent=50 usually results # in some modules being merged)
```

---

### Description

Detects branches of on the input dendrogram by performing a fixed-height cut.

### Usage

```r
moduleNumber(dendro, cutHeight = 0.9, minSize = 50)
```

### Arguments

- **dendro**: a hierarchical clustering dendrogram such as one returned by hclust.
- **cutHeight**: Maximum joining heights that will be considered.
- **minSize**: Minimum cluster size.
Details

All contiguous branches below the height cutHeight that contain at least minSize objects are assigned unique positive numerical labels; all unassigned objects are assigned label 0.

Value

A vector of numerical labels giving the assignment of each object.

Note

The numerical labels may not be sequential. See normalizeLabels for a way to put the labels into a standard order.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

See Also

hclust, cutree, normalizeLabels

Description

Calculations of module preservation statistics between independent data sets.

Usage

```
modulePreservation(
 multiData,
 multiColor,
 dataIsExpr = TRUE,
 networkType = "unsigned",
 corFnc = "cor",
 corOptions = "use = 'p'",
 referenceNetworks = 1,
 testNetworks = NULL,
 nPermutations = 100,
 includekMEallInSummary = FALSE,
 restrictSummaryForGeneralNetworks = TRUE,
 calculateQvalue = FALSE,
 randomSeed = 12345,
 maxGoldModuleSize = 1000,
 maxModuleSize = 1000,
 quickCor = 1,
)```
modulePreservation

ccTupleSize = 2,
calculateCor.kIMall = FALSE,
calculateClusterCoeff = FALSE,
useInterpolation = FALSE,
checkData = TRUE,
greyName = NULL,
savePermutedStatistics = TRUE,
loadPermutedStatistics = FALSE,
permutedStatisticsFile = if (useInterpolation) "permutedStats-intrModules.RData"
else "permutedStats-actualModules.RData",
plotInterpolation = TRUE,
interpolationPlotFile = "modulePreservationInterpolationPlots.pdf",
discardInvalidOutput = TRUE,
parallelCalculation = FALSE,
verbose = 1, indent = 0)

Arguments

multiData expression data or adjacency data in the multi-set format (see `checkSets`). A vector of lists, one per set. Each set must contain a component data that contains the expression or adjacency data. If expression data are used, rows correspond to samples and columns to genes or probes. In case of adjacencies, each data matrix should be a symmetric matrix ith entries between 0 and 1 and unit diagonal. Each component of the outermost list should be named.

multiColor a list in which every component is a vector giving the module labels of genes in `multiExpr`. The components must be named using the same names that are used in `multiExpr`; these names are used to match labels to expression data sets. See details.

dataIsExpr logical: if TRUE, `multiData` will be interpreted as expression data; if FALSE, `multiData` will be interpreted as adjacencies.

networkType network type. Allowed values are (unique abbreviations of) "unsigned", "signed", "signed hybrid". See `adjacency`.

corFnc character string specifying the function to be used to calculate co-expression similarity. Defaults to Pearson correlation. Another useful choice is `bicor`. More generally, any function returning values between -1 and 1 can be used.

corOptions character string specifying additional arguments to be passed to the function given by `corFnc`. Use `"use = 'p', method = 'spearman'"` to obtain Spearman correlation.

referenceNetworks a vector giving the indices of expression data to be used as reference networks. Reference networks must have their module labels given in `multiColor`.

testNetworks a list with one component per each entry in `referenceNetworks` above, giving the test networks in which to evaluate module preservation for the corresponding reference network. If not given, preservation will be evaluated in all networks (except each reference network). If `referenceNetworks` is of length 1, `testNetworks` can also be a vector (instead of a list containing the single vector).
nPermutations specifies the number of permutations that will be calculated in the permutation test.

includekMEallInSummary

logical: should cor.kMEall be included in the calculated summary statistics? Because kMEall takes into account all genes in the network, this statistic measures preservation of the full network with respect to the eigengene of the module. This may be undesirable, hence the default is FALSE.

restrictSummaryForGeneralNetworks

logical: should the summary statistics for general (not correlation) networks be restricted (density to meanAdj, connectivity to cor.kIM and cor.Adj)? The default TRUE corresponds to published work.

calculateQvalue

logical: should q-values (local FDR estimates) be calculated? Package qvalue must be installed for this calculation. Note that q-values may not be meaningful when the number of modules is small and/or most modules are preserved.

randomSeed

seed for the random number generator. If NULL, the seed will not be set. If non-NULL and the random generator has been initialized prior to the function call, the latter’s state is saved and restored upon exit.

maxGoldModuleSize

maximum size of the "gold" module, i.e., the random sample of all network genes.

maxModuleSize

maximum module size used for calculations. Modules larger than maxModuleSize will be reduced by randomly sampling maxModuleSize genes.

quickCor

number between 0 and 1 specifying the handling of missing data in calculation of correlation. Zero means exact but potentially slower calculations; one means potentially faster calculations, but with potentially inaccurate results if the proportion of missing data is large. See cor for more details.

cctupletSize

tuplet size for co-clustering calculations.

calculateCor.kIMall

logical: should cor.kMEall be calculated? This option is only valid for adjacency input. If FALSE, cor.kIMall will not be calculated, potentially saving significant amount of time if the input adjacencies are large and contain many modules.

calculateClusterCoeff

logical: should statistics based on the clustering coefficient be calculated? While these statistics may be interesting, the calculations are also computationally expensive.

checkData

logical: should data be checked for excessive number of missing entries? See goodSamplesGenesMS for details.

greyName

label used for unassigned genes. Traditionally such genes are labeled by grey color or numeric label 0. These values are the default when multicColor contains character or numeric vectors, respectively.

savePermutedStatistics

logical: should calculated permutation statistics be saved? Saved statistics may be re-used if the calculation needs to be repeated.

permutedStatisticsFile

file name to save the permutation statistics into.
loadPermutatedStatistics
 logical: should permutation statistics be loaded? If a previously executed calculation needs to be repeated, loading permutation study results can cut the calculation time many-fold.

useInterpolation
 logical: should permutation statistics be calculated by interpolating an artificial set of evenly spaced modules? This option may potentially speed up the calculations, but it restricts calculations to density measures.

plotInterpolation
 logical: should interpolation plots be saved? If interpolation is used (see useInterpolation above), the function can optionally generate diagnostic plots that can be used to assess whether the interpolation makes sense.

interpolationPlotFile
 file name to save the interpolation plots into.

discardInvalidOutput
 logical: should output columns containing no valid data be discarded? This option may be useful when input data isExpr is FALSE and some of the output statistics cannot be calculated. This option causes such statistics to be dropped from output.

parallelCalculation
 logical: should calculations be done in parallel? Note that parallel calculations are turned off by default and will lead to somewhat DIFFERENT results than serial calculations because the random seed is set differently. For the calculation to actually run in parallel mode, a call to enableWGCGNAThreads must be made before this function is called.

verbose
 integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

indent
 indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

This function calculates module preservation statistics pair-wise between given reference sets and all other sets in multiExpr. Reference sets must have their corresponding module assignment specified in multiColor; module assignment is optional for test sets. Individual expression sets and their module labels are matched using names of the corresponding components in multiExpr and multiColor.

For each reference-test pair, the function calculates module preservation statistics that measure how well the modules of the reference set are preserved in the test set. If the multiColor also contains module assignment for the test set, the calculated statistics also include cross-tabulation statistics that make use of the test module assignment.

For each reference-test pair, the function only uses genes (columns of the data component of each component of multiExpr) that are in common between the reference and test set. Columns are matched by column names, so column names must be valid.

In addition to preservation statistics, the function also calculates several statistics of module quality, that is measures of how well-defined modules are in the reference set. The quality statistics are
calculated with respect to genes in common with with a test set; thus the function calculates a set of
genome statistics for each reference-test pair. This may be somewhat counter-intuitive, but it allows
a direct comparison of corresponding quality and preservation statistics.

The calculated p-values are determined from the Z scores of individual measures under assumption
of normality. No p-value is calculated for the Zsummary measures. Bonferoni correction to the
number of tested modules. Because the p-values for strongly preserved modules are often extremely
low, the function reports natural logarithms (base e) of the p-values. However, q-values are reported
untransformed since they are calculated that way in package qvalue.

Missing data are removed (but see quickCor above).

Value

The function returns a nested list of preservation statistics. At the top level, the list components are:

- **quality**: observed values, Z scores, log p-values, Bonferoni-corrected log p-values, and
 (optionally) q-values of quality statistics. All logarithms are in base 10.
- **preservation**: observed values, Z scores, log p-values, Bonferoni-corrected log p-values, and
 (optionally) q-values of density and connectivity preservation statistics. All logarithms are in base 10.
- **accuracy**: observed values, Z scores, log p-values, Bonferoni-corrected log p-values, and
 (optionally) q-values of cross-tabulation statistics. All logarithms are in base 10.
- **referenceSeparability**: observed values, Z scores, log p-values, Bonferoni-corrected log p-values, and
 (optionally) q-values of module separability in the reference network. All logarithms are in base 10.
- **testSeparability**: observed values, Z scores, p-values, Bonferoni-corrected p-values, and
 (optionally) q-values of module separability in the test network. All logarithms are in base 10.
- **permutationDetails**: results of individual permutations, useful for diagnostics

All of the above are lists. The lists quality, preservation, referenceSeparability, and
testSeparability each contain 4 or 5 components: observed contains observed values, Z con-
tains the corresponding Z scores, log.p contains base 10 logarithms of the p-values, log.pBonalp
contains base 10 logarithms of the Bonferoni-corrected p-values, and optionally q contains the
associated q-values. The list accuracy contains observed, Z, log.p, log.pBonalp, optionally q, and
additional components observedOverlapCounts and observedFisherPvalues that contain the
observed matrices of overlap counts and Fisher test p-values.

Each of the lists observed, Z, log.p, log.pBonalp, optionally q, observedOverlapCounts and
observedFisherPvalues is structured as a 2-level list where the outer components correspond to
reference sets and the inner components to tests sets. As an example, preservation$observed[[1]][[2]]
contains the density and connectivity preservation statistics for the preservation of set 1 modules in
set 2, that is set 1 is the reference set and set 2 is the test set. preservation$observed[[1]][[2]]
is a data frame in which each row corresponds to a module in the reference network 1 plus one row
for the unassigned objects, and one row for a "module" that contains randomly sampled objects and
that represents a whole-network average. Each column corresponds to a statistic as indicated by the
column name.
Note
For large data sets, the permutation study may take a while (typically on the order of several hours). Use verbose = 3 to get detailed progress report as the calculations advance.

Author(s)
Rui Luo and Peter Langfelder

References
Peter Langfelder, Rui Luo, Michael C. Oldham, and Steve Horvath, to appear

See Also
Network construction and module detection functions in the WGCNA package such as adjacency, blockwiseModules; rudimentary cleaning in goodSamplesGenesMS; the WGCNA implementation of correlation in cor.

mtd.apply

Apply a function to each set in a multiData structure.

Description
Inspired by lapply, these functions apply a given function to each data component in the input multiData structure, and optionally simplify the result to an array if possible.

Usage
mtd.apply(
 # What to do
 multiData, FUN, ...

 # Pre-existing results and update options
 mdaExistingResults = NULL, mdaUpdateIndex = NULL,
 mdaCopyNonData = FALSE,

 # Output formatting options
 mdaSimplify = FALSE,
 returnList = FALSE,

 # Internal behaviour options
 mdaVerbose = 0, mdaIndent = 0)

mtd.applyToSubset(
 # What to do
 multiData, FUN, ...,
Which rows and cols to keep
mdaRowIndex = NULL, mdaColIndex = NULL,

Pre-existing results and update options
mdaExistingResults = NULL, mdaUpdateIndex = NULL,
mdaCopyNonData = FALSE,

Output formatting options
mdaSimplify = FALSE,
returnList = FALSE,

Internal behaviour options
mdaVerbose = 0, mdaIndent = 0)

Arguments

multiData A multiData structure to apply the function over
FUN Function to be applied.
... Other arguments to the function FUN.
mdaRowIndex If given, must be a list of the same length as multiData. Each element must be a logical or numeric vector that specifies rows in each data component to select before applying the function.
mdaColIndex A logical or numeric vector that specifies columns in each data component to select before applying the function.
mdaExistingResults Optional list that contains previously calculated results. This can be useful if only a few sets in multiData have changed and recalculating the unchanged ones is computationally expensive. If not given, all calculations will be performed. If given, components of this list are copied into the output. See mdaUpdateIndex for which components are re-calculated by default.
mdaUpdateIndex Optional specification of which sets in multiData the calculation should actually be carried out. This argument has an effect only if mdaExistingResults is non-NULL. If the length of mdaExistingResults (call the length 'k') is less than the number of sets in multiData, the function assumes that the existing results correspond to the first 'k' sets in multiData and the rest of the sets are automatically calculated, irrespective of the setting of mdaUpdateIndex. The argument mdaUpdateIndex can be used to specify re-calculation of some (or all) of the results that already exist in mdaExistingResults.
mdaCopyNonData Logical: should non-data components of multiData be copied into the output? Note that the copying is incompatible with simplification; enabling both will trigger an error.
mdaSimplify Logical: should the result be simplified to an array, if possible? Note that this may lead to errors; if so, disable simplification.
returnList Logical: should the result be turned into a list (rather than a multiData structure)? Note that this is incompatible with simplification: if mdaSimplify is TRUE, this argument is ignored.
mdaVerbose Integer specifying whether progress diagnostics should be printed out. Zero means silent, increasing values will lead to more diagnostic messages.

mdaIndent Integer specifying the indentation of the printed progress messages. Each unit equals two spaces.

Details

A multiData structure is intended to store (the same type of) data for multiple, possibly independent, realizations (for example, expression data for several independent experiments). It is a list where each component corresponds to an (independent) data set. Each component is in turn a list that can hold various types of information but must have a data component. In a "strict" multiData structure, the data components are required to each be a matrix or a data frame and have the same number of columns. In a "loose" multiData structure, the data components can be anything (but for most purposes should be of comparable type and content).

mtd.apply works on any "loose" multiData structure; mtd.applyToSubset assumes (and checks for) a "strict" multiData structure.

Value

A multiData structure containing the results of the supplied function on each data component in the input multiData structure. Other components are simply copied.

Author(s)

Peter Langfelder

See Also

multiData to create a multiData structure; mtd.applyToSubset for applying a function to a subset of a multiData structure; mtd.mapply for vectorizing over several arguments.

mtd.mapply

Apply a function to elements of given multiData structures.

Description

Inspired by mapply, this function applies a given function to each data component in the input multiData arguments, and optionally simplify the result to an array if possible.

Usage

mtd.mapply(
 # What to do
 FUN, ..., MoreArgs = NULL,

 # How to interpret the input
mtd.mapply

mtd.mapply.res$argIsMultiData = NULL,

Copy previously known results?
mtd.mapply.res$existingResults = NULL, mtd.mapply.res$updateIndex = NULL,

How to format output
mtd.mapply.res$simplify = FALSE,
returnList = FALSE,

Options controlling internal behaviour
mtd.mapply.res$doCollectGarbage = FALSE,
verbose = 0, indent = 0)

Arguments

FUN Function to be applied.

... Arguments to be vectorized over. These can be multiData structures or simple
 vectors (e.g., lists).

MoreArgs A named list that specifies the scalar arguments (if any) to FUN.

mtd.mapply.res$argIsMultiData
Optional specification whether arguments are multiData structures. A logical
vector where each component corresponds to one entry of ... If not given, mul-
tiData status will be determined using isMultiData with argument strict=FALSE.

mtd.mapply.res$existingResults
Optional list that contains previously calculated results. This can be useful if
only a few sets in multiData have changed and recalculating the unchanged
ones is computationally expensive. If not given, all calculations will be per-
formed. If given, components of this list are copied into the output. See mtd.updateIndex
for which components are re-calculated by default.

mtd.mapply.res$updateIndex
Optional specification of which sets in multiData the calculation should actu-
ally be carried out. This argument has an effect only if mtd.mapply.res$existingResults
is non-NULL. If the length of mtd.mapply.res$existingResults (call the length 'k') is less
than the number of sets in multiData, the function assumes that the existing re-
sults correspond to the first 'k' sets in multiData and the rest of the sets are
automatically calculated, irrespective of the setting of mtd.mapply.res$updateIndex. The
argument mtd.mapply.res$updateIndex can be used to specify re-calculation of some (or
all) of the results that already exist in mtd.mapply.res$existingResults.

mtd.mapply.res$simplify
Logical: should simplification of the result to an array be attempted? The sim-
plication is fragile and can produce unexpected errors; use the default FALSE if
that happens.

returnList Logical: should the result be turned into a list (rather than a multiData struc-
ture)? Note that this is incompatible with simplification: if mtd.mapply.res$simplify is
TRUE, this argument is ignored.

mtd.mapply.res$doCollectGarbage
Should garbage collection be forced after each application of FUN?
Details

A multiData structure is intended to store (the same type of) data for multiple, possibly independent, realizations (for example, expression data for several independent experiments). It is a list where each component corresponds to an (independent) data set. Each component is in turn a list that can hold various types of information but must have a data component. In a "strict" multiData structure, the data components are required to each be a matrix or a data frame and have the same number of columns. In a "loose" multiData structure, the data components can be anything (but for most purposes should be of comparable type and content).

This function applies the function FUN to each data component of those arguments in ... that are multiData structures in the "loose" sense, and to each component of those arguments in ... that are not multiData structures.

Value

A multiData structure containing (as the data components) the results of FUN. If simplification is successful, an array instead.

Author(s)

Peter Langfelder

See Also

multidata to create a multiData structure;
multiData. apply for application of a function to a single multiData structure.

Description

This function "rbinds" the data components of all sets in the input into a single matrix or data frame.

Usage

mtd.rbindSelf(multiData)

Arguments

multiData A multiData structure.
Details

A multiData structure is intended to store (the same type of) data for multiple, possibly independent, realizations (for example, expression data for several independent experiments). It is a list where each component corresponds to an (independent) data set. Each component is in turn a list that can hold various types of information but must have a data component. In a "strict" multiData structure, the data components are required to each be a matrix or a data frame and have the same number of columns. In a "loose" multiData structure, the data components can be anything (but for most purposes should be of comparable type and content).

This function requires a "strict" multiData structure.

Value

A single matrix or data frame containing the "rbinded" result.

Author(s)

Peter Langfelder

See Also

multiData to create a multiData structure;
$rbind$ for various subtleties of the row binding operation.

mtd.setAttr

Set attributes on each component of a multiData structure

Description

Set attributes on each data component of a multiData structure

Usage

mtd.setAttr(multiData, attribute, valueList)

Arguments

- multiData: A multiData structure.
- attribute: Name for the attribute to be set
- valueList: List that gives the attribute value for each set in the multiData structure.

Value

The input multiData with the attribute set on each data component.

Author(s)

Peter Langfelder
Get and set column names in a multiData structure.

Description

Get and set column names on each data component in a multiData structure.

Usage

mtd.colnames(multiData)
mtd.setColnames(multiData, colnames)

Arguments

multiData A multiData structure
colnames A vector (coercible to character) of column names.

Details

A multiData structure is intended to store (the same type of) data for multiple, possibly independent, realizations (for example, expression data for several independent experiments). It is a list where each component corresponds to an (independent) data set. Each component is in turn a list that can hold various types of information but must have a data component. In a "strict" multiData structure, the data components are required to each be a matrix or a data frame and have the same number of columns. In a "loose" multiData structure, the data components can be anything (but for most purposes should be of comparable type and content).

The mtd.colnames and mtd.setColnames assume (and checks for) a "strict" multiData structure.

Value

mtd.colnames returns the vector of column names of the data component. The function assumes the column names in all sets are the same.
mtd.setColnames returns the multiData structure with the column names set in all data components.

Author(s)

Peter Langfelder

See Also

multiData to create a multiData structure.
mtd.simplify

If possible, simplify a multiData structure to a 3-dimensional array.

Description

This function attempts to put all data components into a 3-dimensional array, with the last dimension corresponding to the sets. This is only possible if all data components are matrices or data frames with the same dimensions.

Usage

mtd.simplify(multiData)

Arguments

multiData A multiData structure in the "strict" sense (see below).

Details

A multiData structure is intended to store (the same type of) data for multiple, possibly independent, realizations (for example, expression data for several independent experiments). It is a list where each component corresponds to an (independent) data set. Each component is in turn a list that can hold various types of information but must have a data component. In a "strict" multiData structure, the data components are required to each be a matrix or a data frame and have the same number of columns. In a "loose" multiData structure, the data components can be anything (but for most purposes should be of comparable type and content).

This function assumes a "strict" multiData structure.

Value

A 3-dimensional array collecting all data components.

Note

The function is relatively fragile and may fail. Use at your own risk.

Author(s)

Peter Langfelder

See Also

multiData to create a multiData structure;
multiData2list for converting multiData structures to plain lists.
mtd.subset

Subset rows and columns in a multiData structure

Description

The function restricts each data component to the given columns and rows.

Usage

```r
mtd.subset(
    multiData, # Input
    rowIndex = NULL, colIndex = NULL,
    invert = FALSE, # Rows and columns to keep
    permissive = FALSE, # Strict or permissive checking of structure?
    drop = FALSE) # Output formatting options
```

Arguments

- `multiData` A multiData structure.
- `rowIndex` A list in which each component corresponds to a set and is a vector giving the rows to be retained in that set. All indexing methods recognized by R can be used (numeric, logical, negative indexing, etc). If NULL, all columns will be retained in each set. Note that setting individual elements of `rowIndex` to NULL will lead to errors.
- `colIndex` A vector giving the columns to be retained. All indexing methods recognized by R can be used (numeric, logical, negative indexing, etc). In addition, column names of the retained columns may be given; if a given name cannot be matched to a column, an error will be thrown. If NULL, all columns will be retained.
- `invert` Logical: should the selection be inverted?
- `permissive` Logical: should the function tolerate "loose" multiData input? Note that the subsetting may lead to cryptic errors if the input multiData does not follow the "strict" format.
- `drop` Logical: should dimensions with extent 1 be dropped?

Details

A multiData structure is intended to store (the same type of) data for multiple, possibly independent, realizations (for example, expression data for several independent experiments). It is a list where each component corresponds to an (independent) data set. Each component is in turn a list that
can hold various types of information but must have a data component. In a "strict" multiData structure, the data components are required to each be a matrix or a data frame and have the same number of columns. In a "loose" multiData structure, the data components can be anything (but for most purposes should be of comparable type and content).

This function assumes a "strict" multiData structure unless permissive is TRUE.

Value

A multiData structure containing the selected rows and columns. Attributes (except possibly dimensions and the corresponding dimnames) are retained.

Author(s)

Peter Langfelder

See Also

multidata to create a multiData structure.

Description

This function creates a multiData structure by storing its input arguments as the 'data' components.

Usage

multidata(...)

Arguments

... Arguments to be stored in the multiData structure.

Details

A multiData structure is intended to store (the same type of) data for multiple, possibly independent, realizations (for example, expression data for several independent experiments). It is a list where each component corresponds to an (independent) data set. Each component is in turn a list that can hold various types of information but must have a data component. In a "strict" multiData structure, the data components are required to each be a matrix or a data frame and have the same number of columns. In a "loose" multiData structure, the data components can be anything (but for most purposes should be of comparable type and content).

Value

The resulting multiData structure.
multiData.eigengeneSignificance

Author(s)
Peter Langfelder

See Also
multiData2list for converting a multiData structure to a list; list2multiData for an alternative way of creating a multiData structure; mtd.apply, mtd.applyToSubset, mtd.mapply for ways of applying a function to each component of a multiData structure.

Examples
```r
data1 = matrix(rnorm(100), 20, 5);
data2 = matrix(rnorm(50), 10, 5);
md = multiData(Set1 = data1, Set2 = data2);
checkSets(md)
```

Description
This function calculates eigengene significance and the associated significance statistics (p-values, q-values etc) across several data sets.

Usage
```r
multiData.eigengeneSignificance(
  multiData, multiTrait,
  moduleLabels, multiEigengenes = NULL,
  useModules = NULL,
  corAndPvalueFnc = corAndPvalue, corOptions = list(),
  corComponent = "cor",
  getQvalues = FALSE, setNames = NULL,
  excludeGrey = TRUE, greyLabel = ifelse(is.numeric(moduleLabels), 0, "grey")
)
```

Arguments
- **multiData**: Expression data (or other data) in multi-set format (see checkSets). A vector of lists; in each list there must be a component named data whose content is a matrix or dataframe or array of dimension 2.
- **multiTrait**: Trait or outcome data in multi-set format. Only one trait is allowed; consequently, the data component of each component list can be either a vector or a dataframe (matrix, array of dimension 2).
- **moduleLabels**: Module labels: one label for each gene in multiExpr.
multiEigengenes
Optional eigengenes of modules specified in moduleLabels. If not given, will be calculated from multiExpr.

useModules
Optional specification of module labels to which the analysis should be restricted. This could be useful if there are many modules, most of which are not interesting. Note that the "grey" module cannot be used with useModules.

corAndPvalueFnc
Function that calculates associations between expression profiles and eigengenes. See details.

corOptions
List giving additional arguments to function corAndPvalueFnc. See details.

corComponent
Name of the component of output of corAndPvalueFnc that contains the actual correlation.

getQvalues
logical: should q-values (estimates of FDR) be calculated?

setNames
names for the input sets. If not given, will be taken from names(multiExpr). If those are NULL as well, the names will be "Set_1", "Set_2",

excludeGrey
logical: should the grey module be excluded from the kME tables? Since the grey module is typically not a real module, it makes little sense to report kME values for it.

greyLabel
label that labels the grey module.

Details
This is a convenience function that calculates module eigengene significances (i.e., correlations of module eigengenes with a given trait) across all sets in a multi-set analysis. Also returned are p-values, Z scores, numbers of present (i.e., non-missing) observations for each significance, and optionally the q-values (false discovery rates) corresponding to the p-values.

The function corAndPvalueFnc is currently is expected to accept arguments x (gene expression profiles) and y (eigengene expression profiles). Any additional arguments can be passed via corOptions.

The function corAndPvalueFnc should return a list which at the least contains (1) a matrix of associations of genes and eigengenes (this component should have the name given by corComponent), and (2) a matrix of the corresponding p-values, named "p" or "p.value". Other components are optional but for full functionality should include (3) nobs giving the number of observations for each association (which is the number of samples less number of missing data - this can in principle vary from association to association), and (4) Z giving a Z static for each observation. If these are missing, nobs is calculated in the main function, and calculations using the Z statistic are skipped.

Value
A list containing the following components. Each component is a matrix in which the rows correspond to module eigengenes and columns to data sets. Row and column names are set appropriately.

eigengeneSignificance
Module eigengene significance.

p.value
p-values (returned by corAndPvalueFnc).

q.value
q-values corresponding to the p-values above. Only returned in input getQvalues is TRUE.
multiGSub

Z statistics (if returned by corAndPvalueFnc).

nObservations Number of non-missing observations in each correlation/p-value.

Author(s)

Peter Langfelder

Description

These functions provide convenient pattern finding and substitution for multiple patterns.

Usage

- `multiGSub(patterns, replacements, x, ...)`
- `multiSub(patterns, replacements, x, ...)`
- `multiGrep(patterns, x, ..., sort = TRUE, invert = FALSE)`
- `multiGrepl(patterns, x, ...)`

Arguments

- `patterns` A character vector of patterns.
- `replacements` A character vector of replacements; must be of the same length as patterns.
- `x` Character vector of strings in which the pattern finding and replacements should be carried out.
- `sort` Logical: should the output indices be sorted in increasing order?
- `invert` Logical: should the search be inverted and only indices of elements of `x` matching none of the patterns be returned?
- `...` Other arguments to `sub` or `grep`

Details

For each element of `x`, patterns are sequential searched for and (for `multiSub` and `multiGSub` substituted with the corresponding replacement.

Value

- `multiSub` and `multiGSub` return a character vector of the same length as `x`, with all patterns replaces by their replacements in each element of `x`. `multiSub` replaces each pattern in each element of `x` only once, `multiGSub` as many times as the pattern is found.
- `multiGrep` returns the indices of those elements in `x` in which at least one of `patterns` was found, or, if `invert` is TRUE, the indices of elements in which none of the patterns were found.
- `multiGrepl` returns a logical vector of the same length as `x`, with TRUE is any of the patterns matched the element of `x`, and FALSE otherwise.
multiSetMEs

Author(s)

Peter Langfelder

See Also

The workhorse functions `sub`, `gsub`, `grep` and `grepl`.

multiSetMEs Calculate module eigengenes.

Description

Calculates module eigengenes for several sets.

Usage

```r
multiSetMEs(exprData,
  colors,
  universalColors = NULL,
  useSets = NULL,
  useGenes = NULL,
  impute = TRUE,
  npc = 1,
  align = "along average",
  excludeGrey = FALSE,
  grey = if (is.null(universalColors)) {
    if (is.numeric(colors)) "grey"
  } else {
    if (is.numeric(universalColors)) "grey",
  } subHubs = TRUE,
  trapErrors = FALSE,
  returnValidOnly = trapErrors,
  softPower = 6,
  verbose = 1, indent = 0)
```

Arguments

- `exprData` Expression data in a multi-set format (see `checkSets`). A vector of lists, with each list corresponding to one microarray dataset and expression data in the component `data`, that is `expr[[set]]$data[sample, probe]` is the expression of probe `probe` in sample `sample` in dataset `set`. The number of samples can be different between the sets, but the probes must be the same.

- `colors` A matrix of dimensions (number of probes, number of sets) giving the module assignment of each gene in each set. The color "grey" is interpreted as unassigned.
universalColors
Alternative specification of module assignment. A single vector of length (number of probes) giving the module assignment of each gene in all sets (that is the modules are common to all sets). If given, takes precedence over color.

useSets
If calculations are requested in (a) selected set(s) only, the set(s) can be specified here. Defaults to all sets.

useGenes
Can be used to restrict calculation to a subset of genes (the same subset in all sets). If given, validColors in the returned list will only contain colors for the genes specified in useGenes.

impute
Logical. If TRUE, expression data will be checked for the presence of NA entries and if the latter are present, numerical data will be imputed, using function impute.knn and probes from the same module as the missing datum. The function impute.knn uses a fixed random seed giving repeatable results.

npc
Number of principal components to be calculated. If only eigengenes are needed, it is best to set it to 1 (default). If variance explained is needed as well, use value NULL. This will cause all principal components to be computed, which is slower.

align
Controls whether eigengenes, whose orientation is undetermined, should be aligned with average expression (align = "along average", the default) or left as they are (align = ")). Any other value will trigger an error.

excludeGrey
Should the improper module consisting of ‘grey’ genes be excluded from the eigengenes?

grey
Value of colors or universalColors (whichever applies) designating the improper module. Note that if the appropriate colors argument is a factor of numbers, the default value will be incorrect.

subHubs
Controls whether hub genes should be substituted for missing eigengenes. If TRUE, each missing eigengene (i.e., eigengene whose calculation failed and the error was trapped) will be replaced by a weighted average of the most connected hub genes in the corresponding module. If this calculation fails, or if subHubs==FALSE, the value of trapErrors will determine whether the offending module will be removed or whether the function will issue an error and stop.

trapErrors
Controls handling of errors from that may arise when there are too many NA entries in expression data. If TRUE, errors from calling these functions will be trapped without abnormal exit. If FALSE, errors will cause the function to stop. Note, however, that subHubs takes precedence in the sense that if subHubs==TRUE and trapErrors==FALSE, an error will be issued only if both the principal component and the hubgene calculations have failed.

returnValidOnly
Boolean. Controls whether the returned data frames of module eigengenes contain columns corresponding only to modules whose eigengenes or hub genes could be calculated correctly in every set (TRUE), or whether the data frame should have columns for each of the input color labels (FALSE).

softPower
The power used in soft-thresholding the adjacency matrix. Only used when the hubgene approximation is necessary because the principal component calculation failed. It must be non-negative. The default value should only be changed if there is a clear indication that it leads to incorrect results.
verbose Controls verbosity of printed progress messages. 0 means silent, up to (about) 5 the verbosity gradually increases.

indent A single non-negative integer controlling indentation of printed messages. 0 means no indentation, each unit above that adds two spaces.

Details

This function calls moduleEigengenes for each set in exprData.

Module eigengene is defined as the first principal component of the expression matrix of the corresponding module. The calculation may fail if the expression data has too many missing entries. Handling of such errors is controlled by the arguments subHubs and trapErrors. If subHubs==TRUE, errors in principal component calculation will be trapped and a substitute calculation of hubgenes will be attempted. If this fails as well, behaviour depends on trapErrors: if TRUE, the offending module will be ignored and the return value will allow the user to remove the module from further analysis; if FALSE, the function will stop. If universalColors is given, any offending module will be removed from all sets (see validMES in return value below).

From the user’s point of view, setting trapErrors=FALSE ensures that if the function returns normally, there will be a valid eigengene (principal component or hubgene) for each of the input colors. If the user sets trapErrors=TRUE, all calculational (but not input) errors will be trapped, but the user should check the output (see below) to make sure all modules have a valid returned eigengene.

While the principal component calculation can fail even on relatively sound data (it does not take all that many "well-placed" NA to torpedo the calculation), it takes many more irregularities in the data for the hubgene calculation to fail. In fact such a failure signals there likely is something seriously wrong with the data.

Value

A vector of lists similar in spirit to the input exprData. For each set there is a list with the following components:

data Module eigengenes in a data frame, with each column corresponding to one eigengene. The columns are named by the corresponding color with an "ME" prepended, e.g., MEturquoise etc. Note that, when trapErrors == TRUE and returnValidOnly==FALSE, this data frame also contains entries corresponding to removed modules, if any. (validMES below indicates which eigengenes are valid and allOK whether all module eigengens were successfully calculated.)

averageExpr If align == "along average", a dataframe containing average normalized expression in each module. The columns are named by the corresponding color with an "AE" prepended, e.g., AEturquoise etc.

varExplained A dataframe in which each column corresponds to a module, with the component varExplained[PC, module] giving the variance of module module explained by the principal component no. PC. This is only accurate if all principal components have been computed (input nPC = NULL). At most 5 principal components are recorded in this dataframe.

nPC A copy of the input nPC.

validMES A boolean vector. Each component (corresponding to the columns in data) is TRUE if the corresponding eigengene is valid, and FALSE if it is invalid. Valid
eigengenes include both principal components and their hubgene approximations. When `returnValidOnly==FALSE`, by definition all returned eigengenes are valid and the entries of `validMEs` are all `TRUE`.

validColors A copy of the input colors (universalColors if set, otherwise colors[, set]) with entries corresponding to invalid modules set to grey if given, otherwise 0 if the appropriate input colors are numeric and "grey" otherwise.

allOK Boolean flag signalling whether all eigengenes have been calculated correctly, either as principal components or as the hubgene approximation. If `universalColors` is set, this flag signals whether all eigengenes are valid in all sets.

allPC Boolean flag signalling whether all returned eigengenes are principal components. This flag (as well as the subsequent ones) is set independently for each set.

isPC Boolean vector. Each component (corresponding to the columns in `eigengenes`) is `TRUE` if the corresponding eigengene is the first principal component and `FALSE` if it is the hubgene approximation or is invalid.

ishub Boolean vector. Each component (corresponding to the columns in `eigengenes`) is `TRUE` if the corresponding eigengene is the hubgene approximation and `FALSE` if it is the first principal component or is invalid.

validAEs Boolean vector. Each component (corresponding to the columns in `eigengenes`) is `TRUE` if the corresponding module average expression is valid.

allAEOK Boolean flag signalling whether all returned module average expressions contain valid data. Note that `returnValidOnly==TRUE` does not imply `allAEOK==TRUE`: some invalid average expressions may be returned if their corresponding eigengenes have been calculated correctly.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

See Also

`moduleEigengenes`

multiUnion

Union and intersection of multiple sets

Description

Union and intersection of multiple sets. These function generalize the standard functions `union` and `intersect`.

Usage

```r
multiUnion(setList)
multiIntersect(setList)
```
mutualInfoAdjacency

Arguments

setList A list containing the sets to be performed upon.

Value

The union or intersection of the given sets.

Author(s)

Peter Langfelder

See Also

The "standard" functions union and intersect.

mutualInfoAdjacency Calculate weighted adjacency matrices based on mutual information

Description

The function calculates different types of weighted adjacency matrices based on the mutual information between vectors (corresponding to the columns of the input data frame datE). The mutual information between pairs of vectors is divided by an upper bound so that the resulting normalized measure lies between 0 and 1.

Usage

mutualInfoAdjacency(
 datE, discretizeColumns = TRUE, entropyEstimationMethod = "MM", numberBins = NULL
)

Arguments

datE is a data frame or matrix whose columns correspond to variables and whose rows correspond to measurements. For example, the columns may correspond to genes while the rows correspond to microarrays. The number of nodes in the mutual information network equals the number of columns of datE.

discretizeColumns is a logical variable. If it is set to TRUE then the columns of datE will be discretized into a user-defined number of bins (see numberBins).

entropyEstimationMethod takes a text string for specifying the entropy and mutual information estimation method. If entropyEstimationMethod="MM" then the Miller-Madow asymptotic bias corrected empirical estimator is used. If entropyEstimationMethod="ML"
the maximum likelihood estimator (also known as plug-in or empirical estimator) is used. If `entropyEstimationMethod="shrink"`, the shrinkage estimator of a Dirichlet probability distribution is used. If `entropyEstimationMethod="SG"`, the Schurmann-Grassberger estimator of the entropy of a Dirichlet probability distribution is used.

`numberBins` is an integer larger than 0 which specifies how many bins are used for the discretization step. This argument is only relevant if `discretizeColumns` has been set to TRUE. By default `numberBins` is set to `sqrt(m)` where `m` is the number of samples, i.e. the number of rows of `datE`. Thus the default is `numberBins=sqrt(nrow(datE))`.

Details

The function inputs a data frame `datE` and outputs a list whose components correspond to different weighted network adjacency measures defined between the columns of `datE`. Make sure to install the following R packages `entropy`, `minet`, `infotheo` since the function `mutualinfoadjacency` makes use of the `entropy` function from the R package `entropy` (Hauesser and Strimmer 2008) and functions from the `minet` and `infotheo` package (Meyer et al 2008). A weighted network adjacency matrix is a symmetric matrix whose entries take on values between 0 and 1. Each weighted adjacency matrix contains scaled versions of the mutual information between the columns of the input data frame `datE`. We assume that `datE` contains numeric values which will be discretized unless the user chooses the option `discretizeColumns=FALSE`. The raw (unscaled) mutual information and entropy measures have units "nat", i.e. natural logarithms are used in their definition (base e=2.71...). Several mutual information estimation methods have been proposed in the literature (reviewed in Hauesser and Strimmer 2008, Meyer et al 2008). While mutual information networks allows one to detect non-linear relationships between the columns of `datE`, they may overfit the data if relatively few observations are available. Thus, if the number of rows of `datE` is smaller than say 200, it may be better to fit a correlation using the function `adjacency`.

Value

The function outputs a list with the following components:

- **Entropy** is a vector whose components report entropy estimates of each column of `datE`. The natural logarithm (base e) is used in the definition. Using the notation from the Wikipedia entry (http://en.wikipedia.org/wiki/Mutual_information), this vector contains the values Hx where x corresponds to a column in `datE`.

- **MutualInformation** is a symmetric matrix whose entries contain the pairwise mutual information measures between the columns of `datE`. The diagonal of the matrix `MutualInformation` equals `Entropy`. In general, the entries of this matrix can be larger than 1, i.e. this is not an adjacency matrix. Using the notation from the Wikipedia entry, this matrix contains the mutual information estimates I(X;Y).

- **AdjacencySymmetricUncertainty** is a weighted adjacency matrix whose entries are based on the mutual information. Using the notation from the Wikipedia entry, this matrix contains the mutual information estimates `AdjacencySymmetricUncertainty`=2*I(X;Y)/(H(X)+H(Y)). Since I(X;X)=H(X), the diagonal elements of `AdjacencySymmetricUncertainty` equal 1. In general the entries of this symmetric matrix `AdjacencySymmetricUncertainty` lie between 0 and 1.
AdjacencyUniversalVersion1

is a weighted adjacency matrix that is a simple function of the AdjacencySymmetricUncertainty. Specifically, AdjacencyUniversalVersion1 = AdjacencySymmetricUncertainty/(2− AdjacencySymmetricUncertainty). Note that f(x)= x/(2-x) is a monotonically increasing function on the unit interval [0,1] whose values lie between 0 and 1. The reason why we call it the universal adjacency is that dissUA=1-AdjacencyUniversalVersion1 turns out to be a universal distance function, i.e. it satisfies the properties of a distance (including the triangle inequality) and it takes on a small value if any other distance measure takes on a small value (Kraskov et al 2003).

AdjacencyUniversalVersion2

is a weighted adjacency matrix for which dissUAversion2=1-AdjacencyUniversalVersion2 is also a universal distance measure. Using the notation from Wikipedia, the entries of the symmetric matrix AdjacencyUniversalVersion2 are defined as follows AdjacencyUniversalVersion2=I(X;Y)/max(H(X),H(Y)).

Author(s)

Steve Horvath, Lin Song, Peter Langfelder

References

See Also

adjacency

Examples

Load requisite packages. These packages are considered "optional", # so WGCNA does not load them automatically.
if (require(infotheo, quietly = TRUE) && require(minet, quietly = TRUE) && require(entropy, quietly = TRUE))
{
 # Example can be executed.
 # Simulate a data frame data which contains 5 columns and 50 observations
 m=50
 x1=rnorm(m)
 r=.5; x2=r*x1+sqrt(1-r^2)*rnorm(m)
 r=.3; x3=r*(x1-.5)^2+sqrt(1-r^2)*rnorm(m)
 x4=rnorm(m)
nearestCentroidPredictor

Description

Nearest centroid predictor for binary (i.e., two-outcome) data. Implements a whole host of options and improvements such as accounting for within-class heterogeneity using sample networks, various ways of feature selection and weighing etc.

Usage

```r
nearestCentroidPredictor(
  x, y, xtest = NULL,
  featureSignificance = NULL,
  assocFnc = "cor", assocOptions = "use = 'p'",
  assocCut.hi = NULL, assocCut.lo = NULL,
  nFeatures.hi = 10, nFeatures.lo = 10,
  weighFeaturesByAssociation = 0,
  scaleFeatureMean = TRUE, scaleFeatureVar = TRUE,

  centroidMethod = c("mean", "eigensample"),
  simFnc = "cor", simOptions = "use = 'p'",
  useQuantile = NULL,
  sampleWeights = NULL,
  weighSimByPrediction = 0,

  cvfold = 0, returnFactor = FALSE,

  # General options
```

r=.3; x5=r*x4+sqrt(1-r^2)*rnorm(m)

datE=data.frame(x1,x2,x3,x4,x5)

calculate entropy, mutual information matrix and weighted adjacency
matrices based on mutual information.
MIadj=mutualInfoAdjacency(datE=datE)

} else
printFlush(paste("Please install packages infotheo, minet and entropy",
"before running this example.");

```
Arguments

**x**  
Training features (predictive variables). Each column corresponds to a feature and each row to an observation.

**y**  
The response variable. Can be a single vector or a matrix with arbitrary many columns. Number of rows (observations) must equal to the number of rows (observations) in x.

**xtest**  
Optional test set data. A matrix of the same number of columns (i.e., features) as x. If test set data are not given, only the prediction on training data will be returned.

**featuresignificance**  
Optional vector of feature significance for the response variable. If given, it is used for feature selection (see details). Should preferably be signed, that is features can have high negative significance.

**assocFnc**  
Character string specifying the association function. The association function should behave roughly as `link{cor}` in that it takes two arguments (a matrix and a vector) plus options and returns the vector of associations between the columns of the matrix and the vector. The associations may be signed (i.e., negative or positive).

**assocOptions**  
Character string specifying options to the association function.

**assocCut.hi**  
Association (or featureSignificance) threshold for including features in the predictor. Features with association higher than `assocCut.hi` will be included. If not given, the threshold method will not be used; instead, a fixed number of features will be included as specified by `nFeatures.hi` and `nFeatures.lo`.

**assocCut.lo**  
Association (or featureSignificance) threshold for including features in the predictor. Features with association lower than `assocCut.lo` will be included. If not given, defaults to `-assocCut.hi`. If `assocCut.hi` is NULL, the threshold method will not be used; instead, a fixed number of features will be included as specified by `nFeatures.hi` and `nFeatures.lo`.

**nFeatures.hi**  
Number of highest-associated features (or features with highest `featureSignificance`) to include in the predictor. Only used if `assocCut.hi` is NULL.

**nFeatures.lo**  
Number of lowest-associated features (or features with highest `featureSignificance`) to include in the predictor. Only used if `assocCut.hi` is NULL.

**weighFeaturesByAssociation**  
(Optional) power to downweigh features that are less associated with the response. See details.

**scaleFeatureMean**  
Logical: should the training features be scaled to mean zero? Unless there are good reasons not to scale, the features should be scaled.

**scaleFeatureVar**  
Logical: should the training features be scaled to unit variance? Again, unless there are good reasons not to scale, the features should be scaled.
nearestCentroidPredictor

centroidMethod One of "mean" and "eigensample", specifies how the centroid should be calculated. "mean" takes the mean across all samples (or all samples within a sample module, if sample networks are used), whereas "eigensample" calculates the first principal component of the feature matrix and uses that as the centroid.

simFnc Character string giving the similarity function for measuring the similarity between test samples and centroids. This function should behave roughly like the function cor in that it takes two arguments (x, y) and calculates the pair-wise similarities between columns of x and y. For convenience, the value "dist" is treated specially: the Euclidean distance between the columns of x and y is calculated and its negative is returned (so that smallest distance corresponds to highest similarity). Since values of this function are only used for ranking centroids, its values are not restricted to be positive or within certain bounds.

simOptions Character string specifying the options to the similarity function.

useQuantile If non-NULL, the "nearest quantiloid" will be used instead of the nearest centroid. See details.

sampleWeights Optional specification of sample weights. Useful for example if one wants to explore boosting.

weighSimByPrediction (Optional) power to downweigh features that are not well predicted between training and test sets. See details.

CVfold Non-negative integer specifying cross-validation. Zero means no cross-validation will be performed. values above zero specify the number of samples to be considered test data for each step of cross-validation.

returnFactor Logical: should a factor be returned?

randomSeed Integer specifying the seed for the random number generator. If NULL, the seed will not be set. See set.seed.

verbose Integer controlling how verbose the diagnostic messages should be. Zero means silent.

indent Indentation for the diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

Nearest centroid predictor works by forming a representative profile (centroid) across features for each class from the training data, then assigning each test sample to the class of the nearest representative profile. The representative profile can be formed either as mean or as the first principal component ("eigensample"; this choice is governed by the option centroidMethod).

When the number of features is large and only a small fraction is likely to be associated with the outcome, feature selection can be used to restrict the features that actually enter the centroid. Feature selection can be based either on their association with the outcome calculated from the training data using assocFnc, or on user-supplied feature significance (e.g., derived from literature, argument featureSignificance). In either case, features can be selected by high and low association tresholds or by taking a fixed number of highest- and lowest-associated features.

As an alternative to centroids, the predictor can also assign test samples based on a given quantile of the distances from the training samples in each class (argument useQuantile). This may be
nearestCentroidPredictor

advantageous if the samples in each class form irregular clusters. Note that setting useQuantile=0
(i.e., using minimum distance in each class) essentially gives a nearest neighbor predictor: each test
sample will be assigned to the class of its nearest training neighbor.

If features exhibit non-trivial correlations among themselves (such as, for example, in gene expres-
sion data), one can attempt to down-weigh features that do not exhibit the same correlation in the
test set. This is done by using essentially the same predictor to predict _features_ from all other
features in the test data (using the training data to train the feature predictor). Because test features
are known, the prediction accuracy can be evaluated. If a feature is predicted badly (meaning the
error in the test set is much larger than the error in the cross-validation prediction in training data),
it may mean that its quality in the training or test data is low (for example, due to excessive noise or
outliers). Such features can be downweighed using the argument weighByPrediction. The extra
factor is min(1, (root mean square prediction error in test set)/(root mean square cross-validation
prediction error in the training data)^weighByPrediction), that is it is never bigger than 1.

Unless the features’ mean and variance can be ascribed clear meaning, the (training) features should
be scaled to mean 0 and variance 1 before the centroids are formed.

The function implements a basic option for removal of spurious effects in the training and test data,
by removing a fixed number of leading principal components from the features. This sometimes
leads to better prediction accuracy but should be used with caution.

If samples within each class are heterogenous, a single centroid may not represent each class well.
This function can deal with within-class heterogeneity by clustering samples (separately in each
class), then using a one representative (mean, eigensample) or quantile for each cluster in each
class to assign test samples. Various similarity measures, specified by adjfnc, can be used to
construct the sample network adjacency. Similarly, the user can specify a clustering function using
clusteringFnc. The requirements on the clustering function are described in a separate section
below.

**Value**

A list with the following components:

- **predicted** The back-substitution prediction in the training set.
- **predictedTest** Prediction in the test set.
- **featureSignificance** A vector of feature significance calculated by assocFnc or a copy of the input
  featureSignificance if the latter is non-NULL.
- **selectedFeatures** A vector giving the indices of the features that were selected for the predictor.
- **centroidProfile** The representative profiles of each class (or cluster). Only returned in useQuantile
  is NULL.
- **testSample2centroidSimilarities** A matrix of calculated similarities between the test samples and class/cluster
  centroids.
- **featureValidationWeights** A vector of validation weights (see Details) for the selected features. If weighFeaturesByValidation
  is 0, a unit vector is used and returned.
nearestNeighborConnectivity

Cross-validation prediction on the training data. Present only if CVfold is non-zero.

sampleClusterLabels
A list with two components (one per class). Each component is a vector of sample cluster labels for samples in the class.

Author(s)
Peter Langfelder

See Also
votingLinearPredictor

nearestNeighborConnectivity
Connectivity to a constant number of nearest neighbors

Description
Given expression data and basic network parameters, the function calculates connectivity of each gene to a given number of nearest neighbors.

Usage
nearestNeighborConnectivity(datExpr, nNeighbors = 50, power = 6, type = "unsigned", corFnc = "cor", corOptions = "use = 'p'", blockSize = 1000, sampleLinks = NULL, nLinks = 5000, setSeed = 38457, verbose = 1, indent = 0)

Arguments

datExpr a data frame containing expression data, with rows corresponding to samples and columns to genes. Missing values are allowed and will be ignored.
nNeighbors number of nearest neighbors to use.
power soft thresholding power for network construction. Should be a number greater than 1.
type a character string encoding network type. Recognized values are (unique abbreviations of) "unsigned", "signed", and "signed hybrid".
corFnc character string containing the name of the function to calculate correlation. Suggested functions include "cor" and "bicor".
corOptions further argument to the correlation function.
blockSize correlation calculations will be split into square blocks of this size, to prevent running out of memory for large gene sets.
sampleLinks logical: should network connections be sampled (TRUE) or should all connections be used systematically (FALSE)?
nLinks number of links to be sampled. Should be set such that nLinks * nNeighbors be several times larger than the number of genes.
setSeed seed to be used for sampling, for repeatability. If a seed already exists, it is saved before the sampling starts and restored upon exit.
verbose integer controlling the level of verbosity. 0 means silent.
indent integer controlling indentation of output. Each unit above 0 adds two spaces.

Details

Connectivity of gene i is the sum of adjacency strengths between gene i and other genes; in this case we take the nNeighbors nodes with the highest connection strength to gene i. The adjacency strengths are calculated by correlating the given expression data using the function supplied in corFNC and transforming them into adjacency according to the given network type and power.

Value

A vector with one component for each gene containing the nearest neighbor connectivity.

Author(s)

Peter Langfelder

See Also

adjacency, softConnectivity

nearestNeighborConnectivityMS

Connectivity to a constant number of nearest neighbors across multiple data sets

Description

Given expression data from several sets and basic network parameters, the function calculates connectivity of each gene to a given number of nearest neighbors in each set.

Usage

nearestNeighborConnectivityMS(multiExpr, nNeighbors = 50, power = 6,
type = "unsigned", corFnc = "cor", corOptions = "use = 'p'",
blockSize = 1000,
sampleLinks = NULL, nLinks = 5000, setSeed = 36492,
verbose = 1, indent = 0)
Arguments

multiExpr  expression data in multi-set format. A vector of lists, one list per set. In each list there must be a component named data whose content is a matrix or dataframe or array of dimension 2 containing the expression data. Rows correspond to samples and columns to genes (probes).

nNeighbors  number of nearest neighbors to use.

power  soft thresholding power for network construction. Should be a number greater than 1.

type  a character string encoding network type. Recognized values are (unique abbreviations of) "unsigned", "signed", and "signed hybrid".

corFnc  character string containing the name of the function to calculate correlation. Suggested functions include "cor" and "bicor".

corOptions  further argument to the correlation function.

blockSize  correlation calculations will be split into square blocks of this size, to prevent running out of memory for large gene sets.

sampleLinks  logical: should network connections be sampled (TRUE) or should all connections be used systematically (FALSE)?

nLinks  number of links to be sampled. Should be set such that nLinks * nNeighbors be several times larger than the number of genes.

setSeed  seed to be used for sampling, for repeatability. If a seed already exists, it is saved before the sampling starts and restored after.

verbose  integer controlling the level of verbosity. 0 means silent.

indent  integer controlling indentation of output. Each unit above 0 adds two spaces.

Details

Connectivity of gene i is the sum of adjacency strengths between gene i and other genes; in this case we take the nNeighbors nodes with the highest connection strength to gene i. The adjacency strengths are calculated by correlating the given expression data using the function supplied in corFNC and transforming them into adjacency according to the given network type and power.

Value

A matrix in which columns correspond to sets and rows to genes; each entry contains the nearest neighbor connectivity of the corresponding gene.

Author(s)

Peter Langfelder

See Also

adjacency, softConnectivity, nearestNeighborConnectivity
Description

This functions calculates various network concepts (topological properties, network indices) of a network calculated from expression data. See details for a detailed description.

Usage

networkConcepts(datExpr, power = 1, trait = NULL, networkType = "unsigned")

Arguments

datExpr     a data frame containing the expression data, with rows corresponding to samples and columns to genes (nodes).
power       soft thresholding power.
trait       optional specification of a sample trait. A vector of length equal the number of samples in datExpr.
networkType network type. Recognized values are (unique abbreviations of) "unsigned", "signed", and "signed hybrid".

Details

This function computes various network concepts (also known as network statistics, topological properties, or network indices) for a weighted correlation network. The nodes of the weighted correlation network will be constructed between the columns (interpreted as nodes) of the input datExpr. If the option networkType="unsigned" then the adjacency between nodes i and j is defined as $a_{i,j} = \text{abs}(\text{cor}(\text{datExpr}{[,i]},\text{datExpr}{[,j]}))^{\text{power}}$. In the following, we use the term gene and node interchangeably since these methods were originally developed for gene networks. The function computes the following 4 types of network concepts (introduced in Horvath and Dong 2008):

Type I: fundamental network concepts are defined as a function of the off-diagonal elements of an adjacency matrix $A$ and/or a node significance measure $GS$. These network concepts can be defined for any network (not just correlation networks). The adjacency matrix of an unsigned weighted correlation network is given by $A=\text{abs}(\text{cor}(\text{datExpr}, \text{use}="p"))^{\text{power}}$ and the trait based gene significance measure is given by $GS=\text{abs}(\text{cor}(\text{datExpr}, \text{trait}, \text{use}="p"))^{\text{power}}$ where datExpr, trait, power are input parameters.

Type II: conformity-based network concepts are functions of the off-diagonal elements of the conformity based adjacency matrix $A.CF=\text{CF*}\text{t(CF)}$ and/or the node significance measure. These network concepts are defined for any network for which a conformity vector can be defined. Details: For any adjacency matrix $A$, the conformity vector $\text{CF}$ is calculated by requiring that $A[i,j]$ is approximately equal to $\text{CF[i]*CF[j]}$. Using the conformity one can define the matrix $A.CF=\text{CF*}\text{t(CF)}$ which is the outer product of the conformity vector with itself. In general, $A.CF$ is not an adjacency matrix since its diagonal elements are different from 1. If the off-diagonal elements of $A.CF$ are similar to those of $A$ according to the Frobenius matrix norm, then $A$ is approximately factorizable.
To measure the factorizability of a network, one can calculate the Factorizability, which is a number between 0 and 1 (Dong and Horvath 2007). The conformity is defined using a monotonic, iterative algorithm that maximizes the factorizability measure.

Type III: approximate conformity based network concepts are functions of all elements of the conformity based adjacency matrix $A.CF$ (including the diagonal) and/or the node significance measure $GS$. These network concepts are very useful for deriving relationships between network concepts in networks that are approximately factorizable.

Type IV: eigengene-based (also known as eigen node-based) network concepts are functions of the eigengene-based adjacency matrix $A.E=\text{ConformityE}^t(\text{ConformityE})$ (diagonal included) and/or the corresponding eigengene-based gene significance measure $GSE$. These network concepts can only be defined for correlation networks. Details: The columns (nodes) of $datExpr$ can be summarized with the first principal component, which is referred to as Eigengene in coexpression network analysis. In general correlation networks, it is called eigen node. The eigengene-based conformity $\text{ConformityE}[i]$ is defined as $\text{abs}(\text{cor}(datE[,i], \text{Eigengene}))^\text{power}$ where the power corresponds to the power used for defining the weighted adjacency matrix $A$. The eigengene-based conformity can also be used to define an eigengene-based adjacency matrix $A.E=\text{ConformityE}^t(\text{ConformityE})$. The eigengene based factorizability $EF(datE)$ is a number between 0 and 1 that measures how well $A.E$ approximates $A$ when the power parameter equals 1. $EF(datE)$ is defined with respect to the singular values of $datExpr$. For a trait based node significance measure $GS=\text{abs}(\text{cor}(datE, \text{trait}))^\text{power}$, one can also define an eigengene-based node significance measure $GSE[i]=\text{ConformityE}[i]*\text{EigengeneSignificance}$ where the eigengene significance $\text{abs}(\text{cor} (\text{Eigengene}, \text{trait}))^\text{power}$ is defined as power of the absolute value of the correlation between eigengene and trait. Eigengene-based network concepts are very useful for providing a geometric interpretation of network concepts and for deriving relationships between network concepts. For example, the hub gene significance measure and its eigengene-based analog have been used to characterize networks where highly connected hub genes are important with regard to a trait based gene significance measure (Horvath and Dong 2008).

**Value**

A list with the following components:

- **Summary**: a data frame whose rows report network concepts that only depend on the adjacency matrix. Density (mean adjacency), Centralization, Heterogeneity (coefficient of variation of the connectivity), Mean Cluster Coef, Mean Connectivity. The columns of the data frame report the 4 types of network concepts mentioned in the description: Fundamental concepts, eigengene-based concepts, conformity-based concepts, and approximate conformity-based concepts.

- **Size**: reports the network size, i.e. the number of nodes, which equals the number of columns of the input data frame $datExpr$.

- **Factorizability**: a number between 0 and 1. The closer it is to 1, the better the off-diagonal elements of the conformity based network $A.CF$ approximate those of $A$ (according to the Frobenius norm).

- **Eigengene**: the first principal component of the standardized columns of $datExpr$. The number of components of this vector equals the number of rows of $datExpr$.

- **VarExplained**: the proportion of variance explained by the first principal component (the Eigengene). It is numerically different from the eigengene based factorizability. While VarExplained
networkConcepts

is based on the squares of the singular values of datExpr, the eigengene-based
factorizability is based on fourth powers of the singular values.

Conformity numerical vector giving the conformity. The number of components of the con-
formity vector equals the number of columns in datExpr. The conformity is
often highly correlated with the vector of node connectivities. The conformity
is computed using an iterative algorithm for maximizing the factorizability mea-
sure. The algorithm and related network concepts are described in Dong and
Horvath 2007.

ClusterCoef a numerical vector that reports the cluster coefficient for each node. This funda-
mental network concept measures the cliquishness of each node.

Connectivity a numerical vector that reports the connectivity (also known as degree) of each
node. This fundamental network concept is also known as whole network con-
nectivity. One can also define the scaled connectivity $K = \text{Connectivity}/\max(\text{Connectivity})$
which is used for computing the hub gene significance.

MAR a numerical vector that reports the maximum adjacency ratio for each node. $\text{MAR}[i]$ equals 1 if all non-zero adjacencies between node $i$ and the remaining
network nodes equal 1. This fundamental network concept is always 1 for nodes
of an unweighted network. This is a useful measure for weighted networks since
it allows one to determine whether a node has high connectivity because of many
weak connections (small MAR) or because of strong (but few) connections (high
MAR), see Horvath and Dong 2008.

ConformityE a numerical vector that reports the eigengene based (aka eigennode based) con-
formity for the correlation network. The number of components equals the num-
ber of columns of datExpr.

GS a numerical vector that encodes the node (gene) significance. The $i$-th compo-
nent equals the node significance of the $i$-th column of datExpr if a sample trait
was supplied to the function (input trait). $\text{GS}[i] = \abs(\text{cor(datE[,i], trait, use="p"})^\text{power}$

GSE a numerical vector that reports the eigengene based gene significance measure. Its $i$-th component is given by $\text{GSE}[i] = \text{ConformityE}[i] + \text{EigengeneSignificance}$
where the eigengene significance $\abs(\text{cor(Eigengene,trait)})^\text{power}$ is de-
fined as power of the absolute value of the correlation between eigengene and
trait.

Significance a data frame whose rows report network concepts that also depend on the trait
based node significance measure. The rows correspond to network concepts
and the columns correspond to the type of network concept (fundamental versus
eigengene based). The first row of the data frame reports the network signifi-
cance. The fundamental version of this network concepts is the average gene sig-
nificance=mean(GS). The eigengene based analog of this concept is defined as
mean(GSE). The second row reports the hub gene significance which is defined
as slope of the intercept only regression model that regresses the gene significa-
cence on the scaled network connectivity $K$. The third row reports the eigengene
significance $\abs(\text{cor(Eigengene,trait)})^\text{power}$. More details can be found
in Horvath and Dong (2008).

Author(s)

Jun Dong, Steve Horvath, Peter Langfelder
References

See Also
conformityBasedNetworkConcepts for approximate conformity-based network concepts
fundamentalNetworkConcepts for calculation of fundamental network concepts only.

networkScreening Identification of genes related to a trait

Description
This function blends standard and network approaches to selecting genes (or variables in general) highly related to a given trait.

Usage
networkScreening(y, datME, datExpr,
corfnc = "cor", corOptions = "use = 'p'",
oddpower = 3,
blocksize = 1000,
minimumsamplesize = .minNSamples,
addMEy = TRUE, removeDiag = FALSE,
weightESy = 0.5, getQValues = TRUE)

Arguments
y              clinical trait given as a numeric vector (one value per sample)
datME          data frame of module eigengenes
datExpr        data frame of expression data
corfnc         character string specifying the function to be used to calculate co-expression similarity. Defaults to Pearson correlation. Any function returning values between -1 and 1 can be used.
corOptions     character string specifying additional arguments to be passed to the function given by corFnc. Use "use = 'p', method = 'spearman'" to obtain Spearman correlation.
oddpower       odd integer used as a power to raise module memberships and significances
blockSize  
block size to use for calculations with large data sets

minimumSampleSize  
minimum acceptable number of samples. Defaults to the default minimum number of samples used throughout the WGCNA package, currently 4.

addMEy  
logical: should the trait be used as an additional "module eigengene"?

removeDiag  
logical: remove the diagonal?

weightESy  
weight to use for the trait as an additional eigengene; should be between 0 and 1

getQValues  
logical: should q-values be calculated?

Details

This function should be considered experimental. It takes into account both the "standard" and the network measures of gene importance for the trait.

Value

datout = data.frame(p.Weighted, q.Weighted, Cor.Weighted, Z.Weighted, p.Standard, q.Standard, Cor.Standard, Z.Standard) Data frame reporting the following quantities for each given gene:

p.Weighted  weighted p-value of association with the trait
q.Weighted  q-value (local FDR) calculated from p.Weighted
Cor.Weighted  correlation of trait with gene expression weighted by a network term
Z.Weighted  Fisher Z score of the weighted correlation
p.Standard  standard Student p-value of association of the gene with the trait
q.Standard  q-value (local FDR) calculated from p.Standard
Cor.Standard  correlation of gene with the trait
Z.Standard  Fisher Z score of the standard correlation

Author(s)

Steve Horvath

networkScreeningGS  
Network gene screening with an external gene significance measure

Description

This function blends standard and network approaches to selecting genes (or variables in general) with high gene significance.
Usage

networkScreeningGS(
  datExpr,
  datME,
  GS,
  oddPower = 3,
  blockSize = 1000,
  minimumSampleSize = ..minNSamples,
  addGS = TRUE)

Arguments

datExpr      data frame of expression data
datME        data frame of module eigengenes
GS           numeric vector of gene significances
oddPower     odd integer used as a power to raise module memberships and significances
blockSize    block size to use for calculations with large data sets
minimumSampleSize minimum acceptable number of samples. Defaults to the default minimum number of samples used throughout the WGCNA package, currently 4.
addGS        logical: should gene significances be added to the screening statistics?

Details

This function should be considered experimental. It takes into account both the "standard" and the network measures of gene importance for the trait.

Value

GS.Weighted weighted gene significance
GS           copy of the input gene significances (only if addGS=TRUE)

Author(s)

Steve Horvath

See Also

networkScreening, automaticNetworkScreeningGS
newBlockInformation  *Create a list holding information about dividing data into blocks*

**Description**

This function creates a list storing information about dividing data into blocks, as well as about possibly excluding genes or samples with excessive numbers of missing data.

**Usage**

newBlockInformation(blocks, goodSamplesAndGenes)

**Arguments**

- **blocks**
  A vector giving block labels. It is assumed to be a numeric vector with block labels consecutive integers starting at 1.

- **goodSamplesAndGenes**
  A list returned by goodSamplesGenes or goodSamplesGenesMS.

**Value**

A list with class attribute set to BlockInformation, with the following components:

- **blocks**
  A copy of the input blocks.

- **blockGenes**
  A list with one component per block, giving the indices of elements in block whose value is the same.

- **goodSamplesAndGenes**
  A copy of input goodSamplesAndGenes.

- **nGGenes**
  Number of ‘good’ genes in goodSamplesAndGenes.

- **gBlocks**
  The input blocks restricted to ‘good’ genes in goodSamplesAndGenes.

**Author(s)**

Peter Langfelder

**See Also**

goodSamplesGenes, goodSamplesGenesMS.
**Description**

These functions create, merge and expand BlockwiseData objects for holding in-memory or disk-backed blockwise data. Blockwise here means that the data is too large to be loaded or processed in one piece and is therefore split into blocks that can be handled one by one in a divide-and-conquer manner.

**Usage**

```r
createBlockwiseData(
 data,
 external = FALSE,
 filenames = NULL,
 doSave = external,
 recordAttributes = TRUE,
 metaData = list()
)
```

```r
mergeBlockwiseData(...)```

```r
addBlockToBlockwiseData(
  bwData,
  blockData,
  external = bwData$external,
  blockFile = NULL,
  doSave = external,
  recordAttributes = !is.null(bwData$attributes),
  metaData = NULL)
```

Arguments

- **data**: A list in which each component carries the data of a single block.
- **external**: Logical: should the data be disk-backed (TRUE) or in-memory (FALSE)?
- **filenames**: When external is TRUE, this argument must be a character vector of the same length as data, giving the file names for the data to be saved to, or where the data is already located.
- **doSave**: Logical: should data be saved? If this is FALSE, it is the user’s responsibility to ensure the files supplied in `filenames` already exist and contain the expected data.
- **recordAttributes**: Logical: should attributes of the given data be recorded within the object?
- **metaData**: A list giving any additional meta-data for data that should be attached to the object.
bwData An existing BlockwiseData object.
blockData A vector, matrix or array carrying the data of a single block.
blockFile File name where data contained in blockData should be saved.
... One or more objects of class BlockwiseData.

Details
Several functions in this package use the concept of blockwise, or "divide-and-conquer", analysis.
The BlockwiseData class is meant to hold the blockwise data, or all necessary information about
blockwise data that is saved in disk files.
The data can be stored in disk files (one file per block) or in-memory. In memory storage is provided
so that same code can be used for both smaller (single-block) data where disk storage could slow
down operations as well as larger data sets where disk storage and block by block analysis are
necessary.

Value
All three functions return a list with the class set to "BlockwiseData", containing the following
components:

external Copy of the input argument external
data If external is TRUE, an empty list, otherwise a copy of the input data.
fileNames Copy of the input argument fileNames.
lenghths A vector of lengths (results of length) of elements of data.
attributes If input recordAttributes is TRUE, a list with one component per block (com-
ponent of data); each component is in turn a list of attributes of that component of data.
metaData A copy of the input metaData.

Warning
The definition of BlockwiseData should be considered experimental and may change in the future.

Author(s)
Peter Langfelder

See Also
Other functions on BlockwiseData:
BD.getData for retrieving data
BD.actualFileNames for retrieving file names of files containing data;
BD.nBlocks for retrieving the number of blocks;
BD.blockLengths for retrieving block lengths;
BD.getMetaData for retrieving metadata;
BD.checkAndDeleteFiles for deleting files of an unneeded object.
newConsensusOptions

Create a list holding consensus calculation options.

Description

This function creates a list of class ConsensusOptions that holds options for consensus calculations. This list holds options for a single-level analysis.

Usage

newConsensusOptions(
 calibration = c("full quantile", "single quantile", "none"),

 # Simple quantile scaling options
 calibrationQuantile = 0.95,
 sampleForCalibration = TRUE,
 sampleForCalibrationFactor = 1000,

 # Consensus definition
 consensusQuantile = 0,
 useMean = FALSE,
 setWeights = NULL,
 # Name to prevent clashing of files
 analysisName = ""
)

Arguments

calibration Calibration method. One of "full quantile", "single quantile", "none" (or a unique abbreviation of one of them).

if calibration is "single quantile", input data to a consensus calculation will be scaled such that their calibrationQuantile quantiles will agree.

if TRUE, calibration quantiles will be determined from a sample of network similarities. Note that using all data can double the memory footprint of the function and the function may fail.

Determines the number of samples for calibration: the number is 1/calibrationQuantile * sampleForCalibrationFactor. Should be set well above 1 to ensure accuracy of the sampled quantile.

Quantile at which consensus is to be defined. See details.

Logical: should the consensus be calculated using (weighted) mean rather than a quantile?

Optional specification of weights when useMean is TRUE.

Optional character string naming the consensus analysis. Useful for identifying partial consensus calculation in hierarchical consensus analysis.
Value
A list of type ConsensusOptions that holds copies of the input arguments.

Author(s)
Peter Langfelder

newConsensustree
Create a new consensus tree

Description
This function creates a new consensus tree, a class for representing "recipes" for hierarchical consensus calculations.

Usage

newConsensustree(
 consensusOptions = newConsensusOptions(),
 inputs,
 analysisName = NULL)

Arguments

consensusOptions
 An object of class ConsensusOptions, usually obtained by calling newConsensusOptions.

inputs
 A vector (or list) of inputs. Each component can be either a character string giving a names of a data set, or another ConsensusTree object.

analysisName
 Optional specification of a name for this consensus analysis. While this has no effect on the actual consensus calculation, some functions use this character string to make certain file names unique.

Details
Consensus trees specify a "recipe" for the calculation of hierarchical consensus in hierarchicalConsensusCalculation and other functions.

Value
A list with class set to "ConsensusTree" with these components: consensusOptionsA copy of the input consensusOptions. inputsA copy of the input inputs. analysisNameA copy of the input analysisName.

Author(s)
Peter Langfelder
newCorrelationOptions

See Also

hierarchicalConsensusCalculation for hierarchical consensus calculation for which a ConsensusTree object specifies the recipe

newCorrelationOptions Creates a list of correlation options.

Description

Convenience function to create a re-usable list of correlation options.

Usage

newCorrelationOptions(
 corType = c("pearson", "bicor"),
 maxPOutliers = 0.05,
 quickCor = 0,
 pearsonFallback = "individual",
 cosineCorrelation = FALSE,
 nThreads = 0,
 corOptions = c(
 list(use = 'p',
 cosine = cosineCorrelation,
 quick = quickCor,
 nThreads = nThreads),
 if (corType="bicor")
 list(maxPOutliers = maxPOutliers,
 pearsonFallback = pearsonFallback) else NULL)
)

Arguments

corType Character specifying the type of correlation function. Currently supported options are “pearson”, “bicor”.

maxPOutliers Maximum proportion of outliers for biweight mid-correlation. See bicor.

quickCor Real number between 0 and 1 that controls the handling of missing data in the calculation of correlations. See bicor.

pearsonFallback Specifies whether the bicor calculation should revert to Pearson when median absolute deviation (mad) is zero. Recognized values are (abbreviations of) “none”, “individual”, “all”. If set to “none”, zero mad will result in NA for the corresponding correlation. If set to “individual”, Pearson calculation will be used only for columns that have zero mad. If set to “all”, the presence of a single zero mad will cause the whole variable to be treated in Pearson correlation manner (as if the corresponding robust option was set to FALSE).
Value

A list containing a copy of the input arguments. The output has class `CorrelationOptions`.

Author(s)

Peter Langfelder

Description

This function creates a reusable list of network calculation arguments/options.

Usage

```r
newNetworkOptions(
  correlationOptions = newCorrelationOptions(),

  # Adjacency options
  replaceMissingAdjacencies = TRUE,
  power = 6,
  networkType = c("signed hybrid", "signed", "unsigned"),
  checkPower = TRUE,

  # Topological overlap options
  TOMType = c("signed", "unsigned", "none"),
  TOMDenom = c("mean", "min"),
  suppressTOMForZeroAdjacencies = FALSE,

  # Internal behavior options
  useInternalMatrixAlgebra = FALSE)
```
Arguments

- **correlationOptions**
 - A list of correlation options. See `newCorrelationOptions`.

- **replaceMissingAdjacencies**
 - Logical: should missing adjacencies be replaced by zero?

- **power**
 - Soft-thresholding power for network construction.

- **networkType**
 - Network type. Allowed values are (unique abbreviations of) "unsigned", "signed", "signed hybrid". See `adjacency`.

- **checkPower**
 - Logical: should the power be checked for sanity?

- **TOMType**
 - One of "none", "unsigned", "signed". If "none", adjacency will be used for clustering. If "unsigned", the standard TOM will be used (more generally, TOM function will receive the adjacency as input). If "signed", TOM will keep track of the sign of correlations between neighbors.

- **TOMDenom**
 - Character string specifying the TOM variant to be used. Recognized values are "min" giving the standard TOM described in Zhang and Horvath (2005), and "mean" in which the min function in the denominator is replaced by mean. The "mean" may produce better results but at this time should be considered experimental.

- **suppressTOMForZeroAdjacencies**
 - Logical: for those components that have zero adjacency, should TOM be set to zero as well?

- **useInternalMatrixAlgebra**
 - Logical: should internal implementation of matrix multiplication be used instead of R-provided BLAS? The internal implementation is slow and this option should only be used if one suspects a bug in R-provided BLAS.

Value

A list of class `NetworkOptions`.

Author(s)

Peter Langfelder

See Also

- `codenewCorrelationOptions`

normalizeLabels

Transform numerical labels into normal order.

Description

Transforms numerical labels into normal order, that is the largest group will be labeled 1, next largest 2 etc. Label 0 is optionally preserved.
Usage

normalizeLabels(labels, keepZero = TRUE)

Arguments

 labels Numerical labels.
 keepZero If TRUE (the default), labels 0 are preserved.

Value

 A vector of the same length as input, containing the normalized labels.

Author(s)

 Peter Langfelder, <peter.Langfelder@gmail.com>

nPresent
Number of present data entries.

Description

 A simple sum of present entries in the argument.

Usage

nPresent(x)

Arguments

 x data in which to count number of present entries.

Value

 A single number giving the number of present entries in x.

Author(s)

 Steve Horvath
nSets

Number of sets in a multi-set variable

Description

A convenience function that returns the number of sets in a multi-set variable.

Usage

```r
nSets(multiData, ...)
```

Arguments

- `multiData`: vector of lists; in each list there must be a component named `data` whose content is a matrix or dataframe or array of dimension 2.
- `...`: Other arguments to function `checkSets`.

Value

A single integer that equals the number of sets given in the input `multiData`.

Author(s)

Peter Langfelder

See Also

- `checkSets`

numbers2colors

Color representation for a numeric variable

Description

The function creates a color representation for the given numeric input.

Usage

```r
numbers2colors(
  x,
  signed = NULL,
  centered = signed,
  lim = NULL,
  commonLim = FALSE,
  colors = if (signed) blueWhiteRed(100) else blueWhiteRed(100)[51:100],
  naColor = "grey")
```
Arguments

x a vector or matrix of numbers. Missing values are allowed and will be assigned the color given in naColor. If a matrix, each column of the matrix is processed separately and the return value will be a matrix of colors.

signed logical: should x be considered signed? If TRUE, the default setting is to use to use a palette that starts with green for the most negative values, continues with white for values around zero and turns red for positive values. If FALSE, the default palette ranges from white for minimum values to red for maximum values. If not given, the behaviour is controlled by values in x: if there are both positive and negative values, signed will be considered TRUE, otherwise FALSE.

centered logical. If TRUE and signed==TRUE, numeric value zero will correspond to the middle of the color palette. If FALSE or signed==FALSE, the middle of the color palette will correspond to the average of the minimum and maximum value. If neither signed nor centered are given, centered will follow signed (see above).

lim optional specification of limits, that is numeric values that should correspond to the first and last entry of colors.

commonLim logical: should limits be calculated separately for each column of x, or should the limits be the same for all columns? Only applies if lim is NULL.

colors color palette to represent the given numbers.

naColor color to represent missing values in x.

Details

Each column of x is processed individually, meaning that the color palette is adjusted individually for each column of x.

Value

A vector or matrix (of the same dimensions as x) of colors.

Author(s)

Peter Langfelder

See Also

labels2colors for color coding of ordinal labels.
Order branches using hub genes

Optimize dendrogram using branch swaps and reflections.

Description

This function takes as input the hierarchical clustering tree as well as a subset of genes in the network (generally corresponding to branches in the tree), then returns a semi-optimally ordered tree. The idea is to maximize the correlations between adjacent branches in the dendrogram, in as much as that is possible by adjusting the arbitrary positionings of the branches by swapping and reflecting branches.

Usage

orderBranchesUsingHubGenes(hierTOM, datExpr = NULL, colorh = NULL, type = "signed", adj = NULL, iter = NULL, useReflections = FALSE, allowNonoptimalSwaps = FALSE)

Arguments

hierTOM: A hierarchical clustering object (or gene tree) that is used to plot the dendrogram. For example, the output object from the function hclust or fastcluster::hclust. Note that elements of hierTOM$order MUST be named (for example, with the corresponding gene name).

datExpr: Gene expression data with rows as samples and columns as genes, or NULL if a pre-made adjacency is entered. Column names of datExpr must be a subset of gene names of hierTOM$order.

colorh: The module assignments (color vectors) corresponding to the rows in datExpr, or NULL if a pre-made adjacency is entered.

type: What type of network is being entered. Common choices are "signed" (default) and "unsigned". With "signed" negative correlations count against, whereas with "unsigned" negative correlations are treated identically as positive correlations.

adj: Either NULL (default) or an adjacency (or any other square) matrix with rows and columns corresponding to a subset of the genes in hierTOM$order. If entered, datExpr, colorh, and type are all ignored. Typically, this would be left blank but could include correlations between module eigengenes, with rows and columns renamed as genes in the corresponding modules, for example.

iter: The number of iterations to run the function in search of optimal branch ordering. The default is the square of the number of modules (or the square of the number of genes in the adjacency matrix).

useReflections: If TRUE, both reflections and branch swapping will be used to optimize dendrogram. If FALSE (default) only branch swapping will be used.
allowNonoptimalSwaps

If TRUE, there is chance (that decreases with each iteration) of swapping / reflecting branches whether or not the new correlation between expression of genes in adjacent branches is better or worse. The idea (which has not been sufficiently tested), is that this would prevent the function from getting stuck at a local maxima of correlation. If FALSE (default), the swapping / reflection of branches only occurs if it results in a higher correlation between adjacent branches.

Value

hierTOM

A hierarchical clustering object with the hierTOM$order variable properly adjusted, but all other variables identical as the heirTOM input.

changeLog

A log of all of the changes that were made to the dendrogram, including what change was made, on what iteration, and the Old and New scores based on correlation. These scores have arbitrary units, but higher is better.

Note

This function is very slow and is still in an *experimental* function. We have not had problems with ~10 modules across ~5000 genes, although theoretically it should work for many more genes and modules, depending upon the speed of the computer running R. Please address any problems or suggestions to jeremyinla@gmail.com.

Author(s)

Jeremy Miller

Examples

```r
## Not run:
## Example: first simulate some data.

Mturquoise = sample(1:100,50)
Mblue = c(Mturquoise[1:25], sample(1:100,25))
Mbrowm = sample(1:100,50)
Myellow = sample(1:100,50)
Mgreen = c(Myellow[1:30], sample(1:100,20))
Mred = c(Mbrown[1:20], sample(1:100,30))
ME = data.frame(Mturquoise, Mblue, Mbrown, Myellow, Mgreen, Mred)
dat1 = simulateDatExpr(ME, c(0.16,0.12,0.11,0.10,0.10,0.10,0.11), signed=TRUE)
TOM1 = TOMsimilarityFromExpr(dat1$datExpr, networkType="signed")
colnames(TOM1) <- rownames(TOM1) <- colnames(dat1$datExpr)
tree1 = fastcluster::hclust(as.dist(1-TOM1),method="average")
colorh = labels2colors(dat1$allLabels)

plotDendroAndColors(tree1,colorh,dendroLabels=FALSE)

## Reassign modules using the selectBranch and chooseOneHubInEachModule functions
```
Put close eigenvectors next to each other

Description

Reorder given (eigen-)vectors such that similar ones (as measured by correlation) are next to each other.

Usage

orderMEs(MEs, greyLast = TRUE, greyName = paste(moduleColor.getMEprefix(), "grey", sep=""), orderBy = 1, order = NULL, useSets = NULL, verbose = 0, indent = 0)
Arguments

MEs
Module eigengenes in a multi-set format (see `checkSets`). A vector of lists, with each list corresponding to one dataset and the module eigengenes in the component data, that is MEs[[set]]$data[[sample, module]] is the expression of the eigengene of module module in sample sample in dataset set. The number of samples can be different between the sets, but the modules must be the same.

greyLast
Normally the color grey is reserved for unassigned genes; hence the grey module is not a proper module and it is conventional to put it last. If this is not desired, set the parameter to FALSE.

greyName
Name of the grey module eigengene.

orderBy
Specifies the set by which the eigengenes are to be ordered (in all other sets as well). Defaults to the first set in useSets (or the first set, if useSets is not given).

order
Allows the user to specify a custom ordering.

useSets
Allows the user to specify for which sets the eigengene ordering is to be performed.

verbose
Controls verbosity of printed progress messages. 0 means silent, nonzero verbose.

indent
A single non-negative integer controlling indentation of printed messages. 0 means no indentation, each unit above zero adds two spaces.

Details

Ordering module eigengenes is useful for plotting purposes. For this function the order can be specified explicitly, or a set can be given in which the correlations of the eigengenes will determine the order. For the latter, a hierarchical dendrogram is calculated and the order given by the dendrogram is used for the eigengenes in all other sets.

Value

A vector of lists of the same type as MEs containing the re-ordered eigengenes.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

See Also

`moduleEigengenes`, `multiSetMEs`, `consensusOrderMEs`
orderMEsByHierarchicalConsensus

Order module eigengenes by their hierarchical consensus similarity

Description

This function calculates a hierarchical consensus similarity of the input eigengenes, clusters the eigengenes according to the similarity and returns the input module eigengenes ordered by the order of resulting dendrogram.

Usage

orderMEsByHierarchicalConsensus(
 MEs,
 networkOptions,
 consensusTree,
 greyName = "ME0",
 calibrate = FALSE)

Arguments

- **MEs**: Module eigengenes, or more generally, vectors, to be ordered, in a multiData format: A vector of lists, one per set. Each set must contain a component data that contains the module eigengenes or general vectors, with rows corresponding to samples and columns to genes or probes.

- **networkOptions**: A single list of class NetworkOptions giving options for network calculation for all of the networks, or a multiData structure containing one such list for each input data set.

- **consensusTree**: A list specifying the consensus calculation. See newConsensusTree for details.

- **greyName**: Specifies the column name of eigengene of the "module" that contains unassigned genes. This eigengene (column) will be excluded from the clustering and will be put last in the order.

- **calibrate**: Logical: should module eigengene similarities be calibrated? This setting overrides the calibration options in consensusTree.

Value

A multiData structure of the same format as the input MEs, with columns ordered by the calculated dendrogram.

Author(s)

Peter Langfelder

See Also

hierarchicalConsensusMEDissimilarity for calculating the consensus ME dissimilarity
Description

The function calculates overlap counts and Fisher exact test p-values for the given two sets of module assignments.

Usage

overlapTable(
 labels1, labels2,
 na.rm = TRUE, ignore = NULL,
 levels1 = NULL, levels2 = NULL)

Arguments

labels1 a vector containing module labels.
labels2 a vector containing module labels to be compared to labels1.
na.rm logical: should entries missing in either labels1 or labels2 be removed?
ignore an optional vector giving label levels that are to be ignored.
levels1 optional vector giving levels for labels1. Defaults to sorted unique non-missing values in labels1 that are not present in ignore.
levels2 optional vector giving levels for labels2. Defaults to sorted unique non-missing values in labels2 that are not present in ignore.

Value

A list with the following components:

countTable a matrix whose rows correspond to modules (unique labels) in labels1 and whose columns correspond to modules (unique labels) in labels2, giving the number of objects in the intersection of the two respective modules.

ptable a matrix whose rows correspond to modules (unique labels) in labels1 and whose columns correspond to modules (unique labels) in labels2, giving Fisher's exact test significance p-values for the overlap of the two respective modules.

Author(s)

Peter Langfelder

See Also

fisher.test, matchLabels
overlapTableUsingKME

Determine significant overlap between modules in two networks based on kME tables.

Description

Takes two sets of expression data (or kME tables) as input and returns a table listing the significant overlap between each module in each data set, as well as the actual genes in common for every module pair. Modules can be defined in several ways (generally involving kME) based on user input.

Usage

overlapTableUsingKME(
 dat1, dat2,
 colorh1, colorh2,
 MES1 = NULL, MES2 = NULL,
 name1 = "MM1", name2 = "MM2",
 cutoffMethod = "assigned", cutoff = 0.5,
 omitGrey = TRUE, datIsExpression = TRUE)

Arguments

dat1, dat2: Either expression data sets (with samples as rows and genes as columns) or module membership (kME) tables (with genes as rows and modules as columns). Function reads these inputs based on whether datIsExpression=TRUE or FALSE. ***Be sure that these inputs include relevant row and column names, or else the function will not work properly.***

colorh1, colorh2: Color vector (module assignments) corresponding to the genes from dat1/2. This vector must be the same length as the Gene dimension from dat1/2.

MES1, MES2: If entered (default=NULL), these are the module eigengenes that will be used to form the kME tables. Rows are samples and columns are module assignments. Note that if datIsExpression=FALSE, these inputs are ignored.

name1, name2: The names of the two data sets being compared. These names affect the output parameters.

cutoffMethod: This variable is used to determine how modules are defined in each data set. Must be one of four options: (1) "assigned" -> use the module assignments in colorh (default); (2) "kME" -> any gene with kME > cutoff is in the module; (3) "numGenes" -> the top cutoff number of genes based on kME is in the module; and (4) "pvalue" -> any gene with correlation pvalue < cutoff is in the module (this includes both positively and negatively-correlated genes).

cutoff: For all cutoffMethods other than "assigned", this parameter is used as the described cutoff value.

omitGrey: If TRUE the grey modules (non-module genes) for both networks are not returned.
overlapTableUsingKME

datIsExpression
If TRUE (default), dat1/2 is assumed to be expression data. If FALSE, dat1/2 is assumed to be a table of kME values.

Value
PvaluesHypergeo
A table of p-values showing significance of module overlap based on the hypergeometric test. Note that these p-values are not corrected for multiple comparisons.

AllCommonGenes
A character vector of all genes in common between the two data sets.

Genes<name1/2>
A list of character vectors of all genes in each module in both data sets. All genes in the MOD module in data set MM1 could be found using "$<outputVariableName>$GenesMM1$MM1_MOD"

OverlappingGenes
A list of character vectors of all genes for each between-set comparison from PvaluesHypergeo. All genes in MOD.A from MM1 that are also in MOD.B from MM2 could be found using "$<outputVariableName>$OverlappingGenes$MM1_MOD.A_MM2_MOD.B"

Author(s)
Jeremy Miller

See Also
overlapTable

Examples

Example: first generate simulated data.
set.seed(100)
ME.A = sample(1:100,50); ME.B = sample(1:100,50)
ME.C = sample(1:100,50); ME.D = sample(1:100,50)
ME.E = sample(1:100,50); ME.F = sample(1:100,50)
ME.G = sample(1:100,50); ME.H = sample(1:100,50)
ME1 = data.frame(ME.A, ME.B, ME.C, ME.D, ME.E)
ME2 = data.frame(ME.A, ME.C, ME.D, ME.E, ME.F, ME.G, ME.H)
simDat1 = simulateDatExpr(ME1, 1000, c(0.2, 0.1, 0.08, 0.05, 0.04, 0.3), signed=TRUE)
simDat2 = simulateDatExpr(ME2, 1000, c(0.2, 0.1, 0.08, 0.05, 0.04, 0.03, 0.02, 0.3),
 signed=TRUE)

Now run the function using assigned genes
results = overlapTableUsingKME(simDat1$datExpr, simDat2$datExpr,
 labels2colors(simDat1$allLabels), labels2colors(simDat2$allLabels),
 cutoffMethod="assigned")
results$PvaluesHypergeo

Now run the function using a p-value cutoff, and inputting the original MEs
colnames(ME1) = standardColors(5); colnames(ME2) = standardColors(7)
results = overlapTableUsingKME(simDat1$datExpr, simDat2$datExpr,
pickHardThreshold

labels2colors(simDat1$allLabels),
labels2colors(simDat2$allLabels),
ME1, ME2, cutoffMethod="pvalue", cutoff=0.05)
results$pvaluesHypergeo

Check which genes are in common between the black modules from set 1 and
the green module from set 2
results$OverlappingGenes$mm1_green_mm2_black

pickHardThreshold

Analysis of scale free topology for hard-thresholding.

Description

Analysis of scale free topology for multiple hard thresholds. The aim is to help the user pick an appropriate threshold for network construction.

Usage

pickHardThreshold(
 data,
 dataIsExpr,
 RsquaredCut = 0.85,
 cutVector = seq(0.1, 0.9, by = 0.05),
 moreNetworkConcepts = FALSE,
 removeFirst = FALSE, nBreaks = 10,
 corFnc = "cor", corOptions = "use = 'p'"
)

pickHardThreshold.fromSimilarity(
 similarity,
 RsquaredCut = 0.85,
 cutVector = seq(0.1, 0.9, by = 0.05),
 moreNetworkConcepts=FALSE,
 removeFirst = FALSE, nBreaks = 10)

Arguments

data expression data in a matrix or data frame. Rows correspond to samples and columns to genes.
dataIsExpr logical: should the data be interpreted as expression (or other numeric) data, or as a similarity matrix of network nodes?
similarity similarity matrix: a symmetric matrix with entries between -1 and 1 and unit diagonal.
RsquaredCut desired minimum scale free topology fitting index R^2.
cutVector a vector of hard threshold cuts for which the scale free topology fit indices are to be calculated.
moreNetworkConcepts
logical: should additional network concepts be calculated? If TRUE, the function will calculate how the network density, the network heterogeneity, and the network centralization depend on the power. For the definition of these additional network concepts, see Horvath and Dong (2008). PLoS Comp Biol.

removeFirst should the first bin be removed from the connectivity histogram?
nBreaks number of bins in connectivity histograms
corFnc a character string giving the correlation function to be used in adjacency calculation.
corOptions further options to the correlation function specified in corFnc.

Details
The function calculates unsigned networks by thresholding the correlation matrix using thresholds given in cutVector. For each power the scale free topology fit index is calculated and returned along with other information on connectivity.

Value
A list with the following components:
cutEstimate estimate of an appropriate hard-thresholding cut: the lowest cut for which the scale free topology fit R^2 exceeds RsquaredCut. If R^2 is below RsquaredCut for all cuts, NA is returned.
fitIndices a data frame containing the fit indices for scale free topology. The columns contain the hard threshold, Student p-value for the correlation threshold, adjusted R^2 for the linear fit, the linear coefficient, adjusted R^2 for a more complicated fit models, mean connectivity, median connectivity and maximum connectivity. If input moreNetworkConcepts is TRUE, 3 additional columns containing network density, centralization, and heterogeneity.

Author(s)
Steve Horvath

References

See Also
signumAdjacencyFunction
Description

Analysis of scale free topology for multiple soft thresholding powers. The aim is to help the user pick an appropriate soft-thresholding power for network construction.

Usage

```r
pickSoftThreshold(
  data,
  dataIsExpr = TRUE,
  weights = NULL,
  RsquaredCut = 0.85,
  powerVector = c(seq(1, 10, by = 1), seq(12, 20, by = 2)),
  removeFirst = FALSE, nBreaks = 10, blockSize = NULL,
  corFnc = cor, corOptions = list(use = 'p'),
  networkType = "unsigned",
  moreNetworkConcepts = FALSE,
  gcInterval = NULL,
  verbose = 0, indent = 0)
```

```r
pickSoftThreshold.fromSimilarity(
  similarity,
  RsquaredCut = 0.85,
  powerVector = c(seq(1, 10, by = 1), seq(12, 20, by = 2)),
  removeFirst = FALSE, nBreaks = 10, blockSize = 1000,
  moreNetworkConcepts = FALSE,
  verbose = 0, indent = 0)
```

Arguments

- **data**
 expression data in a matrix or data frame. Rows correspond to samples and columns to genes.

- **dataIsExpr**
 logical: should the data be interpreted as expression (or other numeric) data, or as a similarity matrix of network nodes?

- **weights**
 optional observation weights for `data` to be used in correlation calculation. A matrix of the same dimensions as `dataExpr`, containing non-negative weights. Only used with Pearson correlation.

- **similarity**
 similarity matrix: a symmetric matrix with entries between 0 and 1 and unit diagonal. The only transformation applied to `similarity` is raising it to a power.

- **RsquaredCut**
 desired minimum scale free topology fitting index R^2.

- **powerVector**
 a vector of soft thresholding powers for which the scale free topology fit indices are to be calculated.
pickSoftThreshold

removeFirst should the first bin be removed from the connectivity histogram?
nBreaks number of bins in connectivity histograms
blockSize block size into which the calculation of connectivity should be broken up. If not given, a suitable value will be calculated using function blockSize and printed if verbose>0. If R runs into memory problems, decrease this value.
corFnc the correlation function to be used in adjacency calculation.
corOptions a list giving further options to the correlation function specified in corFnc.
networkType network type. Allowed values are (unique abbreviations of) "unsigned", "signed", "signed hybrid". See adjacency.
moreNetworkConcepts logical: should additional network concepts be calculated? If TRUE, the function will calculate how the network density, the network heterogeneity, and the network centralization depend on the power. For the definition of these additional network concepts, see Horvath and Dong (2008). PloS Comp Biol.
gcInterval a number specifying in interval (in terms of individual genes) in which garbage collection will be performed. The actual interval will never be less than blockSize.
verbose integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.
indent indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

The function calculates weighted networks either by interpreting data directly as similarity, or first transforming it to similarity of the type specified by networkType. The weighted networks are obtained by raising the similarity to the powers given in powerVector. For each power the scale free topology fit index is calculated and returned along with other information on connectivity.

On systems with multiple cores or processors, the function pickSoftThreshold takes advantage of parallel processing if the function enableWGCNAThreads has been called to allow parallel processing and set up the parallel calculation back-end.

Value

A list with the following components:

powerEstimate estimate of an appropriate soft-thresholding power: the lowest power for which the scale free topology fit R^2 exceeds RsquaredCut. If R^2 is below RsquaredCut for all powers, NA is returned.

fitIndices a data frame containing the fit indices for scale free topology. The columns contain the soft-thresholding power, adjusted R^2 for the linear fit, the linear coefficient, adjusted R^2 for a more complicated fit models, mean connectivity, median connectivity and maximum connectivity. If input moreNetworkConcepts is TRUE, 3 additional columns containing network density, centralization, and heterogeneity.
Author(s)
Steve Horvath and Peter Langfelder

References

See Also
adjacency, softConnectivity

plotClusterTreeSamples
Annotated clustering dendrogram of microarray samples

Description
This function plots an annotated clustering dendrogram of microarray samples.

Usage
plotClusterTreeSamples(
 datExpr,
 y = NULL,
 traitLabels = NULL,
 yLabels = NULL,
 main = if (is.null(y)) "Sample dendrogram" else
 "Sample dendrogram and trait indicator",
 setLayout = TRUE, autoColorHeight = TRUE, colorHeight = 0.3,
 dendroLabels = NULL,
 addGuide = FALSE, guideAll = TRUE,
 guideCount = NULL, guideHang = 0.2,
 cex.traitLabels = 0.8,
 cex.dendroLabels = 0.9,
 marAll = c(1, 5, 3, 1),
 saveMar = TRUE,
 abHeight = NULL, abCol = "red",
 ...)
Arguments

- **datExpr**
 a data frame containing expression data, with rows corresponding to samples and columns to genes. Missing values are allowed and will be ignored.

- **y**
 microarray sample trait. Either a vector with one entry per sample, or a matrix in which each column corresponds to a (different) trait and each row to a sample.

- **traitLabels**
 labels to be printed next to the color rows depicting sample traits. Defaults to column names of y.

- **yLabels**
 Optional labels to identify colors in the row identifying the sample classes. If given, must be of the same dimensions as y. Each label that occurs will be displayed once.

- **main**
 title for the plot.

- **setLayout**
 logical: should the plotting device be partitioned into a standard layout? If FALSE, the user is responsible for partitioning. The function expects two regions of the same width, the first one immediately above the second one.

- **autoColorHeight**
 logical: should the height of the color area below the dendrogram be automatically adjusted for the number of traits? Only effective if setLayout is TRUE.

- **colorHeight**
 Specifies the height of the color area under dendrogram as a fraction of the height of the dendrogram area. Only effective when autoColorHeight above is FALSE.

- **dendroLabels**
 dendrogram labels. Set to FALSE to disable dendrogram labels altogether; set to NULL to use row labels of datExpr.

- **addGuide**
 logical: should vertical "guide lines" be added to the dendrogram plot? The lines make it easier to identify color codes with individual samples.

- **guideAll**
 logical: add a guide line for every sample? Only effective for addGuide set TRUE.

- **guideCount**
 number of guide lines to be plotted. Only effective when addGuide is TRUE and guideAll is FALSE.

- **guideHang**
 fraction of the dendrogram height to leave between the top end of the guide line and the dendrogram merge height. If the guide lines overlap with dendrogram labels, increase guideHang to leave more space for the labels.

- **cex.traitLabels**
 character expansion factor for trait labels.

- **cex.dendroLabels**
 character expansion factor for dendrogram (sample) labels.

- **marAll**
 a 4-element vector giving the bottom, left, top and right margins around the combined plot. Note that this is not the same as setting the margins via a call to par, because the bottom margin of the dendrogram and the top margin of the color underneath are always zero.

- **saveMar**
 logical: save margins setting before starting the plot and restore on exit?

- **abHeight**
 optional specification of the height for a horizontal line in the dendrogram, see abline.

- **abCol**
 color for plotting the horizontal line.

- **...**
 other graphical parameters to plot.hclust.
Details

The function generates an average linkage hierarchical clustering dendrogram (see `hclust`) of samples from the given expression data, using Euclidean distance of samples. The dendrogram is plotted together with color annotation for the samples.

The trait \(y\) must be numeric. If \(y\) is integer, the colors will correspond to values. If \(y\) is continuous, it will be dichotomized to two classes, below and above median.

Value

None.

Author(s)

Steve Horvath and Peter Langfelder

See Also

`dist`, `hclust`, `plotDendroAndColors`

Description

Plot color rows in a given order, for example under a dendrogram

Usage

```r
plotOrderedColors(
  order,
  colors,
  rowLabels = NULL,
  rowWidths = NULL,
  rowText = NULL,
  rowTextAlignment = c("left", "center", "right"),
  rowTextIgnore = NULL,
  textPositions = NULL,
  addTextGuide = TRUE,
  cex.rowLabels = 1,
  cex.rowText = 0.8,
  startAt = 0,
  ...
)
```

```r
plotColorUnderTree(
  dendro,
  colors,
```
Arguments

order A vector giving the order of the objects. Must have the same length as colors if colors is a vector, or as the number of rows if colors is a matrix or data frame.
dendro A hierarchical clustering dendrogram such one returned by hclust.
colors Coloring of objects on the dendrogram. Either a vector (one color per object) or a matrix (can also be an array or a data frame) with each column giving one color per object. Each column will be plotted as a horizontal row of colors under the dendrogram.
rowLabels Labels for the colorings given in colors. The labels will be printed to the left of the color rows in the plot. If the argument is given, it must be a vector of length equal to the number of columns in colors. If not given, names(colors) will be used if available. If not, sequential numbers starting from 1 will be used.
rowWidths Optional specification of relative row widths for the color and text (if given) rows. Need not sum to 1.
rowText Optional labels to identify colors in the color rows. If given, must be of the same dimensions as colors. Each label that occurs will be displayed once.
rowTextAlignment Character string specifying whether the labels should be left-justified to the start of the largest block of each label, centered in the middle, or right-justified to the end of the largest block.
rowTextIgnore Optional specifications of labels that should be ignored when displaying them using rowText above.
textPositions Optional numeric vector of the same length as the number of columns in rowText giving the color rows under which the text rows should appear.
addTextGuide logical: should guide lines be added for the text rows (if given)?
cex.rowLabels Font size scale factor for the row labels. See par.
cex.rowText character expansion factor for text rows (if given).
startAt A numeric value indicating where in relationship to the left edge of the plot the center of the first rectangle should be. Useful values are 0 if plotting color under a dendrogram, and 0.5 if plotting colors under a barplot.
... Other parameters to be passed on to the plotting method (such as main for the main title etc).
plotCor

Details

It is often useful to plot dendrograms or other plots (e.g., barplots) of objects together with additional information about the objects, for example module assignment (by color) that was obtained by cutting a hierarchical dendrogram or external color-coded measures such as gene significance. This function provides a way to do so. The calling code should section the screen into two (or more) parts, plot the dendrogram (via plot(hclust)) or other information in the upper section and use this function to plot color annotation in the order corresponding to the dendrogram in the lower section.

Value

None.

Note

This function replaces plotHclustColors in package moduleColor.

Author(s)

Steve Horvath <SHorvath@mednet.ucla.edu> and Peter Langfelder <Peter.Langfelder@gmail.com>

See Also

cutreeDynamic for module detection in a dendrogram;
plotDendroAndColors for automated plotting of dendrograms and colors in one step.

Description

This function produces a red and green color image of a correlation matrix using an RGB color specification. Increasingly positive correlations are represented with reds of increasing intensity, and increasingly negative correlations are represented with greens of increasing intensity.

Usage

plotCor(x, new=FALSE, nrgcols=50, labels=FALSE, labcols=1, title="", ...)
labels vector of character strings to be placed at the tickpoints, labels for the columns of x.

labcols colors to be used for the labels of the columns of x. labcols can have either length 1, in which case all the labels are displayed using the same color, or the same length as labels, in which case a color is specified for the label of each column of x.

title character string, overall title for the plot.

... graphical parameters may also be supplied as arguments to the function (see par). For comparison purposes, it is good to set zlim=c(-1,1).

Author(s)
Sandrine Dudoit, <sandrine@stat.berkeley.edu>

See Also
plotmat, rgcolors.func, cor, image, rgb.

plotDendroAndColors
Dendrogram plot with color annotation of objects

Description
This function plots a hierarchical clustering dendrogram and color annotation(s) of objects in the dendrogram underneath.

Usage

plotDendroAndColors(
 dendro,
 colors,
 groupLabels = NULL,
 rowText = NULL,
 rowTextAlignment = c("left", "center", "right"),
 rowTextIgnore = NULL,
 textPositions = NULL,
 setLayout = TRUE,
 autoColorHeight = TRUE,
 colorHeight = 0.2,
 colorHeightBase = 0.2,
 colorHeightMax = 0.6,
 rowWidths = NULL,
 dendroLabels = NULL,
 addGuide = FALSE, guideAll = FALSE,
 guideCount = 50, guideHang = 0.2,
 addTextGuide = FALSE,
cex.colorLabels = 0.8, cex.dendroLabels = 0.9,
cex.rowText = 0.8,
marAll = c(1, 5, 3, 1), saveMar = TRUE,
abHeight = NULL, abCol = "red", ...)

Arguments

dendro a hierarchical clustering dendrogram such as one produced by hclust.
colors coloring of objects on the dendrogram. Either a vector (one color per object)
or a matrix (can also be an array or a data frame) with each column giving one
color per object. Each column will be plotted as a horizontal row of colors under
the dendrogram.
groups labels for the colorings given in colors. The labels will be printed to the left of
the color rows in the plot. If the argument is given, it must be a vector of length
equal to the number of columns in colors. If not given, names(colors) will
be used if available. If not, sequential numbers starting from 1 will be used.
rowText Optional labels to identify colors in the color rows. If given, must be either
the same dimensions as colors or must have the same number of rows and
textPositions must be used to specify which columns of colors each column
of rowText corresponds to. Each label that occurs will be displayed once, under
the largest continuous block of the corresponding colors.
rowTextAlignment Character string specifying whether the labels should be left-justified to the start
of the largest block of each label, centered in the middle, or right-justified to the
end of the largest block.
rowTextIgnore Optional specifications of labels that should be ignored when displaying them
using rowText above.
textPositions optional numeric vector of the same length as the number of columns in rowText
giving the color rows under which the text rows should appear.
setLayout logical: should the plotting device be partitioned into a standard layout? If
FALSE, the user is responsible for partitioning. The function expects two regions
of the same width, the first one immediately above the second one.
autoColorHeight logical: should the height of the color area below the dendrogram be automati-
cally adjusted for the number of traits? Only effective if setLayout is TRUE.
colorHeight specifies the height of the color area under dendrogram as a fraction of the height
of the dendrogram area. Only effective when autoColorHeight above is FALSE.
colorHeightBase when autoColorHeight is TRUE, this specifies the minimum height of the color
area (the height when there is one color row).
colorHeightMax when autoColorHeight is TRUE, this specifies the maximum height of the color
area (the height when there are many color rows).
rowWidths optional specification of relative row widths for the color and text (if given)
rows. Need not sum to 1.
dendroLabels dendrogram labels. Set to FALSE to disable dendrogram labels altogether; set to
NULL to use row labels of datExpr.
addGuide logical: should vertical "guide lines" be added to the dendrogram plot? The lines make it easier to identify color codes with individual samples.

guideAll logical: add a guide line for every sample? Only effective for addGuide set TRUE.

guideCount number of guide lines to be plotted. Only effective when addGuide is TRUE and guideAll is FALSE.

guideHang fraction of the dendrogram height to leave between the top end of the guide line and the dendrogram merge height. If the guide lines overlap with dendrogram labels, increase guideHang to leave more space for the labels.

addTextGuide logical: should guide lines be added for the text rows (if given)?

cex.colorLabels character expansion factor for trait labels.

cex.dendroLabels character expansion factor for dendrogram (sample) labels.

cex.rowText character expansion factor for text rows (if given).

marAll a vector of length 4 giving the bottom, left, top and right margins of the combined plot. There is no margin between the dendrogram and the color plot underneath.

saveMar logical: save margins setting before starting the plot and restore on exit?

abHeight optional specification of the height for a horizontal line in the dendrogram, see abline.

abCol color for plotting the horizontal line.

... other graphical parameters to plot.hclust.

Details

The function slits the plotting device into two regions, plots the given dendrogram in the upper region, then plots color rows in the region below the dendrogram.

Value

None.

Author(s)

Peter Langfelder

See Also

plotColorUnderTree
plotEigengeneNetworks
Eigengene network plot

Description
This function plots dendrogram and eigengene representations of (consensus) eigengenes networks. In the case of consensus eigengene networks the function also plots pairwise preservation measures between consensus networks in different sets.

Usage

```r
plotEigengeneNetworks(
  multiME,
  setLabels,
  letterSubPlots = FALSE, Letters = NULL,
  excludeGrey = TRUE, greyLabel = "grey",
  plotDendrograms = TRUE, plotHeatmaps = TRUE,
  setMargins = TRUE, marDendro = NULL, marHeatmap = NULL,
  colorLabels = TRUE, signed = TRUE,
  heatmapColors = NULL,
  plotAdjacency = TRUE,
  printAdjacency = FALSE, cex.adjacency = 0.9,
  coloredBarplot = TRUE, barplotMeans = TRUE, barplotErrors = FALSE,
  plotPreservation = "standard",
  zlimPreservation = c(0, 1),
  printPreservation = FALSE, cex.preservation = 0.9,
  ...
)
```

Arguments

- `multiME` either a single data frame containing the module eigengenes, or module eigengenes in the multi-set format (see `checkSets`). The multi-set format is a vector of lists, one per set. Each set must contain a component `data` whose rows correspond to samples and columns to eigengenes.
- `setLabels` A vector of character strings that label sets in `multiME`.
- `letterSubPlots` logical: should subplots be lettered?
- `Letters` optional specification of a sequence of letters for lettering. Defaults to "ABCD"...
- `excludeGrey` logical: should the grey module eigengene be excluded from the plots?
- `greyLabel` label for the grey module. Usually either "grey" or the number 0.
- `plotDendrograms` logical: should eigengene dendrograms be plotted?
- `plotHeatmaps` logical: should eigengene network heatmaps be plotted?
- `setMargins` logical: should margins be set? See `par`.
plotEigengeneNetworks

marDendro a vector of length 4 giving the margin setting for dendrogram plots. See par. If setMargins is TRUE and marDendro is not given, the function will provide reasonable default values.

marHeatmap a vector of length 4 giving the margin setting for heatmap plots. See par. If setMargins is TRUE and marDendro is not given, the function will provide reasonable default values.

colorLabels logical: should module eigengene names be interpreted as color names and the colors used to label heatmap plots and barplots?

signed logical: should eigengene networks be constructed as signed?

heatmapColors color palette for heatmaps. Defaults to heat.colors when signed is FALSE, and to redWhiteGreen when signed is TRUE.

plotAdjacency logical: should module eigengene heatmaps plot adjacency (ranging from 0 to 1), or correlation (ranging from -1 to 1)?

printAdjacency logical: should the numerical values be printed into the adjacency or correlation heatmap?

cex.adjacency character expansion factor for printing of numerical values into the adjacency or correlation heatmap

coloredBarplot logical: should the barplot of eigengene adjacency preservation distinguish individual contributions by color? This is possible only if colorLabels is TRUE and module eigengene names encode valid colors.

barplotMeans logical: plot mean preservation in the barplot? This option effectively rescales the preservation by the number of eigengenes in the network. If means are plotted, the barplot is not colored.

barplotErrors logical: should standard errors of the mean preservation be plotted?

plotPreservation a character string specifying which type of preservation measure to plot. Allowed values are (unique abbreviations of) "standard", "hyperbolic", "both".

zlimPreservation a vector of length 2 giving the value limits for the preservation heatmaps.

printPreservation logical: should preservation values be printed within the heatmap?

cex.preservation character expansion factor for preservation display.

... other graphical arguments to function labeledHeatmap.

Details

Consensus eigengene networks consist of a fixed set of eigengenes "expressed" in several different sets. Network connection strengths are given by eigengene correlations. This function aims to visualize the networks as well as their similarities and differences across sets.

The function partitions the screen appropriately and plots eigengene dendrograms in the top row, then a square matrix of plots: heatmap plots of eigengene networks in each set on the diagonal, heatmap plots of pairwise preservation networks below the diagonal, and barplots of aggregate network preservation of individual eigengenes above the diagonal. A preservation plot or barplot in the row i and column j of the square matrix represents the preservation between sets i and j.
Individual eigengenes are labeled by their name in the dendrograms; in the heatmaps and barplots they can optionally be labeled by color squares. For compatibility with other functions, the color labels are encoded in the eigengene names by prefixing the color with two letters, such as "BmeturquoiseB".

Two types of network preservation can be plotted: the "standard" is simply the difference between adjacencies in the two compared sets. The "hyperbolic" difference de-emphasizes the preservation of low adjacencies. When "both" is specified, standard preservation is plotted in the lower triangle and hyperbolic in the upper triangle of each preservation heatmap.

If the eigengenes are labeled by color, the bars in the barplot can be split into segments representing the contribution of each eigengene and labeled by the contribution. For example, a yellow segment in a bar labeled by a turquoise square represents the preservation of the adjacency between the yellow and turquoise eigengenes in the two networks compared by the barplot.

For large numbers of eigengenes and/or sets, it may be difficult to get a meaningful plot fit a standard computer screen. In such cases we recommend using a device such as postscript or pdf where the user can specify large dimensions; such plots can be conveniently viewed in standard pdf or postscript viewers.

Value
None.

Author(s)
Peter Langfelder

References
For theory and applications of consensus eigengene networks, see

See Also
labeledHeatmap, labeledBarplot for annotated heatmaps and barplots;
hclust for hierarchical clustering and dendrogram plots

Description
This function produces a red and green color image of a data matrix using an RGB color specification. Larger entries are represented with reds of increasing intensity, and smaller entries are represented with greens of increasing intensity.

Usage
plotMat(x, nrgcols=50, rlabels=FALSE, clabels=FALSE, rcols=1, ccols=1, title="",...)
Arguments

- **x**: a matrix of numbers.
- **nrgcols**: the number of colors (>= 1) to be used in the red and green palette.
- **rlabels**: vector of character strings to be placed at the row tickpoints, labels for the rows of x.
- **clabels**: vector of character strings to be placed at the column tickpoints, labels for the columns of x.
- **rcols**: colors to be used for the labels of the rows of x. rcols can have either length 1, in which case all the labels are displayed using the same color, or the same length as rlabels, in which case a color is specified for the label of each row of x.
- **ccols**: colors to be used for the labels of the columns of x. ccols can have either length 1, in which case all the labels are displayed using the same color, or the same length as clabels, in which case a color is specified for the label of each column of x.
- **title**: character string, overall title for the plot.
- **...**: graphical parameters may also be supplied as arguments to the function (see `par`). E.g. zlim=c(-3,3)

Author(s)

Sandrine Dudoit, <sandrine@stat.berkeley.edu>

See Also

- `plotCor`, `rgcolors.func`, `cor`, `image`, `rgb`.

plotMEpairs
Pairwise scatterplots of eigengenes

Description

The function produces a matrix of plots containing pairwise scatterplots of given eigengenes, the distribution of their values and their pairwise correlations.

Usage

```r
plotMEpairs(
  datME, 
  y = NULL, 
  main = "Relationship between module eigengenes", 
  clusterMEs = TRUE, 
  ...)
```
Arguments

datME: a data frame containing expression data, with rows corresponding to samples and columns to genes. Missing values are allowed and will be ignored.

y: optional microarray sample trait vector. Will be treated as an additional eigengene.

main: main title for the plot.

clusterMEs: logical: should the module eigengenes be ordered by their dendrogram?

... additional graphical parameters to the function pairs.

Details

The function produces an NxN matrix of plots, where N is the number of eigengenes. In the upper triangle it plots pairwise scatterplots of module eigengenes (plus the trait y, if given). On the diagonal it plots histograms of sample values for each eigengene. Below the diagonal, it displays the pairwise correlations of the eigengenes.

Value

None.

Author(s)

Steve Horvath

See Also

pairs

Description

Plot a barplot of gene significance.

Usage

plotModuleSignificance(
geneSignificance,
colors,
boxplot = FALSE,
main = "Gene significance across modules," ,
ylab = "Gene Significance", ...)
Arguments

- **geneSignificance**
 a numeric vector giving gene significances.

- **colors**
 a character vector specifying module assignment for the genes whose significance is given in `geneSignificance`. The modules should be labeled by colors.

- **boxplot**
 logical: should a boxplot be produced instead of a barplot?

- **main**
 main title for the plot.

- **ylab**
 y axis label for the plot.

- **...**
 other graphical parameters to `plot`.

Details

Given individual gene significances and their module assignment, the function calculates the module significance for each module as the average gene significance of the genes within the module. The result is plotted in a barplot or boxplot form. Each bar or box is labeled by the corresponding module color.

Value

None.

Author(s)

Steve Horvath

References

See Also

- `barplot`
- `boxplot`
plotMultiHist Plot multiple histograms in a single plot

Description

This function plots density or cumulative distribution function of multiple histograms in a single plot, using lines.

Usage

plotMultiHist(
 data,
 nBreaks = 100,
 col = 1:length(data),
 scaleBy = c("area", "max", "none"),
 cumulative = FALSE,
 ...
)

Arguments

 data A list in which each component corresponds to a separate histogram and is a vector of values to be shown in each histogram.
 nBreaks Number of breaks in the combined plot.
 col Color of the lines. Should be a vector of the same length as data.
 scaleBy Method to make the different histograms comparable. The counts are scaled such that either the total area or the maximum are the same for all histograms, or the histograms are shown without scaling.
 cumulative Logical: should the cumulative distribution be shown instead of the density?
 ... Other graphical arguments.

Value

Invisibly,

 x A list with one component per histogram (component of data), giving the bin midpoints
 y A list with one component per histogram (component of data), giving the scaled bin counts

Note

This function is still experimental and behavior may change in the future.

Author(s)

Peter Langfelder
plotNetworkHeatmap

Network heatmap plot

Description

Network heatmap plot.

Usage

plotNetworkHeatmap(
 datExpr,
 plotGenes,
 weights = NULL,
 useTOM = TRUE,
 power = 6,
 networkType = "unsigned",
 main = "Heatmap of the network")

Arguments

datExpr a data frame containing expression data, with rows corresponding to samples and columns to genes. Missing values are allowed and will be ignored.

plotGenes a character vector giving the names of genes to be included in the plot. The names will be matched against names(datExpr).

weights optional observation weights for datExpr to be used in correlation calculation. A matrix of the same dimensions as datExpr, containing non-negative weights. Only used with Pearson correlation.

useTOM logical: should TOM be plotted (TRUE), or correlation-based adjacency (FALSE)?

power soft-thresholding power for network construction.

networkType a character string giving the newtork type. Recognized values are (unique abbreviations of) "unsigned", "signed", and "signed hybrid".

main main title for the plot.
Details

The function constructs a network from the given expression data (selected by plotGenes) using the soft-thresholding procedure, optionally calculates Topological Overlap (TOM) and plots a heatmap of the network.

Note that all network calculations are done in one block and may fail due to memory allocation issues for large numbers of genes.

Value

None.

Author(s)

Steve Horvath

References

See Also

adjacency, TOMsimilarity

Description

Uses the expression values from an admixed population and estimates of the proportions of subpopulations to estimate the population specific mean values. For example, this function can be used to estimate the cell type specific mean gene expression values based on expression values from a mixture of cells. The method is described in Shen-Orr et al (2010) where it was used to estimate cell type specific gene expression levels based on a mixture sample.

Usage

populationMeansInAdmixture(
 datProportions, datE.Admixture,
 scaleProportionsTo1 = TRUE,
 scaleProportionsInCelltype = TRUE,
 setMissingProportionsToZero = FALSE)
Arguments

datProportions a matrix of non-negative numbers (ideally proportions) where the rows correspond to the samples (rows of `datE.Admixture`) and the columns correspond to the sub-populations of the mixture. The function calculates a mean expression value for each column of `datProportions`. Negative entries in `datProportions` lead to an error message. But the rows of `datProportions` do not have to sum to 1, see the argument `scaleProportionsTo1`.

datE.Admixture a matrix of numbers. The rows correspond to samples (mixtures of populations). The columns contain the variables (e.g. genes) for which the means should be estimated.

scaleProportionsTo1 logical. If set to TRUE (default) then the proportions in each row of `datProportions` are scaled so that they sum to 1, i.e. `datProportions[i,] = datProportions[i,] / max(datProportions[i,])`. In general, we recommend to set it to TRUE.

scaleProportionsInCelltype logical. If set to TRUE (default) then the proportions in each cell types are rescaled and make the mean to 0.

setMissingProportionsToZero logical. Default is FALSE. If set to TRUE then it sets missing values in `datProportions` to zero.

Details

The function outputs a matrix of coefficients resulting from fitting a regression model. If the proportions sum to 1, then i-th row of the output matrix reports the coefficients of the following model

\[\text{lm}(\text{datE.Admixture}[i,] \sim -1, \text{data}=\text{datProportions}) \]

Aside, the minus 1 in the formula indicates that no intercept term will be fit. Under certain assumptions, the coefficients can be interpreted as the mean expression values in the sub-populations (Shen-Orr 2010).

Value

a numeric matrix whose rows correspond to the columns of `datE.Admixture` (e.g. to genes) and whose columns correspond to the columns of `datProportions` (e.g. sub populations or cell types).

Note

This can be considered a wrapper of the `lm` function.

Author(s)

Steve Horvath, Chaochao Cai

References

Examples

```r
set.seed(1)
# this is the number of complex (mixed) tissue samples, e.g. arrays
m = 10
# true count data (e.g. pure cells in the mixed sample)
datTrueCounts = as.matrix(data.frame(
    TrueCount1 = rpois(m, lambda = 16),
    TrueCount2 = rpois(m, lambda = 8),
    TrueCount3 = rpois(m, lambda = 4),
    TrueCount4 = rpois(m, lambda = 2)))
no.pure = dim(datTrueCounts)[[2]]

# now we transform the counts into proportions
divideBySum = function(x) x / sum(x)
datProportions = t(apply(datTrueCounts, 1, divideBySum))
dimnames(datProportions)[[2]] = paste("TrueProp", 1:dim(datTrueCounts)[[2]], sep=".")

# number of genes that are highly expressed in each pure population
no.genesPerPure = rep(5, no.pure)
no.genes = sum(no.genesPerPure)
GeneIndicator = rep(1:no.pure, no.genesPerPure)
# true mean values of the genes in the pure populations
# in the end we hope to estimate them from the mixed samples
datTrueMeans = matrix(rnorm(no.genes * no.pure, sd = .3), nrow = no.genes, ncol = no.pure)
for (i in 1:no.pure)
    datTrueMeans[GeneIndicator == i, i] = datTrueMeans[GeneIndicator == i, i] + 1

dimnames(datTrueMeans)[[1]] = paste("Gene", 1:dim(datTrueMeans)[[1]], sep=".")
dimnames(datTrueMeans)[[2]] = paste("MeanPureCellType", 1:dim(datTrueMeans)[[2]], sep=".")
# plot.mat(datTrueMeans)
# simulate the (expression) values of the admixed population samples
noise = matrix(rnorm(m * no.genes, sd = .1), nrow = m, ncol = no.genes)
datE.Admixture = as.matrix(datProportions) * (% t(datTrueMeans) + noise)
dimnames(datE.Admixture)[[1]] = paste("MixedTissue", 1:m, sep=".")

datPredictedMeans = populationMeansInAdmixture(datProportions, datE.Admixture)
par(mfrow = c(2, 2))
for (i in 1:4)
    verboseScatterplot(datPredictedMeans[, i], datTrueMeans[, i],
        xlab = "predicted mean", ylab = "true mean", main = "all populations")
    abline(0, 1)

# assume we only study 2 populations (ie we ignore the others)
selectPopulations = c(1, 2)
datPredictedMeansToofew = populationMeansInAdmixture(datProportions[, selectPopulations],
    datE.Admixture)
par(mfrow = c(2, 2))
for (i in 1:length(selectPopulations))
    verboseScatterplot(datPredictedMeansToofew[, i], datTrueMeans[, i],
        xlab = "predicted mean", ylab = "true mean", main = "all populations")
```

xlab="predicted mean",ylab="true mean",main="too few populations")
abline(0,1)
}

#assume we erroneously add a population
datProportionsTooMany=data.frame(datProportions,WrongProp=sample(datProportions[,1]))
datPredictedMeansTooMany=populationMeansInAdmixture(datProportionsTooMany,datE.Admixture)

par(mfrow=c(2,2))
for (i in 1:4){
 verboseScatterplot(datPredictedMeansTooMany[,i],datTrueMeans0[,i],
 xlab="predicted mean",ylab="true mean",main="too many populations")
 abline(0,1)
}

pquantile

Parallel quantile, median, mean

Description

Calculation of “parallel” quantiles, minima, maxima, medians, and means, across given arguments or across lists

Usage

```r
pquantile(prob, ...)
pquantile.fromList(dataList, prob)
pmedian(...)
pmean(..., weights = NULL)
pmean.fromList(dataList, weights = NULL)
pminWhich.fromList(dataList)
```

Arguments

- **prob**: A single probability at which to calculate the quantile. See `quantile`
- **dataList**: A list of numeric vectors or arrays, all of the same length and dimensions, over which to calculate “parallel” quantiles.
- **weights**: Optional vector of the same length as `dataList`, giving the weights to be used in the weighted mean. If not given, unit weights will be used.
- **...**: Numeric arguments. All arguments must have the same dimensions. See details.
Given numeric arguments, say x,y,z, of equal dimensions (and length), the pquantile calculates and returns the quantile of the first components of x,y,z, then the second components, etc. Similarly, pmedian and pmean calculate the median and mean, respectively. The function pquantile.fromList is identical to pquantile except that the argument dataList replaces the ... in holding the numeric vectors over which to calculate the quantiles.

Value

pquantile, pquantile.fromList
A vector or array containing quantiles.
pmean, pmean.fromList
A vector or array containing means.
pmedian
A vector or array containing medians.
pminWhich.fromList
A list with two components: min gives the minima, which gives the indices of the elements that are the minima.

Dimensions are copied from dimensions of the input arguments. If any of the input variables have dimnames, the first non-NULL dimnames are copied into the output.

Author(s)

Peter Langfelder and Steve Horvath

See Also

quantile, median, mean for the underlying statistics.

Examples

Generate 2 simple matrices
a = matrix(c(1:12), 3, 4);
b = a + 1;
c = a + 2;

Set the colnames on matrix a

colnames(a) = spaste("col", c(1:4));

Example use

pquantile(prob = 0.5, a, b, c)

pmean(a,b,c)
pmedian(a,b,c)
Prepend a comma to a non-empty string

Description
Utility function that prepends a comma before the input string if the string is non-empty.

Usage
```
prepComma(s)
```

Arguments
- `s` Character string.

Value
- If `s` is non-empty, returns `paste(",", s)`, otherwise returns `s`.

Author(s)
Peter Langfelder

Examples
```
prepComma("abc");
prepComma(" ");
```

Pad numbers with leading zeros to specified total width

Description
This function pads the specified numbers with zeros to a specified total width.

Usage
```
prependZeros(x, width = max(nchar(x)))
```

Arguments
- `x` Vector of numbers to be padded.
- `width` Width to pad the numbers to.

Value
Character vector with the 0-padded numbers.
Author(s)
Peter Langfelder

Examples
prependZeros(1:10)
prependZeros(1:10, 4)

preservationNetworkConnectivity
Network preservation calculations

Description
This function calculates several measures of gene network preservation. Given gene expression data in several individual data sets, it calculates the individual adjacency matrices, forms the preservation network and finally forms several summary measures of adjacency preservation for each node (gene) in the network.

Usage
preservationNetworkConnectivity(
 multiExpr,
 useSets = NULL, useGenes = NULL,
 corFnc = "cor", corOptions = "use='p'",
 networkType = "unsigned",
 power = 6,
 sampleLinks = NULL, nLinks = 5000,
 blockSize = 1000,
 setSeed = 12345,
 weightPower = 2,
 verbose = 2, indent = 0)

Arguments
multiExpr expression data in the multi-set format (see checkSets). A vector of lists, one per set. Each set must contain a component data that contains the expression data, with rows corresponding to samples and columns to genes or probes.
useSets optional specification of sets to be used for the preservation calculation. Defaults to using all sets.
useGenes optional specification of genes to be used for the preservation calculation. Defaults to all genes.
corFnc character string containing the name of the function to calculate correlation. Suggested functions include "cor" and "bicor".
corOptions further argument to the correlation function.
preservationNetworkConnectivity

networkType
a character string encoding network type. Recognized values are (unique abbreviations of) "unsigned", "signed", and "signed hybrid".

power
soft thresholding power for network construction. Should be a number greater than 1.

sampleLinks
logical: should network connections be sampled (TRUE) or should all connections be used systematically (FALSE)?

nLinks
correlation calculations will be split into square blocks of this size, to prevent running out of memory for large gene sets.

setSeed
seed to be used for sampling, for repeatability. If a seed already exists, it is saved before the sampling starts and restored upon exit.

weightPower
integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

indent
indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

The preservation network is formed from adjacencies of compared sets. For 'complete' preservations, all given sets are compared at once; for 'pairwise' preservations, the sets are compared in pairs. Unweighted preservations are simple mean preservations for each node; their weighted counterparts are weighted averages in which a preservation of adjacencies $A_{ij}^{(1)}$ and $A_{ij}^{(2)}$ of nodes i,j between sets 1 and 2 is weighted by $[(A_{ij}^{(1)} + A_{ij}^{(2)})/2]^{\text{weightPower}}$. The hyperbolic preservation is based on $\tanh([\text{max} - \text{min}] / (\text{max} + \text{min})^2)$, where max and min are the componentwise maximum and minimum of the compared adjacencies, respectively.

Value

A list with the following components:

pairwise
a matrix with rows corresponding to genes and columns to unique pairs of given sets, giving the pairwise preservation of the adjacencies connecting the gene to all other genes.

complete
a vector with one entry for each input gene containing the complete mean preservation of the adjacencies connecting the gene to all other genes.

pairwiseWeighted
a matrix with rows corresponding to genes and columns to unique pairs of given sets, giving the pairwise weighted preservation of the adjacencies connecting the gene to all other genes.

completeWeighted
a vector with one entry for each input gene containing the complete weighted mean preservation of the adjacencies connecting the gene to all other genes.
pairwiseHyperbolic

a matrix with rows corresponding to genes and columns to unique pairs of given sets, giving the pairwise hyperbolic preservation of the adjacencies connecting the gene to all other genes.

completeHyperbolic

da vector with one entry for each input gene containing the complete mean hyperbolic preservation of the adjacencies connecting the gene to all other genes.

pairwiseWeightedHyperbolic

d a matrix with rows corresponding to genes and columns to unique pairs of given sets, giving the pairwise weighted hyperbolic preservation of the adjacencies connecting the gene to all other genes.

completeWeightedHyperbolic

da vector with one entry for each input gene containing the complete weighted hyperbolic mean preservation of the adjacencies connecting the gene to all other genes.

Author(s)

Peter Langfelder

References

See Also

adjacency for calculation of adjacency;

projectiveKMeans Projective K-means (pre-)clustering of expression data

Description

Implementation of a variant of K-means clustering for expression data.

Usage

projectiveKMeans(
 datExpr,
 preferredSize = 5000,
 nCenters = as.integer(min(ncol(datExpr)/20, preferredSize^2/ncol(datExpr))),
 sizePenaltyPower = 4,
 networkType = "unsigned",
 randomSeed = 54321,
 checkData = TRUE,
 imputeMissing = TRUE,
 maxIterations = 1000,
 verbose = 0, indent = 0)
Arguments

datExpr \text{ expression data. A data frame in which columns are genes and rows are samples. NAs are allowed, but not too many.}

preferredSize \text{ preferred maximum size of clusters.}
nCenters \text{ number of initial clusters. Empirical evidence suggests that more centers will give a better pre-clustering; the default is an attempt to arrive at a reasonable number.}

sizePenaltyPower \text{ parameter specifying how severe is the penalty for clusters that exceed \text{preferredSize}.}

networkType \text{ network type. Allowed values are (unique abbreviations of) "unsigned", "signed", "signed hybrid". See \text{adjacency}.}

randomSeed \text{ integer to be used as seed for the random number generator before the function starts. If a current seed exists, it is saved and restored upon exit.}

checkData \text{ logical: should data be checked for genes with zero variance and genes and samples with excessive numbers of missing samples? Bad samples are ignored; returned cluster assignment for bad genes will be \text{NA}.}

imputeMissing \text{ logical: should missing values in \text{datExpr} be imputed before the calculations start? The early imputation makes the code run faster but may produce slightly different results if re-running older calculations.}

maxIterations \text{ maximum iterations to be attempted.}

verbose \text{ integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.}

indent \text{ indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.}

Details

The principal aim of this function within WGCNA is to pre-cluster a large number of genes into smaller blocks that can be handled using standard WGCNA techniques.

This function implements a variant of K-means clustering that is suitable for co-expression analysis. Cluster centers are defined by the first principal component, and distances by correlation (more precisely, 1-correlation). The distance between a gene and a cluster is multiplied by a factor of $\max(\text{clusterSize}/\text{preferredSize}, 1)^{\text{sizePenaltyPower}}$, thus penalizing clusters whose size exceeds \text{preferredSize}. The function starts with randomly generated cluster assignment (hence the need to set the random seed for repeatability) and executes iterations of calculating new centers and reassigning genes to nearest center until the clustering becomes stable. Before returning, nearby clusters are iteratively combined if their combined size is below \text{preferredSize}.

The standard principal component calculation via the function \text{svd} fails from time to time (likely a convergence problem of the underlying lapack functions). Such errors are trapped and the principal component is approximated by a weighted average of expression profiles in the cluster. If \text{verbose} is set above 2, an informational message is printed whenever this approximation is used.
Value

A list with the following components:

- **clusters**: a numerical vector with one component per input gene, giving the cluster number in which the gene is assigned.
- **centers**: cluster centers, that is their first principal components.

Author(s)

Peter Langfelder

proportionsInAdmixture

Estimate the proportion of pure populations in an admixed population based on marker expression values.

Description

Assume that `dateNadmixture` provides the expression values from a mixture of cell types (admixed population) and you want to estimate the proportion of each pure cell type in the mixed samples (rows of `dateNadmixture`). The function allows you to do this as long as you provide a data frame `markerMeansPure` that reports the mean expression values of markers in each of the pure cell types.

Usage

```r
proportionsInAdmixture(
  MarkerMeansPure, 
  dateNadmixture, 
  calculateConditionNumber = FALSE, 
  coefToProportion = TRUE)
```

Arguments

- **MarkerMeansPure**
 is a data frame whose first column reports the name of the marker and the remaining columns report the mean values of the markers in each of the pure populations. The function will estimate the proportion of pure cells which correspond to columns 2 through `dim(MarkerMeansPure)[[2]]` of `MarkerMeansPure`. Rows that contain missing values (NA) will be removed.

- **dateNadmixture**
 is a data frame of expression data, e.g. the columns of `dateNadmixture` could correspond to thousands of genes. The rows of `dateNadmixture` correspond to the admixed samples for which the function estimates the proportions of pure populations. Some of the markers specified in the first column of `MarkerMeansPure` should correspond to column names of `dateNadmixture`.
proportionsInAdmixture

calculateConditionNumber
logical. Default is FALSE. If set to TRUE then it uses the kappa function to calculates the condition number of the matrix MarkerMeansPure[, -1]. This allows one to determine whether the linear model for estimating the proportions is well specified. Type help(kappa) to learn more. kappa() computes by default (an estimate of) the 2-norm condition number of a matrix or of the R matrix of a QR decomposition, perhaps of a linear fit.

coeftoProportion
logical. By default, it is set to TRUE. When estimating the proportions the function fits a multivariate linear model. Ideally, the coefficients of the linear model correspond to the proportions in the admixed samples. But sometimes the coefficients take on negative values or do not sum to 1. If coeftoProportion=TRUE then negative coefficients will be set to 0 and the remaining coefficients will be scaled so that they sum to 1.

Details

The methods implemented in this function were motivated by the gene expression deconvolution approach described by Abbas et al (2009), Lu et al (2003), Wang et al (2006). This approach can be used to predict the proportions of (pure) cells in a complex tissue, e.g. the proportion of blood cell types in whole blood. To define the markers, you may need to have expression data from pure populations. Then you can define markers based on a significant t-test or ANOVA across the pure populations. Next use the pure population data to estimate corresponding mean expression values. Hopefully, the array platforms and normalization methods for datE.MarkerAdmixtureTranspose and MarkerMeansPure are comparable. When dealing with Affymetrix data: we have successfully used it on untransformed MAS5 data. For statisticians: To estimate the proportions, we use the coefficients of a linear model. Specifically: datCoef = t(lm(datE.MarkerAdmixtureTranspose ~ MarkerMeansPure[, -1]))$coef where datCoef is a matrix whose rows correspond to the mixed samples (rows of datE.Admixture) and the columns correspond to pure populations (e.g. cell types) i.e. the columns of MarkerMeansPure[, -1]. More details can be found in Abbas et al (2009).

Value

A list with the following components

PredictedProportions
data frame that contains the predicted proportions. The rows of PredictedProportions correspond to the admixed samples, i.e. the rows of datE.Admixture. The columns of PredictedProportions correspond to the pure populations, i.e. the columns of MarkerMeansPure[, -1].

datCoef=datCoef

data frame of numbers that is analogous to PredictedProportions. In general, datCoef will only be different from PredictedProportions if coeftoProportion=TRUE. See the description of coeftoProportion

conditionNumber
This is the condition number resulting from the kappa function. See the description of calculateConditionNumber.
propVarExplained

markersUsed vector of character strings that contains the subset of marker names (specified in the first column of MarkerMeansPure) that match column names of datE.Admixture and that contain non-missing pure mean values.

Note
This function can be considered a wrapper of the \texttt{lm} function.

Author(s)
Steve Horvath, Chaochao Cai

References

See Also
\texttt{lm}, \texttt{kappa}

\begin{itemize}
\item \texttt{propVarExplained} \hspace{1cm} Proportion of variance explained by eigengenes.
\end{itemize}

Description
This function calculates the proportion of variance of genes in each module explained by the respective module eigengene.

Usage
\texttt{propVarExplained(datExpr, colors, MEs, corFnc = "cor", corOptions = "use = 'p'")}

Arguments
\begin{itemize}
\item datExpr expression data. A data frame in which columns are genes and rows are samples. NAs are allowed and will be ignored.
\item colors a vector giving module assignment for genes given in datExpr. Unique values should correspond to the names of the eigengenes in MEs.
\item MEs a data frame of module eigengenes in which each column is an eigengene and each row corresponds to a sample.
\end{itemize}
pruneAndMergeConsensusModules

- **corFnc**: character string containing the name of the function to calculate correlation. Suggested functions include "cor" and "bicor".
- **corOptions**: further argument to the correlation function.

Details

For compatibility with other functions, entries in color are matched to a substring of names(MEs) starting at position 3. For example, the entry "turquoise" in colors will be matched to the eigengene named "MEturquoise". The first two characters of the eigengene name are ignored and can be arbitrary.

Value

A vector with one entry per eigengene containing the proportion of variance of the module explained by the eigengene.

Author(s)

Peter Langfelder

See Also

moduleEigengenes

Description

This function prunes genes with low consensus eigengene-based intramodular connectivity (kME) from modules and merges modules whose consensus similarity is high. The process is repeated until the modules become stable.

Usage

```r
pruneAndMergeConsensusModules(
    multiExpr,
    multiWeights = NULL,
    multiExpr.imputed = NULL,
    labels,
    unassignedLabel = if (is.numeric(labels)) 0 else "grey",
    networkOptions,
    consensusTree,

    # Pruning options
    minModuleSize,
```
pruneAndMergeConsensusModules

minCoreKMESize = minModuleSize/3,
minCoreKME = 0.5,
minKMEtoStay = 0.2,

Module eigengene calculation and merging options
impute = TRUE,
trapErrors = FALSE,
calibrateMergingSimilarities = FALSE,
mergeCutHeight = 0.15,

Behavior
iterate = TRUE,
collectGarbage = FALSE,
getDetails = TRUE,
verbose = TRUE, indent=0)

Arguments

multiExpr Expression data in the multi-set format (see checkSets). A vector of lists, one per set. Each set must contain a component data that contains the expression data, with rows corresponding to samples and columns to genes or probes.

multiWeights optional observation weights in the same format (and dimensions) as multiExpr. These weights are used for correlation calculations with data in multiExpr.

multiExpr.imputed If multiExpr contain missing data, this argument can be used to supply the expression data with missing data imputed. If not given, the impute.knn function will be used to impute the missing data.

labels A vector (numeric, character or a factor) giving module labels for each variable (gene) in multiExpr.

unassignedLabel The label (value in labels) that represents unassigned genes. Module of this label will not enter the module eigengene clustering and will not be merged with other modules.

networkOptions A single list of class NetworkOptions giving options for network calculation for all of the networks, or a multiData structure containing one such list for each input data set.

consensusTree A list of class ConsensusTree specifying the consensus calculation.

minModuleSize Minimum number of genes in a module. Modules that have fewer genes (after trimming) will be removed (i.e., their genes will be given the unassigned label).

minCoreKME a number between 0 and 1. If a detected module does not have at least minModuleKMESize genes with consensus eigengene connectivity at least minCoreKME, the module is disbanded (its genes are unlabeled).

minCoreKMESize see minCoreKME above.

minKMEtoStay genes whose consensus eigengene connectivity to their module eigengene is lower than minKMEtoStay are removed from the module.
impute logical: should imputation be used for module eigengene calculation? See moduleEigengenes for more details.

trapErrors logical: should errors in calculations be trapped?

calibrateMergingSimilarities Logical: should module eigengene similarities be calibrated before calculating the consensus? Although calibration is in principle desirable, the calibration methods currently available assume large data and do not work very well on eigengene similarities.

mergeCutHeight Dendrogram cut height for module merging.

iterate Logical: should the pruning and merging process be iterated until no changes occur? If FALSE, only one iteration will be carried out.

collectGarbage Logical: should garbage be collected after some of the memory-intensive steps?

getDetails Logical: should certain intermediate results be returned? These include labels and module merging information at each iteration (see return value).

verbose integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Value

If input getDetails is FALSE, a vector the resulting module labels. If getDetails is TRUE, a list with these components:

labels The resulting module labels

details A list. The first component, named originalLabels, contains a copy of the input labels. The following components are named iteration.1, iteration.2 etc and contain, for each iteration, components prunedLabels (the result of pruning in that iteration) and mergeInfo (result of the call to hierarchicalMergeCloseModules in that iteration).

Author(s)

Peter Langfelder

See Also

The underlying functions pruneConsensusModules and hierarchicalMergeCloseModules.
pruneConsensusModules

Prune (hierarchical) consensus modules by removing genes with low eigengene-based intramodular connectivity

Description

This function prunes (hierarchical) consensus modules by removing genes with low eigengene-based intramodular connectivity (KME) and by removing modules that do not have a certain minimum number of genes with a required minimum KME.

Usage

```r
pruneConsensusModules( multiExpr,
  multiWeights = NULL,
  multiExpr.imputed = NULL,
  MEs = NULL,
  labels,

  unassignedLabel = if (is.numeric(labels)) 0 else "grey",

  networkOptions,
  consensusTree,

  minModuleSize,
  minCoreKMESize = minModuleSize/3,
  minCoreKME = 0.5,
  minKMEtoStay = 0.2,

  # Module eigengene calculation options
  impute = TRUE,
  collectGarbage = FALSE,
  checkWeights = TRUE,

  verbose = 1, indent=0)
```

Arguments

- **multiExpr** Expression data in the multi-set format (see `checkSets`). A vector of lists, one per set. Each set must contain a component data that contains the expression data, with rows corresponding to samples and columns to genes or probes.

- **multiWeights** optional observation weights in the same format (and dimensions) as `multiExpr`. These weights are used for correlation calculations with data in `multiExpr`.

- **multiExpr.imputed** If `multiExpr` contain missing data, this argument can be used to supply the expression data with missing data imputed. If not given, the `impute.knn` function will be used to impute the missing data.
MEs | Optional consensus module eigengenes, in multi-set format analogous to that of multiExpr.
---|---
labels | A vector (numeric, character or a factor) giving module labels for each variable (gene) in multiExpr.
unassignedLabel | The label (value in labels) that represents unassigned genes. Module of this label will not enter the module eigengene clustering and will not be merged with other modules.
networkOptions | A single list of class NetworkOptions giving options for network calculation for all of the networks, or a multiData structure containing one such list for each input data set.
consensusTree | A list of class ConsensusTree specifying the consensus calculation.
minModuleSize | Minimum number of genes in a module. Modules that have fewer genes (after trimming) will be removed (i.e., their genes will be given the unassigned label).
minCoreKME | a number between 0 and 1. If a detected module does not have at least minModuleKMEsize genes with consensus eigengene connectivity at least minCoreKME, the module is disbanded (its genes are unlabeled).
minCoreKMEsize | see minCoreKME above.
minKMEtoStay | genes whose consensus eigengene connectivity to their module eigengene is lower than minKMEtoStay are removed from the module.
impute | logical: should imputation be used for module eigengene calculation? See moduleEigengenes for more details.
collectGarbage | Logical: should garbage be collected after some of the memory-intensive steps?
checkWeights | Logical: should multiWeights be checked to make sure their dimensions are concordant with multiExpr and the weights are valid?
verbose | integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.
indent | indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Value

The pruned module labels: a vector of the same form as the input labels.

Author(s)

Peter Langfelder
Description

This matrix gives a predefined set of marker genes for many immune response pathways, as assembled by Mike Palazzolo and Jim Wang from CHDI, and colleagues. It is used with userListEnrichment to search user-defined gene lists for enrichment.

Usage

```r
data(PWLists)
```

Format

A 124350 x 2 matrix of characters containing 2724 Gene / Category pairs. The first column (Gene) lists genes corresponding to a given category (second column). Each Category entry is of the form `<gene set>__<reference>`.

Source

For more information about this list, please see `userListEnrichment`

Examples

```r
data(PWLists)
head(PWLists)
```

qvalue

Estimate the q-values for a given set of p-values

Description

Estimate the q-values for a given set of p-values. The q-value of a test measures the proportion of false positives incurred (called the false discovery rate) when that particular test is called significant.

Usage

```r
qvalue(p, lambda=seq(0,0.90,0.05), pi0.method="smoother", fdr.level=NULL, robust=FALSE, smooth.df=3, smooth.log.pi0=FALSE)
```
Arguments

\(p \) A vector of p-values (only necessary input)

\(\lambda \) The value of the tuning parameter to estimate \(\pi_0 \). Must be in \([0,1)\). Optional, see Storey (2002).

\(\text{pi0.method} \) Either "smoother" or "bootstrap"; the method for automatically choosing tuning parameter in the estimation of \(\pi_0 \), the proportion of true null hypotheses

\(\text{fdr.level} \) A level at which to control the FDR. Must be in \((0,1]\). Optional; if this is selected, a vector of TRUE and FALSE is returned that specifies whether each q-value is less than fdr.level or not.

\(\text{robust} \) An indicator of whether it is desired to make the estimate more robust for small p-values and a direct finite sample estimate of pFDR. Optional.

\(\text{smooth.df} \) Number of degrees-of-freedom to use when estimating \(\pi_0 \) with a smoother. Optional.

\(\text{smooth.log.pi0} \) If TRUE and \(\text{pi0.method} = \text{"smoother"} \), \(\pi_0 \) will be estimated by applying a smoother to a scatterplot of \(\log \pi_0 \) estimates against the tuning parameter \(\lambda \). Optional.

Details

If no options are selected, then the method used to estimate \(\pi_0 \) is the smoother method described in Storey and Tibshirani (2003). The bootstrap method is described in Storey, Taylor & Siegmund (2004).

Value

A list containing:

- \(\text{call} \) function call
- \(\text{pi0} \) an estimate of the proportion of null p-values
- \(\text{qvalues} \) a vector of the estimated q-values (the main quantity of interest)
- \(\text{pvalues} \) a vector of the original p-values
- \(\text{significant} \) if fdr.level is specified, and indicator of whether the q-value fell below fdr.level (taking all such q-values to be significant controls FDR at level fdr.level)

Note

This function is adapted from package qvalue. The reason we provide our own copy is that package qvalue contains additional functionality that relies on Tcl/Tk which has led to multiple problems. Our copy does not require Tcl/Tk.

Author(s)

John D. Storey <jstorey@u.washington.edu>, adapted for WGCNA by Peter Langfelder
References

Description

This function calls `qvalue` on finite input p-values, optionally traps errors from the q-value calculation, and returns just the q values.

Usage

`qvalue.restricted(p, trapErrors = TRUE, ...)`

Arguments

- `p` a vector of p-values. Missing data are allowed and will be removed.
- `trapErrors` logical: should errors generated by function `qvalue` trapped? If TRUE, the errors will be silently ignored and the returned q-values will all be NA.
- `...` other arguments to function `qvalue`.

Value

A vector of q-values. Entries whose corresponding p-values were not finite will be NA.

Author(s)

Peter Langfelder

See Also

`qvalue`
randIndex

Rand index of two partitions

Description

Computes the Rand index, a measure of the similarity between two clusterings.

Usage

```r
randIndex(tab, adjust = TRUE)
```

Arguments

- `tab`: a matrix giving the cross-tabulation table of two clusterings.
- `adjust`: logical: should the "adjusted" version be computed?

Value

the Rand index of the input table.

Author(s)

Steve Horvath

References

rankPvalue

Estimate the p-value for ranking consistently high (or low) on multiple lists

Description

The function `rankPvalue` calculates the p-value for observing that an object (corresponding to a row of the input data frame `datS`) has a consistently high ranking (or low ranking) according to multiple ordinal scores (corresponding to the columns of the input data frame `datS`).

Usage

```r
rankPvalue(datS, columnweights = NULL, na.last = "keep", ties.method = "average", calculateQvalue = TRUE, pValueMethod = "all")
```
Arguments

datS
- a data frame whose rows represent objects that will be ranked. Each column of datS represents an ordinal variable (which can take on negative values). The columns correspond to (possibly signed) object significance measures, e.g., statistics (such as Z statistics), ranks, or correlations.

columnweights
- allows the user to input a vector of non-negative numbers reflecting weights for the different columns of datS. If it is set to NULL then all weights are equal.

na.last
- controls the treatment of missing values (NAs) in the rank function. If TRUE, missing values in the data are put last (i.e. they get the highest rank values). If FALSE, they are put first; if NA, they are removed; if "keep" they are kept with rank NA. See `rank` for more details.

ties.method
- represents the ties method used in the rank function for the percentile rank method. See `rank` for more details.

calculateQvalue
- logical: should q-values be calculated? If set to TRUE then the function calculates corresponding q-values (local false discovery rates) using the qvalue package, see Storey JD and Tibshirani R. (2003). This option assumes that qvalue package has been installed.

pValueMethod
- determines which method is used for calculating p-values. By default it is set to "all", i.e. both methods are used. If it is set to "rank" then only the percentile rank method is used. If it set to "scale" then only the scale method will be used.

Details

The function calculates asymptotic p-values (and optionally q-values) for testing the null hypothesis that the values in the columns of datS are independent. This allows us to find objects (rows) with consistently high (or low) values across the columns.

Example: Imagine you have 5 vectors of Z statistics corresponding to the columns of datS. Further assume that a gene has ranks 1,1,1,1,20 in the 5 lists. It seems very significant that the gene ranks number 1 in 4 out of the 5 lists. The function rankPvalue can be used to calculate a p-value for this occurrence.

The function uses the central limit theorem to calculate asymptotic p-values for two types of test statistics that measure consistently high or low ordinal values. The first method (referred to as percentile rank method) leads to accurate estimates of p-values if datS has at least 4 columns but it can be overly conservative. The percentile rank method replaces each column datS by the ranked version rank(datS[,i]) (referred to ask low ranking) and by rank(-datS[,i]) (referred to as high ranking). Low ranking and high ranking allow one to find consistently small values or consistently large values of datS, respectively. All ranks are divided by the maximum rank so that the result lies in the unit interval [0,1]. In the following, we refer to rank/max(rank) as percentile rank. For a given object (corresponding to a row of datS) the observed percentile rank follows approximately a uniform distribution under the null hypothesis. The test statistic is defined as the sum of the percentile ranks (across the columns of datS). Under the null hypothesis that there is no relationship between the rankings of the columns of datS, this (row sum) test statistic follows a distribution that is given by the convolution of random uniform distributions. Under the null hypothesis, the individual percentile ranks are independent and one can invoke the central limit theorem to argue that the row sum test statistic follows asymptotically a normal distribution. It is well-known that the speed of
convergence to the normal distribution is extremely fast in case of identically distributed uniform distributions. Even when datS has only 4 columns, the difference between the normal approximation and the exact distribution is negligible in practice (Killmann et al 2001). In summary, we use the central limit theorem to argue that the sum of the percentile ranks follows a normal distribution whose mean and variance can be calculated using the fact that the mean value of a uniform random variable (on the unit interval) equals 0.5 and its variance equals 1/12.

The second method for calculating p-values is referred to as scale method. It is often more powerful but its asymptotic p-value can only be trusted if either datS has a lot of columns or if the ordinal scores (columns of datS) follow an approximate normal distribution. The scale method scales (or standardizes) each ordinal variable (column of datS) so that it has mean 0 and variance 1. Under the null hypothesis of independence, the row sum follows approximately a normal distribution if the assumptions of the central limit theorem are met. In practice, we find that the second approach is often more powerful but it makes more distributional assumptions (if datS has few columns).

Value

A list whose actual content depends on which p-value methods is selected, and whether q-values are calculated. The following inner components are calculated, organized in outer components datoutrank and datoutscale:

- **pValueExtremeRank**
 - This is the minimum between pValueLowRank and pValueHighRank, i.e. min(pValueLow, pValueHigh)

- **pValueLowRank**
 - Asymptotic p-value for observing a consistently low value across the columns of datS based on the rank method.

- **pValueHighRank**
 - Asymptotic p-value for observing a consistently low value across the columns of datS based on the rank method.

- **pValueExtremeScale**
 - This is the minimum between pValueLowScale and pValueHighScale, i.e. min(pValueLow, pValueHigh)

- **pValueLowScale**
 - Asymptotic p-value for observing a consistently low value across the columns of datS based on the Scale method.

- **pValueHighScale**
 - Asymptotic p-value for observing a consistently low value across the columns of datS based on the Scale method.

- **qValueExtremeRank**
 - local false discovery rate (q-value) corresponding to the p-value pValueExtremeRank

- **qValueLowRank**
 - local false discovery rate (q-value) corresponding to the p-value pValueLowRank

- **qValueHighRank**
 - local false discovery rate (q-value) corresponding to the p-value pValueHighRank

- **qValueExtremeScale**
 - local false discovery rate (q-value) corresponding to the p-value pValueExtremeScale

- **qValueLowScale**
 - local false discovery rate (q-value) corresponding to the p-value pValueLowScale

- **qValueHighScale**
 - local false discovery rate (q-value) corresponding to the p-value pValueHighScale
recutBlockwiseTrees

Author(s)

Steve Horvath

References

See Also

rank, qvalue

recutBlockwiseTrees Repeat blockwise module detection from pre-calculated data

Description

Given consensus networks constructed for example using blockwiseModules, this function (re-)detects modules in them by branch cutting of the corresponding dendrograms. If repeated branch cuts of the same gene network dendrograms are desired, this function can save substantial time by re-using already calculated networks and dendrograms.

Usage

recutBlockwiseTrees(
 datExpr,
 goodSamples, goodGenes,
 blocks,
 TOMFiles,
 dendrograms,
 corType = "pearson",
 networkType = "unsigned",
 deepSplit = 2,
 detectCutHeight = 0.995, minModuleSize = min(20, ncol(datExpr)/2),
 maxCoreScatter = NULL, minGap = NULL,
 maxAbsCoreScatter = NULL, minAbsGap = NULL,
 minSplitHeight = NULL, minAbsSplitHeight = NULL,
 useBranchEigenNodeDissim = FALSE,
 minBranchEigenNodeDissim = mergeCutHeight,
 pamStage = TRUE, pamRespectsDendro = TRUE,
 minCoreKME = 0.5, minCoreKMESize = minModuleSize/3,
Arguments

datExpr expression data. A data frame in which columns are genes and rows are samples. NAs are allowed, but not too many.
goodSamples a logical vector specifying which samples are considered "good" for the analysis. See goodSamplesGenes.
goodGenes a logical vector with length equal number of genes in multiExpr that specifies which genes are considered "good" for the analysis. See goodSamplesGenes.
blocks specification of blocks in which hierarchical clustering and module detection should be performed. A numeric vector with one entry per gene of multiExpr giving the number of the block to which the corresponding gene belongs.
TOMFiles a vector of character strings specifying file names in which the block-wise topological overlaps are saved.
dendrograms a list of length equal the number of blocks, in which each component is a hierarchical clustering dendrogram of the genes that belong to the block.
corType character string specifying the correlation to be used. Allowed values are (unique abbreviations of) "pearson" and "bicor", corresponding to Pearson and bidirectional midcorrelation, respectively. Missing values are handled using the pariwise.complete.obs option.
networkType network type. Allowed values are (unique abbreviations of) "unsigned", "signed", and "signed hybrid". See adjacency.
deepSplit integer value between 0 and 4. Provides a simplified control over how sensitive module detection should be to module splitting, with 0 least and 4 most sensitive. See cutreeDynamic for more details.
detectCutHeight dendrogram cut height for module detection. See cutreeDynamic for more details.
minModuleSize minimum module size for module detection. See cutreeDynamic for more details.
maxCoreScatter maximum scatter of the core for a branch to be a cluster, given as the fraction of cutHeight relative to the 5th percentile of joining heights. See cutreeDynamic for more details.
minGap minimum cluster gap given as the fraction of the difference between cutHeight and the 5th percentile of joining heights. See cutreeDynamic for more details.
maxAbsCoreScatter
- Maximum scatter of the core for a branch to be a cluster given as absolute heights. If given, overrides maxCoreScatter. See `cutreeDynamic` for more details.

minAbsGap
- Minimum cluster gap given as absolute height difference. If given, overrides minGap. See `cutreeDynamic` for more details.

minSplitHeight
- Minimum split height given as the fraction of the difference between `cutHeight` and the 5th percentile of joining heights. Branches merging below this height will automatically be merged. Defaults to zero but is used only if `minAbsSplitHeight` below is NULL.

minAbsSplitHeight
- Minimum split height given as an absolute height. Branches merging below this height will automatically be merged. If not given (default), will be determined from `minSplitHeight` above.

useBranchEigennodeDissim
- Logical: should branch eigennode (eigengene) dissimilarity be considered when merging branches in Dynamic Tree Cut?

minBranchEigennodeDissim
- Minimum consensus branch eigennode (eigengene) dissimilarity for branches to be considered separate. The branch eigennode dissimilarity in individual sets is simply 1-correlation of the eigennodes; the consensus is defined as quantile with probability `consensusQuantile`.

pamStage
- Logical. If TRUE, the second (PAM-like) stage of module detection will be performed. See `cutreeDynamic` for more details.

pamRespectsDendro
- Logical, only used when `pamStage` is TRUE. If TRUE, the PAM stage will respect the dendrogram in the sense an object can be PAM-assigned only to clusters that lie below it on the branch that the object is merged into. See `cutreeDynamic` for more details.

minCoreKME
- A number between 0 and 1. If a detected module does not have at least `minModuleKMEsize` genes with eigengene connectivity at least `minCoreKME`, the module is disbanded (its genes are unlabeled and returned to the pool of genes waiting for module detection).

minCoreKMEsize
- See `minCoreKME` above.

minKMEtoStay
- Genes whose eigengene connectivity to their module eigengene is lower than `minKMEtoStay` are removed from the module.

reassignThreshold
- P-value ratio threshold for reassigning genes between modules. See Details.

mergeCutHeight
- Dendrogram cut height for module merging.

impute
- Logical: should imputation be used for module eigengene calculation? See `moduleEigengenes` for more details.

trapErrors
- Logical: should errors in calculations be trapped?

numericLabels
- Logical: should the returned modules be labeled by colors (FALSE), or by numbers (TRUE)?
verbose integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.
indent indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

... Other arguments.

Details

For details on blockwise module detection, see blockwiseModules. This function implements the module detection subset of the functionality of blockwiseModules: network construction and clustering must be performed in advance. The primary use of this function is to experiment with module detection settings without having to re-execute long network and clustering calculations whose results are not affected by the cutting parameters.

This function takes as input the networks and dendrograms that are produced by blockwiseModules. Working block by block, modules are identified in the dendrogram by the Dynamic Hybrid Tree Cut algorithm. Found modules are trimmed of genes whose correlation with module eigengene (KME) is less than minKMEToStay. Modules in which fewer than minCoreKMESize genes have KME higher than minCoreKME are disbanded, i.e., their constituent genes are pronounced unassigned.

After all blocks have been processed, the function checks whether there are genes whose KME in the module they assigned is lower than KME to another module. If p-values of the higher correlations are smaller than those of the native module by the factor reassignThresholdPS, the gene is reassigned to the closer module.

In the last step, modules whose eigengenes are highly correlated are merged. This is achieved by clustering module eigengenes using the dissimilarity given by one minus their correlation, cutting the dendrogram at the height mergeCutHeight and merging all modules on each branch. The process is iterated until no modules are merged. See mergeCloseModules for more details on module merging.

Value

A list with the following components:

colors a vector of color or numeric module labels for all genes.
unmergedColors a vector of color or numeric module labels for all genes before module merging.
MEs a data frame containing module eigengenes of the found modules (given by colors).
MEsOK logical indicating whether the module eigengenes were calculated without errors.

Author(s)

Peter Langfelder
References

See Also

blockwiseModules for full module calculation;
cutreeDynamic for adaptive branch cutting in hierarchical clustering dendrograms;
mergeCloseModules for merging of close modules.

recutConsensusTrees

Repeat blockwise consensus module detection from pre-calculated data

Description

Given consensus networks constructed for example using blockwiseConsensusModules, this function (re-)detects modules in them by branch cutting of the corresponding dendrograms. If repeated branch cuts of the same gene network dendrograms are desired, this function can save substantial time by re-using already calculated networks and dendrograms.

Usage

recutConsensusTrees(
 multiExpr,
 goodSamples, goodGenes,
 blocks, TOMFiles,
 dendrograms,
 corType = "pearson",
 networkType = "unsigned",
 deepSplit = 2,
 detectCutHeight = 0.995, minModuleSize = 20,
 checkMinModuleSize = TRUE,
 maxCoreScatter = NULL, minGap = NULL,
 maxAbsCoreScatter = NULL, minAbsGap = NULL,
 minSplitHeight = NULL, minAbsSplitHeight = NULL,
 useBranchEigennodeDissim = FALSE,
 minBranchEigennodeDissim = mergeCutHeight,

 pamStage = TRUE, pamRespectsDendro = TRUE,
 trimmingConsensusQuantile = 0,
 minCoreKME = 0.5, minCoreKMESize = minModuleSize/3,
 minKMEtoStay = 0.2,
)
reassignThresholdPS = 1e-4,
mergeCutHeight = 0.15,
mergeConsensusQuantile = trimmingConsensusQuantile,
impute = TRUE,
trapErrors = FALSE,
numericLabels = FALSE,
verbose = 2, indent = 0)

Arguments

- `multiExpr` expression data in the multi-set format (see `checkSets`). A vector of lists, one per set. Each set must contain a component data that contains the expression data, with rows corresponding to samples and columns to genes or probes.

- `goodSamples` a list with one component per set. Each component is a logical vector specifying which samples are considered "good" for the analysis. See `goodSamplesGenesMS`.

- `goodGenes` a logical vector with length equal number of genes in `multiExpr` that specifies which genes are considered "good" for the analysis. See `goodSamplesGenesMS`.

- `blocks` specification of blocks in which hierarchical clustering and module detection should be performed. A numeric vector with one entry per gene of `multiExpr` giving the number of the block to which the corresponding gene belongs.

- `TOMFiles` a vector of character strings specifying file names in which the block-wise topological overlaps are saved.

- `dendrograms` a list of length equal the number of blocks, in which each component is a hierarchical clustering dendrograms of the genes that belong to the block.

- `corType` character string specifying the correlation to be used. Allowed values are (unique abbreviations of) "pearson", "bicor", corresponding to Pearson and bid-weight midcorrelation, respectively. Missing values are handled using the `pariwise.complete.obs` option.

- `networkType` network type. Allowed values are (unique abbreviations of) "unsigned", "signed", "signed hybrid". See `adjacency`. Note that while no new networks are computed in this function, this parameter affects the interpretation of correlations in this function.

- `deepSplit` integer value between 0 and 4. Provides a simplified control over how sensitive module detection should be to module splitting, with 0 least and 4 most sensitive. See `cutreeDynamic` for more details.

- `detectCutHeight` dendrogram cut height for module detection. See `cutreeDynamic` for more details.

- `minModuleSize` minimum module size for module detection. See `cutreeDynamic` for more details.

- `checkMinModuleSize` logical: should sanity checks be performed on `minModuleSize`?

- `maxCoreScatter` maximum scatter of the core for a branch to be a cluster, given as the fraction of `cutHeight` relative to the 5th percentile of joining heights. See `cutreeDynamic` for more details.
recutConsensusTrees

- **minGap** minimum cluster gap given as the fraction of the difference between `cutHeight` and the 5th percentile of joining heights. See `cutreeDynamic` for more details.

- **maxAbsCoreScatter** maximum scatter of the core for a branch to be a cluster given as absolute heights. If given, overrides `maxCoreScatter`. See `cutreeDynamic` for more details.

- **minAbsGap** minimum cluster gap given as absolute height difference. If given, overrides `minGap`. See `cutreeDynamic` for more details.

- **minSplitHeight** Minimum split height given as the fraction of the difference between `cutHeight` and the 5th percentile of joining heights. Branches merging below this height will automatically be merged. Defaults to zero but is used only if `minAbsSplitHeight` below is NULL.

- **minAbsSplitHeight** Minimum split height given as an absolute height. Branches merging below this height will automatically be merged. If not given (default), will be determined from `minSplitHeight` above.

- **useBranchEigennodeDissim** Logical: should branch eigennode (eigengene) dissimilarity be considered when merging branches in Dynamic Tree Cut?

- **minBranchEigennodeDissim** Minimum consensus branch eigennode (eigengene) dissimilarity for branches to be considered separate. The branch eigennode dissimilarity in individual sets is simply 1-correlation of the eigennodes; the consensus is defined as quantile with probability `consensusQuantile`.

- **pamStage** logical. If TRUE, the second (PAM-like) stage of module detection will be performed. See `cutreeDynamic` for more details.

- **pamRespectsDendro** Logical, only used when `pamStage` is TRUE. If TRUE, the PAM stage will respect the dendrogram in the sense an object can be PAM-assigned only to clusters that lie below it on the branch that the object is merged into. See `cutreeDynamic` for more details.

- **trimmingConsensusQuantile** a number between 0 and 1 specifying the consensus quantile used for kME calculation that determines module trimming according to the arguments below.

- **minCoreKME** a number between 0 and 1. If a detected module does not have at least `minModuleKMESize` genes with eigengene connectivity at least `minCoreKME`, the module is disbanded (its genes are unlabeled and returned to the pool of genes waiting for module detection).

- **minCoreKMESize** see `minCoreKME` above.

- **minKMEtoStay** genes whose eigengene connectivity to their module eigengene is lower than `minKMEtoStay` are removed from the module.

- **reassignThresholdPS** per-set p-value ratio threshold for reassigning genes between modules. See Details.

- **mergeCutHeight** dendrogram cut height for module merging.
mergeConsensusQuantile
 consensus quantile for module merging. See mergeCloseModules for details.

impute
 logical: should imputation be used for module eigengene calculation? See moduleEigengenes for more details.

trapErrors
 logical: should errors in calculations be trapped?

numericLabels
 logical: should the returned modules be labeled by colors (FALSE), or by numbers (TRUE)?

verbose
 integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

indent
 indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

For details on blockwise consensus module detection, see blockwiseConsensusModules. This function implements the module detection subset of the functionality of blockwiseConsensusModules; network construction and clustering must be performed in advance. The primary use of this function is to experiment with module detection settings without having to re-execute long network and clustering calculations whose results are not affected by the cutting parameters.

This function takes as input the networks and dendrograms that are produced by blockwiseConsensusModules. Working block by block, modules are identified in the dendrograms by the Dynamic Hybrid tree cut. Found modules are trimmed of genes whose consensus module membership kME (that is, correlation with module eigengene) is less than minKMEMtoStay. Modules in which fewer than minCoreKMEsize genes have consensus KME higher than minCoreKME are disbanded, i.e., their constituent genes are pronounced unassigned.

After all blocks have been processed, the function checks whether there are genes whose KME in the module they assigned is lower than KME to another module. If p-values of the higher correlations are smaller than those of the native module by the factor reassignThresholdPS (in every set), the gene is re-assigned to the closer module.

In the last step, modules whose eigengenes are highly correlated are merged. This is achieved by clustering module eigengenes using the dissimilarity given by one minus their correlation, cutting the dendrogram at the height mergeCutHeight and merging all modules on each branch. The process is iterated until no modules are merged. See mergeCloseModules for more details on module merging.

Value

A list with the following components:

colors
 module assignment of all input genes. A vector containing either character strings with module colors (if input numericLabels was unset) or numeric module labels (if numericLabels was set to TRUE). The color "grey" and the numeric label 0 are reserved for unassigned genes.

unmergedColors
 module colors or numeric labels before the module merging step.
redWhiteGreen

multiMEs module eigengenes corresponding to the modules returned in colors, in multi-set format. A vector of lists, one per set, containing eigengenes, proportion of variance explained and other information. See multiSetMEs for a detailed description.

Note
Basic sanity checks are performed on given arguments, but it is left to the user’s responsibility to provide valid input.

Author(s)
Peter Langfelder

References

See Also
blockwiseConsensusModules for the full blockwise modules calculation. Parts of its output are natural input for this function.
cutreeDynamic for adaptive branch cutting in hierarchical clustering dendrograms;
mergeCloseModules for merging of close modules.

redWhiteGreen
Red-white-green color sequence

Description
Generate a red-white-green color sequence of a given length.

Usage
redWhiteGreen(n, gamma = 1)

Arguments
n number of colors to be returned
gamma color correction power

Details
The function returns a color vector that starts with pure green, gradually turns into white and then to red. The power gamma can be used to control the behaviour of the quarter- and three quarter-values (between red and white, and white and green, respectively). Higher powers will make the mid-colors more white, while lower powers will make the colors more saturated, respectively.
Value

A vector of colors of length n.

Author(s)

Peter Langfelder

Examples

```r
colors <- c('red', 'white', 'green')
displayColors(colors)
displayColors(colors[2], 3)
displayColors(colors[3], 0.5)
```

Description

Compare prediction success of several gene screening methods.

Usage

```r
relativeCorPredictionSuccess(
  corPredictionNew,
  corPredictionStandard,
  corTestSet,
  topNumber = 100)
```

Arguments

- `corPredictionNew`
 Matrix of predictor statistics
- `corPredictionStandard`
 Reference predictor statistics
- `corTestSet`
 Correlations of predictor variables with trait in test set
- `topNumber`
 A vector giving the numbers of top genes to consider

Value

Data frame with components

- `topNumber`
 Copy of the input `topNumber`
- `kruskalp`
 Kruskal-Wallis p-values
removeGreyME

Author(s)
Steve Horvath

See Also
corPredictionSuccess

removeGreyME
Removes the grey eigengene from a given collection of eigengenes.

Description
Given module eigengenes either in a single data frame or in a multi-set format, removes the grey eigengenes from each set. If the grey eigengenes are not found, a warning is issued.

Usage
```r
removeGreyME(MEs, greyMEName = paste(moduleColor.getMEprefix(), "grey", sep=""))
```

Arguments
- **MEs**: Module eigengenes, either in a single data frame (typicaly for a single set), or in a multi-set format. See `checkSets` for a description of the multi-set format.
- **greyMEName**: Name of the module eigengene (in each corresponding data frame) that corresponds to the grey color. This will typically be "PCgrey" or "MEgrey". If the module eigengenes were calculated using standard functions in this library, the default should work.

Value
Module eigengenes in the same format as input (either a single data frame or a vector of lists) with the grey eigengene removed.

Author(s)
Peter Langfelder, <Peter.Langfelder@gmail.com>
removePrincipalComponents

Remove leading principal components from data

Description

This function calculates a fixed number of the first principal components of the given data and returns the residuals of a linear regression of each column on the principal components.

Usage

removePrincipalComponents(x, n)

Arguments

x Input data, a numeric matrix. All entries must be non-missing and finite.

n Number of principal components to remove. This must be smaller than the smaller of the number of rows and columns in x.

Value

A matrix of residuals of the same dimensions as x.

Author(s)

Peter Langfelder

See Also

svd for singular value decomposition, lm for linear regression

replaceMissing

Replace missing values with a constant.

Description

A convenience function for replacing missing values with a (non-missing) constant.

Usage

replaceMissing(x, replaceWith)

Arguments

x An atomic vector or array.

replaceWith Value to replace missing entries in x. The default is FALSE for logical vectors, 0 for numeric vectors, and empty string "" for character vectors.
returnGeneSetsAsList

Value

x with missing data replaced.

Author(s)

Peter Langfelder

Examples

logVec = c(TRUE, FALSE, NA, TRUE);
replaceMissing(logVec)

numVec = c(1,2,3,4,NA,2)
replaceMissing(numVec)

Description

This function returns gene sets for use with other R functions. These gene sets can include inputted lists of genes and files containing user-defined lists of genes, as well as a pre-made collection of brain, blood, and other biological lists. The function returns gene lists associated with each category for use with other enrichment strategies (i.e., GSVA).

Usage

returnGeneSetsAsList(
 fnIn = NULL, catNmIn = fnIn,
 useBrainLists = FALSE, useBloodAtlases = FALSE,
 useStemCellLists = FALSE, useBrainRegionMarkers = FALSE,
 useImmunePathwayLists = FALSE, geneSubset==NULL)

Arguments

fnIn A vector of file names containing user-defined lists. These files must be in one of three specific formats (see details section). The default (NULL) may only be used if one of the "use____" parameters is TRUE.

catNmIn A vector of category names corresponding to each fnIn. This name will be appended to each overlap corresponding to that filename. The default sets the category names as the corresponding file names.

useBrainLists If TRUE, a pre-made set of brain-derived enrichment lists will be added to any user-defined lists for enrichment comparison. The default is FALSE. See references section for related references.
returnGeneSetsAsList

useBloodAtlases
If TRUE, a pre-made set of blood-derived enrichment lists will be added to any user-defined lists for enrichment comparison. The default is FALSE. See references section for related references.

useStemCellLists
If TRUE, a pre-made set of stem cell (SC)-derived enrichment lists will be added to any user-defined lists for enrichment comparison. The default is FALSE. See references section for related references.

useBrainRegionMarkers
If TRUE, a pre-made set of enrichment lists for human brain regions will be added to any user-defined lists for enrichment comparison. The default is FALSE. These lists are derived from data from the Allen Human Brain Atlas (http://human.brain-map.org/). See references section for more details.

useImmunePathwayLists
If TRUE, a pre-made set of enrichment lists for immune system pathways will be added to any user-defined lists for enrichment comparison. The default is FALSE. These lists are derived from the lab of Daniel R Saloman. See references section for more details.

geneSubset
A vector of gene (or other) identifiers. If entered, only genes in this list will be returned in the output, otherwise all genes in each category will be returned (default, geneSubset=NULL).

Details
User-inputted files for fnIn can be in one of three formats:

1) Text files (must end in ".txt") with one list per file, where the first line is the list descriptor and the remaining lines are gene names corresponding to that list, with one gene per line. For example: Ribosome RPS4 RPS8 ...

2) Gene / category files (must be csv files), where the first line is the column headers corresponding to Genes and Lists, and the remaining lines correspond to the genes in each list, for any number of genes and lists. For example: Gene, Category RPS4, Ribosome RPS8, Ribosome ... NDUF1, Mitochondria NDUF3, Mitochondria ... MAPT, Alzheimer's Disease PSEN1, Alzheimer's Disease PSEN2, Alzheimer's Disease ...

3) Module membership (kME) table in csv format. Currently, the module assignment is the only thing that is used, so as long as the Gene column is 2nd and the Module column is 3rd, it doesn’t matter what is in the other columns. For example, PSID, Gene, Module, <other columns> <psid>, RPS4, blue, <other columns> <psid>, NDUF1, red, <other columns> <psid>, RPS8, blue, <other columns> <psid>, NDUF3, red, <other columns> <psid>, MAPT, green, <other columns> ...

Value
geneSets
A list of categories in alphabetical order, where each component of the list is a character vector of all genes corresponding to the named category. For example: geneSets = list(category1=c("gene1","gene2"),category2=c("gene3","gene4","gene5"))

Author(s)
Jeremy Miller
rgcolors.func

References

Please see the help file for userListEnrichment in the WGCNA library for references for the pre-defined lists.

Examples

```r
# Example: Return a list of genes for various immune pathways
geneSets = returnGeneSetsAsList(useImmunePathwayLists=TRUE)
geneSets[7:8]
```

rgcolors.func Red and Green Color Specification

Description

This function creates a vector of \(n\) “contiguous” colors, corresponding to \(n\) intensities (between 0 and 1) of the red, green and blue primaries, with the blue intensities set to zero. The values returned by \(\text{rgcolors.func}\) can be used with a \code{col} specification in graphics functions or in \code{par}.

Usage

\f[\text{rgcolors.func}(n=50) \f]

Arguments

\f[n \f]

the number of colors (\(\geq 1\)) to be used in the red and green palette.

Value

a character vector of color names. Colors are specified directly in terms of their RGB components with a string of the form "\#RRGGBB", where each of the pairs RR, GG, BB consist of two hexadecimal digits giving a value in the range 00 to FF.

Author(s)

Sandrine Dudoit, <sandrine@stat.berkeley.edu>
Jane Fridlyand, <janef@stat.berkeley.edu>

See Also

\code{plotCor}, \code{plotMat}, \code{colors}, \code{rgb}, \code{image}.

Examples

```r
rgcolors.func(n=5)
## The following vector is returned:
## "#00FF00" "#40BF00" "#888000" "#BF4000" "FF0000"
```
sampledBlockwiseModules

Blockwise module identification in sampled data

Description

This function repeatedly resamples the samples (rows) in supplied data and identifies modules on the resampled data.

Usage

```r
sampledBlockwiseModules(
  datExpr,  # Expression data. A matrix (preferred) or data frame in which columns are genes and rows are samples.
  nRuns,  # Number of network construction and module identification runs.
  startRunIndex = 1,  # Number to be assigned to the start run. The run number or index is used to make saved files unique; it has no effect on the actual results of the run.
  endRunIndex = startRunIndex + nRuns - 1,  # Number (index) of the last run. If given, nRuns is ignored.
  replace = FALSE,  # Logical: should samples (observations or rows in entries in multiExpr) be sampled with replacement?
  fraction = if (replace) 1.0 else 0.63,  # Fraction of samples to sample for each run.
  randomSeed = 12345,  # Integer specifying the random seed. If non-NULL, the random number generator state is saved before the seed is set and restored at the end of the function. If NULL, the random number generator state is not changed nor saved at the start, and not restored at the end.
  checkSoftPower = TRUE,  # Logical: should samples (observations or rows in entries in multiExpr) be sampled with replacement?
  nPowerCheckSamples = 2000,  # Logical: should samples (observations or rows in entries in multiExpr) be sampled with replacement?
  skipUnsampledCalculation = FALSE,  # Logical: should samples (observations or rows in entries in multiExpr) be sampled with replacement?
  corType = "pearson",  # Correlation type. Options include "pearson", "spearman", and "kendall".
  power = 6,  # Power of the network.
  networkType = "unsigned",  # Network type. Options include "unsigned" and "signed".
  saveTOMs = FALSE,  # Logical: should samples (observations or rows in entries in multiExpr) be sampled with replacement?
  saveTOMFileBase = "TOM",  # Base name for TOM files.
  ...  # Remaining arguments.
  verbose = 2, indent = 0)  # Indentation level.
```

Arguments

- **datExpr**: Expression data. A matrix (preferred) or data frame in which columns are genes and rows are samples.
- **nRuns**: Number of network construction and module identification runs.
- **startRunIndex**: Number to be assigned to the start run. The run number or index is used to make saved files unique; it has no effect on the actual results of the run.
- **endRunIndex**: Number (index) of the last run. If given, nRuns is ignored.
- **replace**: Logical: should samples (observations or rows in entries in multiExpr) be sampled with replacement?
- **fraction**: Fraction of samples to sample for each run.
- **randomSeed**: Integer specifying the random seed. If non-NULL, the random number generator state is saved before the seed is set and restored at the end of the function. If NULL, the random number generator state is not changed nor saved at the start, and not restored at the end.
checkSoftPower Logical: should the soft-thresholding power be adjusted to approximately match the connectivity distribution of the sampled data set and the full data set?

nPowerCheckSamples Number of genes to be sampled from the full data set to calculate connectivity and match soft-thresholding powers.

skipUnsampledCalculation Logical: should a calculation on original (not resampled) data be skipped?

corType Character string specifying the correlation to be used. Allowed values are (unique abbreviations of) "pearson" and "bicor", corresponding to Pearson and bid-weight midcorrelation, respectively. Missing values are handled using the pairwise.complete.obs option.

power Soft-thresholding power for network construction.

networkType network type. Allowed values are (unique abbreviations of) "unsigned", "signed", "signed hybrid". See adjacency.

saveTOMs Logical: should the networks (topological overlaps) be saved for each run? Note that for large data sets (tens of thousands of nodes) the TOM files are rather large.

saveTOMFileBase Character string giving the base of the file names for TOMs. The actual file names will consist of a concatenation of `saveTOMFileBase` and "-run-<run number>-Block-<block number>.RData".

... Other arguments to `blockwiseModules`.

verbose integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

For each run, samples (but not genes) are randomly sampled to obtain a perturbed data set; a full network analysis and module identification is carried out, and the results are returned in a list with one component per run.

For each run, the soft-thresholding power can optionally be adjusted such that the mean adjacency in the re-sampled data set equals the mean adjacency in the original data.

Value

A list with one component per run. Each component is a list with the following components:

mods The output of the function `blockwiseModules` applied to a resampled data set.

samples Indices of the samples selected for the resampled data step for this run.

powers Actual soft-thresholding powers used in this run.

Author(s)

Peter Langfelder
Hierarchical consensus module identification in sampled data

Description
This function repeatedly resamples the samples (rows) in supplied data and identifies hierarchical consensus modules on the resampled data.

Usage
```
sampledHierarchicalConsensusModules(
  multiExpr,
  multiWeights = NULL,

  networkOptions,
  consensusTree,

  nRuns,
  startRunIndex = 1,
  endRunIndex = startRunIndex + nRuns - 1,
  replace = FALSE,
  fraction = if (replace) 1.0 else 0.63,
  randomSeed = 12345,
  checkSoftPower = TRUE,
  nPowerCheckSamples = 2000,
  individualTOMFilePattern = "individualTOM-Run.%r-Set%s-Block.%b.RData",
  keepConsensusTOMs = FALSE,
  consensusTOMFilePattern = "consensusTOM-Run.%r-%a-Block.%b.RData",
  skipUnsampledCalculation = FALSE,
  ...

  verbose = 2, indent = 0,
  saveRunningResults = TRUE,
  runningResultsFile = "results.tmp.RData")
```
Arguments

multiExpr
Expression data in the multi-set format (see `checkSets`). A vector of lists, one per set. Each set must contain a component data that contains the expression data, with rows corresponding to samples and columns to genes or probes.

multiWeights
Optional observation weights in the same format (and dimensions) as `multiExpr`. These weights are used for correlation calculations with data in `multiExpr`.

networkOptions
A single list of class `NetworkOptions` giving options for network calculation for all of the networks, or a `multiData` structure containing one such list for each input data set.

consensusTree
A list specifying the consensus calculation. See details.

nRuns
Number of network construction and module identification runs.

startRunIndex
Number to be assigned to the start run. The run number or index is used to make saved files unique; it has no effect on the actual results of the run.

endRunIndex
Number (index) of the last run. If given, `nRuns` is ignored.

replace
Logical: should samples (observations or rows in entries in `multiExpr`) be sampled with replacement?

fraction
Fraction of samples to sample for each run.

randomSeed
Integer specifying the random seed. If non-NULL, the random number generator state is saved before the seed is set and restored at the end of the function. If NULL, the random number generator state is not changed nor saved at the start, and not restored at the end.

checkSoftPower
Logical: should the soft-thresholding power be adjusted to approximately match the connectivity distribution of the sampled data set and the full data set?

nPowerCheckSamples
Number of genes to be sampled from the full data set to calculate connectivity and match soft-thresholding powers.

individualTOMFilePattern
Pattern for file names for files holding individual TOMs. The tags "%r, %a, %b" are replaced by run number, analysis name and block number, respectively. The TOM files are usually temporary but can be retained, see `keepConsensusTOMs` below.

keepConsensusTOMs
Logical: should the (final) consensus TOMs of each sampled calculation be retained after the run ends? Note that for large data sets (tens of thousands of nodes) the TOM files are rather large.

consensusTOMFilePattern

skipUnsampledCalculation
Logical: should a calculation on original (not resampled) data be skipped?

... Other arguments to `hierarchicalConsensusModules`.

verbose
Integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

indent
Indention for diagnostic messages. Zero means no indentation, each unit adds two spaces.
saveRunningResults
Logical: should the cumulative results be saved after each run on resampled data?

runningResultsFile
File name of file in which to save running results into. In case of a parallel execution (say on several nodes of a cluster), one should choose a unique name for each process to avoid overwriting the same file.

Details
For each run, samples (but not genes) are randomly sampled to obtain a perturbed data set; a full network analysis and module identification is carried out, and the results are returned in a list with one component per run.

For each run, the soft-thresholding power can optionally be adjusted such that the mean adjacency in the re-sampled data set equals the mean adjacency in the original data.

Value
A list with one component per run. Each component is a list with the following components:

<table>
<thead>
<tr>
<th>mods</th>
<th>The output of the function hierarchicalConsensusModules on the resampled data.</th>
</tr>
</thead>
<tbody>
<tr>
<td>samples</td>
<td>Indices of the samples selected for the resampled data step for this run.</td>
</tr>
<tr>
<td>powers</td>
<td>Actual soft-thresholding powers used in this run.</td>
</tr>
</tbody>
</table>

Author(s)
Peter Langfelder

See Also
hierarchicalConsensusModules for consensus network analysis and module identification;
sampledBlockwiseModules for a similar resampling analysis for a single data set.

scaleFreeFitIndex Calculation of fitting statistics for evaluating scale free topology fit.

Description
The function scaleFreeFitIndex calculates several indices (fitting statistics) for evaluating scale free topology fit. The input is a vector (of connectivities) k. Next k is discretized into nBreaks number of equal-width bins. Let's denote the resulting vector dk. The relative frequency for each bin is denoted p.dk.

Usage
scaleFreeFitIndex(k, nBreaks = 10, removeFirst = FALSE)
scaleFreePlot

Arguments

k numeric vector whose components contain non-negative values
nbreaks positive integer. This determines the number of equal width bins.
removeFirst logical. If TRUE then the first bin will be removed.

Value

Data frame with columns

R.squared.NSFT the model fitting index (R.squared) from the following model \(\text{lm}(\text{log.p.dk} \sim \text{log.dk}) \)
slope.NSFT the slope estimate from model \(\text{lm}(\text{log(p(k)} \sim \text{log(k))} \)
truncatedExponentialAdjR.squared the adjusted R.squared measure from the truncated exponential model given by \(\text{lm2} = \text{lm}(\text{log.p.dk} \sim \text{log.dk} + \text{dk}) \).

Author(s)

Steve Horvath

scaleFreePlot Visual check of scale-free topology

Description

A simple visual check of scale-free network topology.

Usage

scaleFreePlot(
 connectivity,
 nbreaks = 10,
 truncated = FALSE,
 removeFirst = FALSE,
 main = "", ...
)

Arguments

connectivity vector containing network connectivities.
nbreaks number of breaks in the connectivity dendrogram.
truncated logical: should a truncated exponential fit be calculated and plotted in addition to the linear one?
removeFirst logical: should the first bin be removed from the fit?
main main title for the plot.
... other graphical parameter to the plot function.
Details

The function plots a log-log plot of a histogram of the given connectivities, and fits a linear model plus optionally a truncated exponential model. The R^2 of the fit can be considered an index of the scale freedom of the network topology.

Value

None.

Author(s)

Steve Horvath

References

See Also

softConnectivity for connectivity calculation in weighted networks.

SCsLists

Stem Cell-Related Genes with Corresponding Gene Markers

Description

This matrix gives a predefined set of genes related to several stem cell (SC) types, as reported in two previously-published studies. It is used with userListEnrichment to search user-defined gene lists for enrichment.

Usage

data(SCsLists)

Format

A 14003 x 2 matrix of characters containing Gene / Category pairs. The first column (Gene) lists genes corresponding to a given category (second column). Each Category entry is of the form <Stem cell-related category>__<reference>, where the references can be found at userListEnrichment. Note that the matrix is sorted first by Category and then by Gene, such that all genes related to the same category are listed sequentially.

Source

For references used in this variable, please see userListEnrichment
selectFewestConsensusMissing

Select columns with the lowest consensus number of missing data

Description
Given a `multiData` structure, this function calculates the consensus number of present (non-missing) data for each variable (column) across the data sets, forms the consensus and for each group selects variables whose consensus proportion of present data is at least `selectFewestMissing` (see usage below).

Usage
```r
selectFewestConsensusMissing(
  mdx,
  colID,
  group,
  minProportionPresent = 1,
  consensusQuantile = 0,
  verbose = 0,
  ...
)
```

Arguments
- `mdx` A `multiData` structure. All sets must have the same columns.
- `colID` Character vector of column identifiers. This must include all the column names from `mdx`, but can include other values as well. Its entries must be unique (no duplicates) and no missing values are permitted.
- `group` Character vector whose components contain the group label (e.g. a character string) for each entry of `colID`. This vector must be of the same length as the vector `colID`. In gene expression applications, this vector could contain the gene symbol (or a co-expression module label).
- `minProportionPresent` A numeric value between 0 and 1 (logical values will be coerced to numeric). Denotes the minimum consensus fraction of present data in each column that will result in the column being retained.
- `consensusQuantile` A number between 0 and 1 giving the quantile probability for consensus calculation. 0 means the minimum value (true consensus) will be used.
- `verbose` Level of verbosity; 0 means silent, larger values will cause progress messages to be printed.
- `...` Other arguments that should be considered undocumented and subject to change.
Details

A 'consensus' of a vector (say 'x') is simply defined as the quantile with probability \texttt{consensusQuantile} of the vector \texttt{x}. This function calculates, for each variable in \texttt{mdx}, its proportion of present (i.e., non-NA and non-NaN) values in each of the data sets in \texttt{mdx}, and forms the consensus. Only variables whose consensus proportion of present data is at least \texttt{selectFewestMissing} are retained.

Value

A logical vector with one element per variable in \texttt{mdx}, giving \texttt{TRUE} for the retained variables.

Author(s)

Jeremy Miller and Peter Langfelder

See Also

\texttt{multiData}

\begin{verbatim}
setCorrelationPreservation

Summary correlation preservation measure

Description

Given consensus eigengenes, the function calculates the average correlation preservation pair-wise for all pairs of sets.

Usage

\texttt{setCorrelationPreservation(}
\texttt{multiME,}
\texttt{setLabels,}
\texttt{excludeGrey = TRUE, greyLabel = \"grey\",}
\texttt{method = \"absolute\"})

Arguments

\begin{itemize}
\item \texttt{multiME} - consensus module eigengenes in a multi-set format. A vector of lists with one list corresponding to each set. Each list must contain a component \texttt{data} that is a data frame whose columns are consensus module eigengenes.
\item \texttt{setLabels} - names to be used for the sets represented in \texttt{multiME}.
\item \texttt{excludeGrey} - logical: exclude the 'grey' eigengene from preservation measure?
\item \texttt{greyLabel} - module label corresponding to the 'grey' module. Usually this will be the character string "grey" if the labels are colors, and the number 0 if the labels are numeric.
\item \texttt{method} - character string giving the correlation preservation measure to use. Recognized values are (unique abbreviations of) "absolute", "hyperbolic".
\end{itemize}
\end{verbatim}
Details
For each pair of sets, the function calculates the average preservation of correlation among the
eigengenes. Two preservation measures are available, the absolute preservation (high if the two
correlations are similar and low if they are different), and the hyperbolically scaled preservation,
which de-emphasizes preservation of low correlation values.

Value
A data frame with each row and column corresponding to a set given in multiME, containing
the pairwise average correlation preservation values. Names and rownames are set to entries of
setLabels.

Author(s)
Peter Langfelder

References
Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54

See Also
multiSetMEs for module eigengene calculation;
plotEigengeneNetworks for eigengene network visualization.

shortenStrings

Description
This function shortens given character strings so they are not longer than a given maximum length.

Usage
shortenStrings(strings, maxLength = 25, minLength = 10,
 split = " ", fixed = TRUE,
 ellipsis = "...", countEllipsisInLength = FALSE)

Arguments
strings Character strings to be shortened.
maxLength Maximum length (number of characters) in the strings to be retained. See details
 for when the returned strings can exceed this length.
minLength Minimum length of the returned strings. See details.
split Character string giving the split at which the strings can be truncated. This can be a literal string or a regular expression (if the latter, fixed below must be set to FALSE).

fixed Logical: should split be interpreted as a literal specification (TRUE) or as a regular expression (FALSE)?

ellipsis Character string that will be appended to every shorten string, to indicate that the string has been shortened.

countEllipsisInLength Logical: should the length of the ellipsis count toward the minimum and maximum length?

Details

Strings whose length (number of characters) is at most maxLength are returned unchanged. For those that are longer, the function uses gregexpr to search for the occurrences of split in each given character string. If such occurrences are found at positions between minLength and maxLength, the string will be truncated at the last such split; otherwise, the string will be truncated at maxLength. The ellipsis is appended to each truncated string.

Value

A character vector of strings, shortened as necessary. If the input strings had non-NULL dimensions and dimnames, these are copied to the output.

Author(s)

Peter Langfelder

See Also

gregexpr, the workhorse pattern matching function formatLabels for splitting strings into multiple lines

sigmoidAdjacencyFunction

Sigmoid-type adacency function.

Description

Sigmoid-type function that converts a similarity to a weighted network adjacency.

Usage

sigmoidAdjacencyFunction(ss, mu = 0.8, alpha = 20)
signedKME

Arguments

- **ss**: similarity, a number between 0 and 1. Can be given as a scalar, vector or a matrix.
- **mu**: shift parameter.
- **alpha**: slope parameter.

Details

The sigmoid adjacency function is defined as $1/(1 + \exp[-\alpha(ss - \mu)])$.

Value

Adjacencies returned in the same form as the input ss

Author(s)

Steve Horvath

References

Description

Calculation of (signed) eigengene-based connectivity, also known as module membership.

Usage

```r
signedKME(
  datExpr, datME,
  outputColumnName = "kME",
  corFnc = "cor", corOptions = "use = 'p'"
)
```

Arguments

- **datExpr**: a data frame containing the gene expression data. Rows correspond to samples and columns to genes. Missing values are allowed and will be ignored.
- **datME**: a data frame containing module eigengenes. Rows correspond to samples and columns to module eigengenes.
- **outputColumnName**: a character string specifying the prefix of column names of the output.
corFnc character string specifying the function to be used to calculate co-expression similarity. Defaults to Pearson correlation. Any function returning values between -1 and 1 can be used.

corOptions character string specifying additional arguments to be passed to the function given by corFnc. Use "use = 'p', method = 'spearman'" to obtain Spearman correlation.

Details

Signed eigengene-based connectivity of a gene in a module is defined as the correlation of the gene with the corresponding module eigengene. The samples in datExpr and datME must be the same.

Value

A data frame in which rows correspond to input genes and columns to module eigengenes, giving the signed eigengene-based connectivity of each gene with respect to each eigengene.

Author(s)

Steve Horvath

References

signifNumeric

Round numeric columns to given significant digits.

Description

This function applies link{signif} (or possibly other rounding function) to numeric, non-integer columns of a given data frame.

Usage

signifNumeric(x, digits, fnc = "signif")

Arguments

x Input data frame, matrix or matrix-like object that can be coerced to a data frame.
digits Significant digits to retain.
fnc The rounding function. Typically either signif or round.
Details

The function `fnc` is applied to each numeric column that contains at least one non-integer (i.e., at least one element that does not equal its own `round`).

Value

The transformed data frame.

Author(s)

Peter Langfelder

See Also

The rounding functions `signif` and `round`.

Examples

```r
df = data.frame(text = letters[1:3], ints = c(1:3)+234, nonints = c(0:2) + 0.02345);
df;
signifNumeric(df, 2);
signifNumeric(df, 2, fnc = "round);
```

Description

This function transforms correlations or other measures of similarity into an unweighted network adjacency.

Usage

```r
signumAdjacencyFunction(corMat, threshold)
```

Arguments

- `corMat` a matrix of correlations or other measures of similarity.
- `threshold` threshold for connecting nodes: all nodes whose `corMat` is above the threshold will be connected in the resulting network.

Value

An unweighted adjacency matrix of the same dimensions as the input `corMat`.
simpleConsensusCalculation

Author(s)

Steve Horvath

References

See Also

adjacency for soft-thresholding and creating weighted networks.

simpleConsensusCalculation

Simple calculation of a single consensus

Description

This function calculates a single consensus from given individual data.

Usage

```r
simpleConsensusCalculation(
  individualData,  
  consensusOptions,  
  verbose = 1,  
  indent = 0)
```

Arguments

- **individualData** Individual data from which the consensus is to be calculated. It can be either a list or a `multidata` structure in which each element is a numeric vector or array.
- **consensusOptions** A list of class `ConsensusOptions` that contains options for the consensus calculation. A suitable list can be obtained by calling function `newConsensusOptions`.
- **verbose** Integer level of verbosity of diagnostic messages. Zero means silent, higher values make the output progressively more and more verbose.
- **indent** Indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

Consensus is defined as the element-wise (also known as "parallel") quantile of of the individual data at probability given by the `consensusQuantile` element of `consensusOptions`.
Value

A numeric vector or array of the same dimensions as each element of `individualData`.

Author(s)

Peter Langfelder

References

Consensus network analysis was originally described in Langfelder P, Horvath S. Eigengene networks for studying the relationships between co-expression modules. BMC Systems Biology 2007, 1:54 http://www.biomedcentral.com/1752-0509/1/54

See Also

`consensusCalculation` for consensus calculation that can work with `BlockwiseData` and can calibrate data before calculating consensus.

simpleHierarchicalConsensusCalculation

Simple hierarchical consensus calculation

Description

Hierarchical consensus calculation without calibration.

Usage

`simpleHierarchicalConsensusCalculation(individualData, consensusTree, level = 1)`

Arguments

- `individualData` Individual data from which the consensus is to be calculated. It can be either a list or a `multiData` structure. Each element in `individualData` should be a numeric object (vector, matrix or array).
- `consensusTree` A list specifying the consensus calculation. See details.
- `level` Integer which the user should leave at 1. This serves to keep default set names unique.

Details

This function calculates consensus in a hierarchical manner, using a separate (and possibly different) set of consensus options at each step. The "recipe" for the consensus calculation is supplied in the argument `consensusTree`.

The argument `consensusTree` should have the following components: (1) inputs must be either a character vector whose components match `names(inputData)`, or consensus trees in the own right.
(2) consensusOptions must be a list of class "ConsensusOptions" that specifies options for calculating the consensus. A suitable set of options can be obtained by calling `newConsensusOptions`.

(3) Optionally, the component `analysisName` can be a single character string giving the name for the analysis. When intermediate results are returned, they are returned in a list whose names will be set from `analysisName` components, if they exist.

Unlike the similar function `hierarchicalConsensusCalculation`, this function ignores the calibration settings in the `consensusOptions` component of `consensusTree`; no calibration of input data is performed.

The actual consensus calculation at each level of the consensus tree is carried out in function `simpleConsensusCalculation`. The consensus options for each individual consensus calculation are independent from one another, i.e., the consensus options for different steps can be different.

Value

A list with a single component `consensus`, containing the consensus data of the same dimensions as the individual entries in the input `individualData`. This perhaps somewhat cumbersome convention is used to make the output compatible with that of `hierarchicalConsensusCalculation`.

Author(s)

Peter Langfelder

See Also

`simpleConsensusCalculation` for a "single-level" consensus calculation;
`hierarchicalConsensusCalculation` for hierarchical consensus calculation with calibration

simulateDatExpr

Simulation of expression data

Description

Simulation of expression data with a customizable modular structure and several different types of noise.

Usage

```r
simulateDatExpr(
  eigengenes, nGenes, modProportions, minCor = 0.3, maxCor = 1, corPower = 1, signed = FALSE, propNegativeCor = 0.3, geneMeans = NULL,
)```
simulateDatExpr

backgroundNoise = 0.1,
leaveOut = NULL,
nSubmoduleLayers = 0,
nScatteredModuleLayers = 0,
averageNGenesInSubmodule = 10,
averageExprInSubmodule = 0.2,
submoduleSpacing = 2,
verbose = 1, indent = 0)

Arguments

eigengenes a data frame containing the seed eigengenes for the simulated modules. Rows correspond to samples and columns to modules.

ngenes total number of genes to be simulated.

modProportions a numeric vector with length equal the number of eigengenes in eigengenes plus one, containing fractions of the total number of genes to be put into each of the modules and into the "grey module", which means genes not related to any of the modules. See details.

minCor minimum correlation of module genes with the corresponding eigengene. See details.

maxCor maximum correlation of module genes with the corresponding eigengene. See details.

corPower controls the dropoff of gene-eigengene correlation. See details.

signed logical: should the genes be simulated as belonging to a signed network? If TRUE, all genes will be simulated to have positive correlation with the eigengene. If FALSE, a proportion given by propNegativeCor will be simulated with negative correlations of the same absolute values.

propNegativeCor proportion of genes to be simulated with negative gene-eigengene correlations. Only effective if signed is FALSE.

geneMeans optional vector of length nGenes giving desired mean expression for each gene. If not given, the returned expression profiles will have mean zero.

backgroundNoise amount of background noise to be added to the simulated expression data.

leaveOut optional specification of modules that should be left out of the simulation, that is their genes will be simulated as unrelated ("grey"). This can be useful when simulating several sets, in some which a module is present while in others it is absent.

nSubmoduleLayers number of layers of ordered submodules to be added. See details.

nScatteredModuleLayers number of layers of scattered submodules to be added. See details.

averageNGenesInSubmodule average number of genes in a submodule. See details.

averageExprInSubmodule average strength of submodule expression vectors.
submoduleSpacing

A number giving submodule spacing: this multiple of the submodule size will lie between the submodule and the next one.

verbose

Integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

indent

Indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

Given eigengenes can be unrelated or they can exhibit non-trivial correlations. Each module is simulated separately from others. The expression profiles are chosen such that their correlations with the eigengene run from just below \( \text{maxCor} \) to \( \text{minCor} \) (hence \( \text{minCor} \) must be between 0 and 1, not including the bounds). The parameter \( \text{corPower} \) can be chosen to control the behaviour of the simulated correlation with the gene index; values higher than 1 will result in the correlation approaching \( \text{minCor} \) faster and lower than 1 slower.

Numbers of genes in each module are specified (as fractions of the total number of genes \( \text{ngenes} \)) by \( \text{modProportions} \). The last entry in \( \text{modProportions} \) corresponds to the genes that will be simulated as unrelated to anything else ("grey" genes). The proportion must add up to 1 or less. If the sum is less than one, the remaining genes will be partitioned into groups and simulated to be "close" to the proper modules, that is with small but non-zero correlations (between \( \text{minCor} \) and 0) with the module eigengene.

If \( \text{signed} \) is set FALSE, the correlation for some of the module genes is chosen negative (but the absolute values remain the same as they would be for positively correlated genes). To ensure consistency for simulations of multiple sets, the indices of the negatively correlated genes are fixed and distributed evenly.

In addition to the primary module structure, a secondary structure can be optionally simulated. Modules in the secondary structure have sizes chosen from an exponential distribution with mean equal \( \text{averageGenesInSubmodule} \). Expression vectors simulated in the secondary structure are simulated with expected standard deviation chosen from an exponential distribution with mean equal \( \text{averageExprInSubmodule} \); the higher this coefficient, the more pronounced will the submodules be in the main modules. The secondary structure can be simulated in several layers; their number is given by \( \text{SubmoduleLayers} \). Genes in these submodules are ordered in the same order as in the main modules.

In addition to the ordered submodule structure, a scattered submodule structure can be simulated as well. This structure can be viewed as noise that tends to correlate random groups of genes. The size and effect parameters are the same as for the ordered submodules, and the number of layers added is controlled by \( \text{nScatteredModuleLayers} \).

Value

A list with the following components:

- datExpr: simulated expression data in a data frame whose columns correspond genes and rows to samples.
- setLabels: simulated module assignment. Module labels are numeric, starting from 1. Genes simulated to be outside of proper modules have label 0. Modules that are left out (specified in leaveOut) are indicated as 0 here.
allLabels simulated module assignment. Genes that belong to leftout modules (specified in \texttt{leaveOut}) are indicated by their would-be assignment here.

\texttt{labelOrder} a vector specifying the order in which labels correspond to the given eigengenes, that is \texttt{labelOrder[1]} is the label assigned to module whose seed is \texttt{eigengenes[, 1]} etc.

\textbf{Author(s)}

Peter Langfelder

\textbf{References}

A short description of the simulation method can also be found in the Supplementary Material to the article


\textbf{See Also}

- \texttt{simulateEigengeneNetwork} for a simulation of eigengenes with a given causal structure;
- \texttt{simulateModule} for simulations of individual modules;
- \texttt{simulateDatExpr5Modules} for a simplified interface to expression simulations;
- \texttt{simulateMultiExpr} for a simulation of several related data sets.

\texttt{simulateDatExpr5Modules}

\emph{Simplified simulation of expression data}

\textbf{Description}

This function provides a simplified interface to the expression data simulation, at the cost of considerably less flexibility.

\textbf{Usage}

\begin{verbatim}
simulateDatExpr5Modules(
    nGenes = 2000,
    colorLabels = c("turquoise", "blue", "brown", "yellow", "green"),
    simulateProportions = c(0.1, 0.08, 0.06, 0.04, 0.02),
    MEturquoise, MEblue, MEbrown, M Eylow, M Egreen,
    SDnoise = 1, backgroundCor = 0.3)
\end{verbatim}
simulateDatExpr5Modules

Arguments

- **nGenes**: total number of genes to be simulated.
- **colorLabels**: labels for simulated modules.
- **simulateProportions**: a vector of length 5 giving proportions of the total number of genes to be placed in each individual module. The entries must be positive and sum to at most 1. If the sum is less than 1, the leftover genes will be simulated outside of modules.
- **METurquoise**: seed module eigengene for the first module.
- **MEblue**: seed module eigengene for the second module.
- **MEbrown**: seed module eigengene for the third module.
- **MEyellow**: seed module eigengene for the fourth module.
- **MEgreen**: seed module eigengene for the fifth module.
- **SDnoise**: level of noise to be added to the simulated expressions.
- **backgroundCor**: background correlation. If non-zero, a component will be added to all genes such that the average correlation of otherwise unrelated genes will be backgroundCor.

Details

Roughly one-third of the genes are simulated with a negative correlation to their seed eigengene. See the functions simulateModule and simulateDatExpr for more details.

Value

A list with the following components:

- **datExpr**: the simulated expression data in a data frame, with rows corresponding to samples and columns to genes.
- **truemodule**: a vector with one entry per gene containing the simulated module membership.
- **datME**: a data frame containing a copy of the input module eigengenes.

Author(s)

Steve Horvath and Peter Langfelder

See Also

simulateModule for simulation of individual modules;
simulateDatExpr for a more comprehensive data simulation interface.
Simulate eigengene network from a causal model

Description

Simulates a set of eigengenes (vectors) from a given set of causal anchors and a causal matrix.

Usage

```r
simulateEigengeneNetwork(
 causeMat, anchorIndex, anchorVectors,
 noise = 1, verbose = 0, indent = 0
)
```

Arguments

- `causeMat`: causal matrix. The entry $[i,j]$ is the influence (path coefficient) of vector $j$ on vector $i$.
- `anchorIndex`: specifies the indices of the anchor vectors.
- `anchorVectors`: a matrix giving the actual anchor vectors as columns. Their number must equal the length of `anchorIndex`.
- `noise`: standard deviation of the noise added to each simulated vector.
- `verbose`: level of verbosity. 0 means silent.
- `indent`: indentation for diagnostic messages. Zero means no indentation; each unit adds two spaces.

Details

The algorithm starts with the anchor vectors and iteratively generates the rest from the path coefficients given in the matrix `causeMat`.

Value

A list with the following components:

- `eigengenes`: generated eigengenes.
- `causeMat`: a copy of the input causal matrix.
- `levels`: useful for debugging. A vector with one entry for each eigengene giving the number of generations of parents of the eigengene. Anchors have level 0, their direct causal children have level 1 etc.
- `anchorIndex`: a copy of the input `anchorIndex`.

Author(s)

Peter Langfelder
simulateModule

Simulate a gene co-expression module

Description

Simulation of a single gene co-expression module.

Usage

```r
simulateModule(
 ME,
 nGenes,
 nNearGenes = 0,
 minCor = 0.3, maxCor = 1, corPower = 1,
 signed = FALSE, propNegativeCor = 0.3,
 geneMeans = NULL,
 verbose = 0, indent = 0)
```

Arguments

- **ME**: seed module eigengene.
- **nGenes**: number of genes in the module to be simulated. Must be non-zero.
- **nNearGenes**: number of genes to be simulated with low correlation with the seed eigengene.
- **minCor**: minimum correlation of module genes with the eigengene. See details.
- **maxCor**: maximum correlation of module genes with the eigengene. See details.
- **corPower**: controls the dropoff of gene-eigengene correlation. See details.
- **signed**: logical: should the genes be simulated as belonging to a signed network? If TRUE, all genes will be simulated to have positive correlation with the eigengene. If FALSE, a proportion given by propNegativeCor will be simulated with negative correlations of the same absolute values.
- **propNegativeCor**: proportion of genes to be simulated with negative gene-eigengene correlations. Only effective if signed is FALSE.
- **geneMeans**: optional vector of length nGenes giving desired mean expression for each gene. If not given, the returned expression profiles will have mean zero.
- **verbose**: integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.
- **indent**: indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.
simulateMultiExpr

Details

Module genes are simulated around the eigengene by choosing them such that their (expected) correlations with the seed eigengene decrease progressively from (just below) maxCor to minCor. The genes are otherwise independent from one another. The variable corPower determines how fast the correlation drops towards minCor. Higher powers lead to a faster frop-off; corPower must be above zero but need not be integer.

If signed is FALSE, the genes are simulated so as to be part of an unsigned network module, that is some genes will be simulated with a negative correlation with the seed eigengene (but of the same absolute value that a positively correlated gene would be simulated with). The proportion of genes with negative correlation is controlled by propNegativeCor.

Optionally, the function can also simulate genes that are "near" the module, meaning they are simulated with a low but non-zero correlation with the seed eigengene. The correlations run between minCor and zero.

Value

A matrix containing the expression data with rows corresponding to samples and columns to genes.

Author(s)

Peter Langfelder

References

A short description of the simulation method can also be found in the Supplementary Material to the article:


See Also

simulateEigengeneNetwork for a simulation of eigengenes with a given causal structure;
simulateDatExpr for simulations of whole datasets consisting of multiple modules;
simulateDatExpr5Modules for a simplified interface to expression simulations;
simulateMultiExpr for a simulation of several related data sets.

simulateMultiExpr  Simulate multi-set expression data

Description

Simulation of expression data in several sets with relate module structure.
Usage

```r
simulateMultiExpr(eigengenes, nGenes,
modProportions,
minCor = 0.5, maxCor = 1,
corPower = 1,
backgroundNoise = 0.1,
leaveOut = NULL,
signed = FALSE,
propNegativeCor = 0.3,
geneMeans = NULL,
nSubmoduleLayers = 0,
nScatteredModuleLayers = 0,
averageNGenesInSubmodule = 10,
averageExprInSubmodule = 0.2,
submoduleSpacing = 2,
verbose = 1, indent = 0)
```

Arguments

eigengenes
the seed eigengenes for the simulated modules in a multi-set format. A list with one component per set. Each component is again a list that must contain a component data. This is a data frame of seed eigengenes for the corresponding data set. Columns correspond to modules, rows to samples. Number of samples in the simulated data is determined from the number of samples of the eigengenes.

nGenes
integer specifying the number of simulated genes.

modProportions
a numeric vector with length equal the number of eigengenes in eigengenes plus one, containing fractions of the total number of genes to be put into each of the modules and into the "grey module", which means genes not related to any of the modules. See details.

minCor
minimum correlation of module genes with the corresponding eigengene. See details.

maxCor
maximum correlation of module genes with the corresponding eigengene. See details.

corPower
controls the dropoff of gene-eigengene correlation. See details.

backgroundNoise
amount of background noise to be added to the simulated expression data.

leaveOut
optional specification of modules that should be left out of the simulation, that is their genes will be simulated as unrelated ("grey"). A logical matrix in which columns correspond to sets and rows to modules. Wherever TRUE, the corresponding module in the corresponding data set will not be simulated, that is its genes will be simulated independently of the eigengene.

signed
logical: should the genes be simulated as belonging to a signed network? If TRUE, all genes will be simulated to have positive correlation with the eigengene. If FALSE, a proportion given by propNegativeCor will be simulated with negative correlations of the same absolute values.
propNegativeCor

proportion of genes to be simulated with negative gene-eigengene correlations. Only effective if signed is FALSE.

geneMeans

optional vector of length nGenes giving desired mean expression for each gene. If not given, the returned expression profiles will have mean zero.

nSubmoduleLayers

number of layers of ordered submodules to be added. See details.

nScatteredModuleLayers

number of layers of scattered submodules to be added. See details.

averageNGenesInSubmodule

average number of genes in a submodule. See details.

averageExprInSubmodule

average strength of submodule expression vectors.

submoduleSpacing

a number giving submodule spacing: this multiple of the submodule size will lie between the submodule and the next one.

verbose

integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

indent

indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

For details of simulation of individual data sets and the meaning of individual set simulation arguments, see simulateDatExpr. This function simulates several data sets at a time and puts the result in a multi-set format. The number of genes is the same for all data sets. Module memberships are also the same, but modules can optionally be “dissolved”, that is their genes will be simulated as unassigned. Such “dissolved”, or left out, modules can be specified in the matrix leaveOut.

Value

A list with the following components:

multiExpr

simulated expression data in multi-set format analogous to that of the input eigengenes. A list with one component per set. Each component is again a list that must contains a component data. This is a data frame of expression data for the corresponding data set. Columns correspond to genes, rows to samples.

setLabels

a matrix of dimensions (number of genes) times (number of sets) that contains module labels for each genes in each simulated data set.

allLabels

a matrix of dimensions (number of genes) times (number of sets) that contains the module labels that would be simulated if no module were left out using leaveOut. This means that all columns of the matrix are equal; the columns are repeated for convenience so allLabels has the same dimensions as setLabels.

labelOrder

a matrix of dimensions (number of modules) times (number of sets) that contains the order in which module labels were assigned to genes in each set. The first label is assigned to genes 1...(module size of module labeled by first label), the second label to the following batch of genes etc.
simulateSmallLayer

**Author(s)**
Peter Langfelder

**References**
A short description of the simulation method can also be found in the Supplementary Material to the article

**See Also**
- simulateEigengeneNetwork for a simulation of eigengenes with a given causal structure;
- simulateDatExpr for simulation of individual data sets;
- simulateDatExpr5Modules for a simple simulation of a data set consisting of 5 modules;
- simulateModule for simulations of individual modules;

---

**simulateSmallLayer**  
*Simulate small modules*

**Description**
This function simulates a set of small modules. The primary purpose is to add a submodule structure to the main module structure simulated by simulateDatExpr.

**Usage**
```
simulateSmallLayer(
 order,
 nSamples,
 minCor = 0.3, maxCor = 0.5, corPower = 1,
 averageModuleSize,
 averageExpr,
 moduleSpacing,
 verbose = 4, indent = 0)
```

**Arguments**
- **order**  
a vector giving the simulation order for vectors. See details.
- **nSamples**  
integer giving the number of samples to be simulated.
- **minCor**  
a multiple of maxCor (see below) giving the minimum correlation of module genes with the corresponding eigengene. See details.
- **maxCor**  
maximum correlation of module genes with the corresponding eigengene. See details.
corPower controls the dropoff of gene-eigengene correlation. See details.

averageModuleSize average number of genes in a module. See details.

averageExpr average strength of module expression vectors.

moduleSpacing a number giving module spacing: this multiple of the module size will lie between the module and the next one.

verbose integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

indent indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

Module eigenvectors are chosen randomly and independently. Module sizes are chosen randomly from an exponential distribution with mean equal averageModuleSize. Two thirds of genes in each module are simulated as proper module genes and one third as near-module genes (see simulateModule for details). Between each successive pairs of modules a number of genes given by moduleSpacing will be left unsimulated (zero expression). Module expression, that is the expected standard deviation of the module expression vectors, is chosen randomly from an exponential distribution with mean equal averageExpr. The expression profiles are chosen such that their correlations with the eigengene run from just below maxCor to minCor * maxCor (hence minCor must be between 0 and 1, not including the bounds). The parameter corPower can be chosen to control the behaviour of the simulated correlation with the gene index; values higher than 1 will result in the correlation approaching minCor * maxCor faster and lower than 1 slower.

The simulated genes will be returned in the order given in order.

Value

A matrix of simulated gene expressions, with dimension (nSamples, length(order)).

Author(s)

Peter Langfelder

See Also

simulateModule for simulation of individual modules;
simulatedAtExpr for the main gene expression simulation function.
sizeGrWindow  
*Opens a graphics window with specified dimensions*

**Description**

If a graphic device window is already open, it is closed and re-opened with specified dimensions (in inches); otherwise a new window is opened.

**Usage**

```
sizeGrWindow(width, height)
```

**Arguments**

- `width`: desired width of the window, in inches.
- `height`: desired height of the window, in inches.

**Value**

None.

**Author(s)**

Peter Langfelder

---

softConnectivity  
*Calculates connectivity of a weighted network.*

**Description**

Given expression data or a similarity, the function constructs the adjacency matrix and for each node calculates its connectivity, that is the sum of the adjacency to the other nodes.

**Usage**

```
softConnectivity(
 datExpr,
 corFnc = "cor", corOptions = "use = 'p'",
 weights = NULL,
 type = "unsigned",
 power = if (type == "signed") 15 else 6,
 blockSize = 1500,
 minNSamples = NULL,
 verbose = 2, indent = 0)
```
softConnectivity

softConnectivity.fromSimilarity(
  similarity,
  type = "unsigned",
  power = if (type == "signed") 15 else 6,
  blockSize = 1500,
  verbose = 2, indent = 0)

Arguments

datExpr a data frame containing the expression data, with rows corresponding to samples and columns to genes.
similarity a similarity matrix: a square symmetric matrix with entries between -1 and 1.
corFnc character string giving the correlation function to be used for the adjacency calculation. Recommended choices are "cor" and "bicor", but other functions can be used as well.
corOptions character string giving further options to be passed to the correlation function.
weights optional observation weights for datExpr to be used in correlation calculation. A matrix of the same dimensions as datExpr, containing non-negative weights. Only used with Pearson correlation.
type network type. Allowed values are (unique abbreviations of) "unsigned", "signed", "signed hybrid".
power soft thresholding power.
blockSize block size in which adjacency is to be calculated. Too low (say below 100) may make the calculation inefficient, while too high may cause R to run out of physical memory and slow down the computer. Should be chosen such that an array of doubles of size (number of genes) * (block size) fits into available physical memory.
minNSamples minimum number of samples available for the calculation of adjacency for the adjacency to be considered valid. If not given, defaults to the greater of .minNSamples (currently 4) and number of samples divided by 3. If the number of samples falls below this threshold, the connectivity of the corresponding gene will be returned as NA.
verbose integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.
indent indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Value

A vector with one entry per gene giving the connectivity of each gene in the weighted network.

Author(s)

Steve Horvath
References


See Also

adjacency

spaste

Space-less paste

Description

A convenient wrapper for the paste function with sep="".

Usage

spaste(...)

Arguments

... standard arguments to function paste except sep.

Value

The result of the corresponding paste.

Note

Do not use the sep argument. Using will lead to an error.

Author(s)

Peter Langfelder

See Also

paste

Examples

a = 1;
paste("a=", a);
spaste("a=", a);
standardColors

Colors this library uses for labeling modules.

Description

Returns the vector of color names in the order they are assigned by other functions in this library.

Usage

standardColors(n = NULL)

Arguments

n
Number of colors requested. If NULL, all (approx. 450) colors will be returned. Any other invalid argument such as less than one or more than maximum (length(standardColors())) will trigger an error.

Value

A vector of character color names of the requested length.

Author(s)

Peter Langfelder, <Peter.Langfelder@gmail.com>

Examples

standardColors(10);

standardScreeningBinaryTrait

Standard screening for binary traits

Description

The function standardScreeningBinaryTrait computes widely used statistics for relating the columns of the input data frame (argument datE) to a binary sample trait (argument y). The statistics include Student t-test p-value and the corresponding local false discovery rate (known as q-value, Storey et al 2004), the fold change, the area under the ROC curve (also known as C-index), mean values etc. If the input option KruskalTest is set to TRUE, it also computes the Kruskal Wallist test p-value and corresponding q-value. The Kruskal Wallis test is a non-parametric, rank-based group comparison test.
Usage

```r
standardScreeningBinaryTrait(
 datExpr, y,
 corFnc = cor, corOptions = list(use = 'p'),
 kruskalTest = FALSE, qValues = FALSE,
 var.equal = FALSE, na.action = "na.exclude",
 getAreaUnderROC = TRUE)
```

Arguments

- `datExpr`: a data frame or matrix whose columns will be related to the binary trait.
- `y`: a binary vector whose length (number of components) equals the number of rows of `datExpr`.
- `corFnc`: correlation function. Defaults to Pearson correlation.
- `corOptions`: a list specifying options to `corFnc`. An empty list must be specified as `list()` (supplying `NULL` instead will trigger an error).
- `kruskalTest`: logical: should the Kruskal test be performed?
- `qValues`: logical: should the q-values be calculated?
- `var.equal`: logical input parameter for the Student t-test. It indicates whether to treat the two variances (corresponding to the binary grouping) as being equal. If TRUE then the pooled variance is used to estimate the variance otherwise the Welch (or Satterthwaite) approximation to the degrees of freedom is used. Warning: here the default value is TRUE which is different from the default value of `t.test`. Type `help(t.test)` for more details.
- `na.action`: character string for the Student t-test: indicates what should happen when the data contain missing values NAs.
- `getAreaUnderROC`: logical: should area under the ROC curve be calculated? The calculation slows the function down somewhat.

Value

A data frame whose rows correspond to the columns of `datExpr` and whose columns report

- **ID**: column names of the input `datExpr`.
- **corPearson**: Pearson correlation with a binary numeric version of the input variable. The numeric variable equals 1 for level 1 and 2 for level 2. The levels are given by `levels(factor(y))`.
- **t.Student**: Student’s t-test statistic
- **p.valueStudent**: two-sided Student t-test p-value.
- **q.valueStudent**: (if input `qValues==TRUE`) q-value (local false discovery rate) based on the Student T-test p-value (Storey et al 2004).
- **foldChange**: a (signed) ratio of mean values. If the mean in the first group (corresponding to level 1) is larger than that of the second group, it equals meanFirstGroup/meanSecondGroup. But if the mean of the second group is larger than
that of the first group it equals -meanSecondGroup/meanFirstGroup (notice the minus sign).

meanFirstGroup means of columns in input datExpr across samples in the first group.

meanSecondGroup means of columns in input datExpr across samples in the second group.

SE.FirstGroup standard errors of columns in input datExpr across samples in the first group. Recall that SE(x)=sqrt(var(x)/n) where n is the number of non-missing values of x.

SE.SecondGroup standard errors of columns in input datExpr across samples in the second group.

areaUnderROC the area under the ROC, also known as the concordance index or C.index. This is a measure of discriminatory power. The measure lies between 0 and 1 where 0.5 indicates no discriminatory power. 0 indicates that the "opposite" predictor has perfect discriminatory power. To compute it we use the function rcorr.cens with outx=TRUE (from Frank Harrel's package Hmisc). Only present if input getAreUnderROC is TRUE.

nPresentSamples number of samples with finite measurements for each gene.

If input kruskalTest is TRUE, the following columns further summarize results of Kruskal-Wallis test:

stat.Kruskal Kruskal-Wallis test statistic.

stat.Kruskal.signed (Warning: experimental) Kruskal-Wallis test statistic including a sign that indicates whether the average rank is higher in second group (positive) or first group (negative).

pvalueKruskal Kruskal-Wallis test p-values.

qKruskal q-values corresponding to the Kruskal-Wallis test p-value (if input qValues==TRUE).

Author(s)

Steve Horvath

References


Examples

```r
require(survival) # For is.Surv in rcorr.cens
m=50
y=sample(c(1,2),m,replace=TRUE)
datExprSignal=simulateModule(scale(y),30)
datExprNoise=simulateModule(rnorm(m),150)
datExpr=data.frame(datExprSignal,datExprNoise)
```
standardScreeningCensoredTime

Standard Screening with regard to a Censored Time Variable

Description

The function standardScreeningCensoredTime computes association measures between the columns of the input data datExpr and a censored time variable (e.g. survival time). The censored time is specified using two input variables "time" and "event". The event variable is binary where 1 indicates that the event took place (e.g. the person died) and 0 indicates censored (i.e. lost to follow up). The function fits univariate Cox regression models (one for each column of datExpr) and outputs a Wald test p-value, a logrank p-value, corresponding local false discovery rates (known as q-values, Storey et al 2004), hazard ratios. Further it reports the concordance index (also know as area under the ROC curve) and optionally results from dichotomizing the columns of datExpr.

Usage

standardScreeningCensoredTime(
  time,
  event,
  datExpr,
  percentiles = seq(from = 0.1, to = 0.9, by = 0.2),
  dichotomizationResults = FALSE,
  qValues = TRUE,
  fastCalculation = TRUE)

Arguments

time numeric variable showing time to event or time to last follow up.

event Input variable time specifies the time to event or time to last follow up. Input variable event indicates whether the event happend (=1) or whether there was censoring (=0).

datExpr a data frame or matrix whose columns will be related to the censored time.
percentiles numeric vector which is only used when `dichotomizationResults=T`. Each value should lie between 0 and 1. For each value specified in the vector percentiles, a binary vector will be defined by dichotomizing the column value according to the corresponding quantile. Next a corresponding p-value will be calculated.

dichotomizationResults logical. If this option is set to TRUE then the values of the columns of datE will be dichotomized and corresponding Cox regression p-values will be calculated.

dichotomizationResults logical. If this option is set to TRUE (default) then q-values will be calculated for the Cox regression p-values.

fastCalculation logical. If set to TRUE, the function outputs correlation test p-values (and q-values) for correlating the columns of datE with the expected hazard (if no covariate is fit). Specifically, the expected hazard is defined as the deviance residual of an intercept only Cox regression model. The results are very similar to those resulting from a univariate Cox model where the censored time is regressed on the columns of dat. Specifically, this computational speed up is facilitated by the insight that the p-values resulting from a univariate Cox regression `coxph(Surv(time,event)~datE[,i])` are very similar to those from `corPvalueFisher(cor(devianceResidual,datE[,i]), nSamples)`.

Details

If input option `fastCalculation=TRUE`, then the function outputs correlation test p-values (and q-values) for correlating the columns of datE with the expected hazard (if no covariate is fit). Specifically, the expected hazard is defined as the deviance residual of an intercept only Cox regression model. The results are very similar to those resulting from a univariate Cox model where the censored time is regressed on the columns of dat. Specifically, this computational speed up is facilitated by the insight that the p-values resulting from a univariate Cox regression `coxph(Surv(time,event)~datE[,i])` are very similar to those from `corPvalueFisher(cor(devianceResidual,datE[,i]), nSamples)`.

Value

If `fastCalculation` is FALSE, the function outputs a data frame whose rows correspond to the columns of datE and whose columns report

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>column names of the input data datExpr.</td>
</tr>
<tr>
<td>pvalueWald</td>
<td>Wald test p-value from fitting a univariate Cox regression model where the censored time is regressed on each column of datExpr.</td>
</tr>
<tr>
<td>qValueWald</td>
<td>local false discovery rate (q-value) corresponding to the Wald test p-value.</td>
</tr>
<tr>
<td>pvalueLogrank</td>
<td>Logrank p-value resulting from the Cox regression model. Also known as score test p-value. For large sample sizes this could be similar to the Wald test p-value.</td>
</tr>
<tr>
<td>qValueLogrank</td>
<td>local false discovery rate (q-value) corresponding to the Logrank test p-value.</td>
</tr>
<tr>
<td>HazardRatio</td>
<td>hazard ratio resulting from the Cox model. If the value is larger than 1, then high values of the column are associated with shorter time, e.g. increased hazard of death. A hazard ratio equal to 1 means no relationship between the column and time. HR&lt;1 means that high values are associated with longer time, i.e. lower hazard.</td>
</tr>
</tbody>
</table>
CI.LowerLimitHR

Lower bound of the 95 percent confidence interval of the hazard ratio.

CI.UpperLimitHR

Upper bound of the 95 percent confidence interval of the hazard ratio.

C.index

Concordance index, also known as C-index or area under the ROC curve. Calculated with the rcorr.cens option outx=TRUE (ties are ignored).

MinimumDichotPvalue

This is the smallest p-value from the dichotomization results. To see which dichotomized variable (and percentile) corresponds to the minimum, study the following columns.

pValueDichot0.1

This column reports the p-value when the column is dichotomized according to the specified percentile (here 0.1). The percentiles are specified in the input option percentiles.

pvalueDeviance

The p-value resulting from using a correlation test to relate the expected hazard (deviance residual) with each (undichotomized) column of datE. Specifically, the Fisher transformation is used to calculate the p-value for the Pearson correlation. The resulting p-value should be very similar to that of a univariate Cox regression model.

qvalueDeviance

Local false discovery rate (q-value) corresponding to pvalueDeviance.

corDeviance

Pearson correlation between the expected hazard (deviance residual) with each (undichotomized) column of datExpr.

Author(s)

Steve Horvath

### standardScreeningNumericTrait

*Standard screening for numeric traits*

**Description**

Standard screening for numeric traits based on Pearson correlation.

**Usage**

```r
standardScreeningNumericTrait(datExpr, yNumeric, corFnc = cor,
 corOptions = list(use = 'p'),
 alternative = c("two.sided", "less", "greater"),
 qValues = TRUE,
 areaUnderROC = TRUE)
```
**standardScreeningNumericTrait**

**Arguments**

- `datExpr` data frame containing expression data (or more generally variables to be screened), with rows corresponding to samples and columns to genes (variables)
- `yNumeric` a numeric vector giving the trait measurements for each sample
- `corFnc` correlation function. Defaults to Pearson correlation but can also be `bicor`.
- `corOptions` list specifying additional arguments to be passed to the correlation function given by `corFnc`.
- `alternative` alternative hypothesis for the correlation test
- `qValues` logical: should q-values be calculated?
- `areaUnderROC` logical: should are under the receiver-operating curve be calculated?

**Details**

The function calculates the correlations, associated p-values, area under the ROC, and q-values.

**Value**

Data frame with the following components:

- `ID` Gene (or variable) identifiers copied from `colnames(datExpr)`
- `cor` correlations of all genes with the trait
- `Z` Fisher Z statistics corresponding to the correlations
- `pvalueStudent` Student p-values of the correlations
- `qvalueStudent` (if input `qValues==TRUE`) q-values of the correlations calculated from the p-values
- `AreaUnderROC` (if input `areaUnderROC==TRUE`) area under the ROC
- `nPresentSamples` number of samples present for the calculation of each association.

**Author(s)**

Steve Horvath

**See Also**

`standardScreeningBinaryTrait`, `standardScreeningCensoredTime`
Description

Returns the standard error of the mean of a given vector. Missing values are ignored.

Usage

stderr(x)

Arguments

x a numeric vector

Value

Standard error of the mean of x.

Author(s)

Steve Horvath

---

stratifiedBarplot Bar plots of data across two splitting parameters

Description

This function takes an expression matrix which can be split using two separate splitting parameters (ie, control vs AD with multiple brain regions), and plots the results as a barplot. Group average, standard deviations, and relevant Kruskal-Wallis p-values are returned.

Usage

stratifiedBarplot(
  expAll,
  groups, split, subset,
  genes = NA,
  scale = "N", graph = TRUE,
  las1 = 2, cex1 = 1.5, ...)

stratifiedBarplot

Arguments

expAll An expression matrix, with rows as samples and genes/probes as columns. If genes=NA, then column names must be included.

groups A character vector corresponding to the samples in expAll, with each element the group name of the relevant sample or NA for samples not in any group. For example: NA, NA, NA, Con, Con, Con, Con, AD, AD, AD, AD, NA, NA. This trait will be plotted as adjacent bars for each split.

split A character vector corresponding to the samples in expAll, with each element the group splitting name of the relevant sample or NA for samples not in any group. For example: NA, NA, NA, Hip, Hip, EC, EC, Hip, Hip, EC, EC, NA, NA. This trait will be plotted as the same color across each split of the barplot. For the function to work properly, the same split values should be inputted for each group.

subset A list of one or more genes to compare the expression with. If the list contains more than one gene, the first element contains the group name. For example, Ribosomes, RPL3, RPL4, RPS3.

genes If entered, this parameter is a list of gene/probe identifiers corresponding to the columns in expAll.

scale For subsets of genes that include more than one gene, this parameter determines how the genes are combined into a single value. Currently, there are five options: 1) (“N”)o scaling (default); 2) first divide each gene by the (“A”)verage across samples; 3) first scale genes to (“Z”)-score across samples; 4) only take the top (“H”)ub gene (ignore all but the highest-connected gene); and 5) take the (“M”)odule eigengene. Note that these scaling methods have not been sufficiently tested, and should be considered experimental.

graph If TRUE (default), bar plot is made. If FALSE, only the results are returned, and no plot is made.

cex1 Sets the graphing parameters of cex.axis and cex.names (default=1.5)

las1 Sets the graphing parameter las (default=2).

... Other graphing parameters allowed in the barplot function. Note that the parameters for cex.axis, cex.names, and las are superseded by cex1 and las1 and will therefore be ignored.

Value

splitGroupMeans The group/split averaged expression across each group and split combination. This is the height of the bars in the graph.

splitGroupSDs The standard deviation of group/split expression across each group and split combination. This is the height of the error bars in the graph.

splitPvals Kruskal-Wallis p-values for each splitting parameter across groups.

groupPvals Kruskal-Wallis p-values for each group parameter across splits.

Author(s)

Jeremy Miller
See Also

barplot, verboseBarplot

Examples

# Example: first simulate some data
set.seed(100)
ME.A = sample(1:100,50); ME.B = sample(1:100,50)
ME.C = sample(1:100,50); ME.D = sample(1:100,50)
ME1 = data.frame(ME.A, ME.B, ME.C, ME.D)

simDatA = simulateDatExpr(ME1, 1000, c(0.2, 0.1, 0.08, 0.05, 0.3), signed=TRUE)
datExpr = simDatA$datExpr+5
datExpr[1:10,] = datExpr[1:10,]+2
datExpr[41:50,] = datExpr[41:50,]-1

# Now split up the data and plot it!
subset = c("Random Genes", "Gene.1", "Gene.234", "Gene.56", "Gene.789")

split = c(rep("ZZ",10), rep("YY",10), rep("XX",10), rep("WW",10), rep("VV",10))
par(mfrow = c(1,1))
results = stratifiedBarplot(datExpr, groups, split, subset)
results

# Now plot it the other way
results = stratifiedBarplot(datExpr, split, groups, subset)

---

subsetTOM

Topological overlap for a subset of a whole set of genes

Description

This function calculates topological overlap of a subset of vectors with respect to a whole data set.

Usage

subsetTOM(
  datExpr,
  subset,
  corFnc = "cor", corOptions = "use = 'p'",
  weights = NULL,
  networkType = "unsigned",
  power = 6,
  verbose = 1, indent = 0)
Arguments

datExpr  a data frame containing the expression data of the whole set, with rows corresponding to samples and columns to genes.
subset  a single logical or numeric vector giving the indices of the nodes for which the TOM is to be calculated.
corFnc  character string giving the correlation function to be used for the adjacency calculation. Recommended choices are "cor" and "bicor", but other functions can be used as well.
corOptions  character string giving further options to be passed to the correlation function.
weights  optional observation weights for datExpr to be used in correlation calculation. A matrix of the same dimensions as datExpr, containing non-negative weights. Only used with Pearson correlation.
networkType  character string giving network type. Allowed values are (unique abbreviations of) "unsigned", "signed", "signed hybrid". See adjacency.
power  soft-thresholding power for network construction.
verbose  integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.
indent  indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

This function is designed to calculate topological overlaps of small subsets of large expression data sets, for example in individual modules.

Value

A matrix of dimensions n*n, where n is the number of entries selected by block.

Author(s)

Peter Langfelder

References


See Also

TOMsimilarity for standard calculation of topological overlap.
Description

swapTwoBranches takes the a gene tree object and two genes as input, and swaps the branches containing these two genes at the nearest branch point of the dendrogram.
reflectBranch takes the a gene tree object and two genes as input, and reflects the branch containing the first gene at the nearest branch point of the dendrogram.
selectBranch takes the a gene tree object and two genes as input, and outputs indices for all genes in the branch containing the first gene, up to the nearest branch point of the dendrogram.

Usage

```r
swapTwoBranches(hierTOM, g1, g2)
reflectBranch(hierTOM, g1, g2, both = FALSE)
selectBranch(hierTOM, g1, g2)
```

Arguments

- **hierTOM**: A hierarchical clustering object (or gene tree) that is used to plot the dendrogram. For example, the output object from the function hclust or fastcluster::hclust. Note that elements of hierTOM$order MUST be named (for example, with the corresponding gene name).
- **g1**: Any gene in the branch of interest.
- **g2**: Any gene in a branch directly adjacent to the branch of interest.
- **both**: Logical: should the selection include the branch gene `g2`?

Value

swapTwoBranches and reflectBranch return a hierarchical clustering object with the hierTOM$order variable properly adjusted, but all other variables identical as the heirTOM input.
selectBranch returns a numeric vector corresponding to all genes in the requested branch.

Author(s)

Jeremy Miller

Examples

```r
Not run:
Example: first simulate some data.
n = 30;
n2 = 2*n;
n.3 = 20;
n.5 = 10;
```
ME = sample(1:(2*n),n)
MEblue = c(MEturquoise[1:(n/2)], sample(1:(2*n),n/2))
MEbrown = sample(1:n2,n)
MEyellow = sample(1:n2,n)
MEgreen = c(MEyellow[1:n.3], sample(1:n2,n.5))
Mered = c(MEbrowm [1:n.5], sample(1:n2,n.3))

ME = data.frame(MEmeturquoise, MEmeture, MEbrown, MEyellow, MEmetgreen, MEred)
dat1 = simulateDatExpr(ME,8*n,c(0.16,0.12,0.11,0.10,0.10,0.09,0.05,0.15),
signed=TRUE)
TOM1 = TOMsimilarityFromExpr(dat1$datExpr, networkType="signed")
colnames(TOM1) <- rownames(TOM1) <- colnames(dat1$datExpr)
tree1 = fastcluster::hclust(as.dist(1-TOM1),method="average")
colorh = labels2colors(dat1$allLabels)
plotDendroAndColors(tree1,colorh,dendroLabels=FALSE)

## Reassign modules using the selectBranch and chooseOneHubInEachModule functions
datExpr = dat1$datExpr
hubs = chooseOneHubInEachModule(datExpr, colorh)
colorh2 = rep("grey", length(colorh))
colorh2[selectBranch(tree1,hubs["blue"],hubs["turquoise"])] = "blue"
colorh2[selectBranch(tree1,hubs["turquoise"],hubs["blue"])] = "turquoise"
colorh2[selectBranch(tree1,hubs["green"],hubs["yellow"])] = "green"
colorh2[selectBranch(tree1,hubs["yellow"],hubs["green"])] = "yellow"
colorh2[selectBranch(tree1,hubs["red"],hubs["brown"])] = "red"
colorh2[selectBranch(tree1,hubs["brown"],hubs["red"])] = "brown"
plotDendroAndColors(tree1,cbind(colorh,colorh2),c("Old","New"),dendroLabels=FALSE)

## Now swap and reflect some branches, then optimize the order of the branches
# Open a suitably sized graphics window
sizeGrWindow(12,9);

# partition the screen for 3 dendrogram + module color plots
layout(matrix(c(1:6), 6, 1), heights = c(0.8, 0.2, 0.8, 0.2, 0.8, 0.2));

plotDendroAndColors(tree1,colorh2,dendroLabels=FALSE,main="Starting Dendrogram", setLayout = FALSE)
tree1 = swapTwoBranches(tree1,hubs["red"],hubs["turquoise"])
plotDendroAndColors(tree1,colorh2,dendroLabels=FALSE,main="Swap blue/turquoise and red/brown", setLayout = FALSE)

tree1 = reflectBranch(tree1,hubs["blue"],hubs["green"])
plotDendroAndColors(tree1,colorh2,dendroLabels=FALSE,main="Reflect turquoise/blue", setLayout = FALSE)

## End(Not run)
**TOMplot**

*Graphical representation of the Topological Overlap Matrix*

**Description**

Graphical representation of the Topological Overlap Matrix using a heatmap plot combined with the corresponding hierarchical clustering dendrogram and module colors.

**Usage**

```r
TOMplot(
 dissim,
 dendro,
 Colors = NULL,
 ColorsLeft = Colors,
 terrainColors = FALSE,
 setLayout = TRUE,
 ...
)
```

**Arguments**

- `dissim`: a matrix containing the topological overlap-based dissimilarity
- `dendro`: the corresponding hierarchical clustering dendrogram
- `Colors`: optional specification of module colors to be plotted on top
- `ColorsLeft`: optional specification of module colors on the left side. If `NULL`, `Colors` will be used.
- `terrainColors`: logical: should terrain colors be used?
- `setLayout`: logical: should layout be set? If `TRUE`, standard layout for one plot will be used. Note that this precludes multiple plots on one page. If `FALSE`, the user is responsible for setting the correct layout.
- `...`: other graphical parameters to `heatmap`.

**Details**

The standard heatmap function uses the `layout` function to set the following layout (when `Colors` is given):

```
0 0 5
0 0 2
4 1 3
```

To get a meaningful heatmap plot, user-set layout must respect this geometry.

**Value**

None.
Author(s)

Steve Horvath and Peter Langfelder

See Also

heatmap, the workhorse function doing the plotting.

Description

Calculation of the topological overlap matrix, and the corresponding dissimilarity, from a given adjacency matrix.

Usage

TOMsimilarity(
  adjMat,
  TOMType = "unsigned",
  TOMDenom = "min",
  suppressTOMForZeroAdjacencies = FALSE,
  useInternalMatrixAlgebra = FALSE,
  verbose = 1,
  indent = 0)

TOMdist(
  adjMat,
  TOMType = "unsigned",
  TOMDenom = "min",
  suppressTOMForZeroAdjacencies = FALSE,
  useInternalMatrixAlgebra = FALSE,
  verbose = 1,
  indent = 0)

Arguments

adjMat adjacency matrix, that is a square, symmetric matrix with entries between 0 and 1 (negative values are allowed if TOMType="signed").

TOMType a character string specifying TOM type to be calculated. One of "unsigned", "signed". If "unsigned", the standard TOM will be used (more generally, TOM function will receive the adjacency as input). If "signed", TOM will keep track of the sign of the adjacency between neighbors.

TOMDenom a character string specifying the TOM variant to be used. Recognized values are "min" giving the standard TOM described in Zhang and Horvath (2005), and "mean" in which the min function in the denominator is replaced by mean. The "mean" may produce better results but at this time should be considered experimental.
suppressTOMForZeroAdjacencies
    Logical: should TOM be set to zero for zero adjacencies?

useInternalMatrixAlgebra
    Logical: should WGCNA's own, slow, matrix multiplication be used instead of
    R-wide BLAS? Only useful for debugging.

verbose
    integer level of verbosity. Zero means silent, higher values make the output
    progressively more and more verbose.

indent
    indentation for diagnostic messages. Zero means no indentation, each unit adds
    two spaces.

Details

The functions perform basically the same calculations of topological overlap. TOMdist turns the
overlap (which is a measure of similarity) into a measure of dissimilarity by subtracting it from 1.

Basic checks on the adjacency matrix are performed and missing entries are replaced by zeros. If
tomtype = "unsigned", entries of the adjacency matrix are required to lie between 0 and 1; for
tomtype = "signed" they can be between -1 and 1. In both cases the resulting TOM entries, as
well as the corresponding dissimilarities, lie between 0 and 1.

The underlying C code assumes that the diagonal of the adjacency matrix equals 1. If this is not the
case, the diagonal of the input is set to 1 before the calculation begins.

Value

A matrix holding the topological overlap.

Author(s)

Peter Langfelder

References

Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1,
Article 17

See Also

TOMsimilarityFromExpr
TOMsimilarityFromExpr

**Topological overlap matrix**

**Description**

Calculation of the topological overlap matrix from given expression data.

**Usage**

```r
TOMsimilarityFromExpr(
 datExpr,
 weights = NULL,
 corType = "pearson",
 networkType = "unsigned",
 power = 6,
 TOMType = "signed",
 TOMDenom = "min",
 maxPOutliers = 1,
 quickCor = 0,
 pearsonFallback = "individual",
 cosineCorrelation = FALSE,
 replaceMissingAdjacencies = FALSE,
 suppressTOMForZeroAdjacencies = FALSE,
 useInternalMatrixAlgebra = FALSE,
 nThreads = 0,
 verbose = 1, indent = 0)
```

**Arguments**

- `datExpr` expression data. A data frame in which columns are genes and rows are samples. NA values are allowed, but not too many.
- `weights` optional observation weights for `datExpr` to be used in correlation calculation. A matrix of the same dimensions as `datExpr`, containing non-negative weights.
- `corType` character string specifying the correlation to be used. Allowed values are (unique abbreviations of) "pearson" and "bicor", corresponding to Pearson and bi-weight midcorrelation, respectively. Missing values are handled using the `pairwise.complete.obs` option.
- `networkType` network type. Allowed values are (unique abbreviations of) "unsigned", "signed", "signed hybrid". See `adjacency`.
- `power` soft-thresholding power for network construction.
- `TOMType` one of "none", "unsigned", "signed". If "none", adjacency will be used for clustering. If "unsigned", the standard TOM will be used (more generally, TOM function will receive the adjacency as input). If "signed", TOM will keep track of the sign of correlations between neighbors.
TOMDenom

A character string specifying the TOM variant to be used. Recognized values are "min" giving the standard TOM described in Zhang and Horvath (2005), and "mean" in which the \(\min\) function in the denominator is replaced by \(\text{mean}\). The "mean" may produce better results but at this time should be considered experimental.

maxPOutliers

Only used for \(\text{corType} = \text{bicor}\). Specifies the maximum percentile of data that can be considered outliers on either side of the median separately. For each side of the median, if higher percentile than maxPOutliers is considered an outlier by the weight function based on \(9\times \text{mad}(x)\), the width of the weight function is increased such that the percentile of outliers on that side of the median equals maxPOutliers. Using maxPOutliers=1 will effectively disable all weight function broadening; using maxPOutliers=0 will give results that are quite similar (but not equal to) Pearson correlation.

quickCor

Real number between 0 and 1 that controls the handling of missing data in the calculation of correlations. See details.

pearsonFallback

Specifies whether the bicor calculation, if used, should revert to Pearson when median absolute deviation (mad) is zero. Recognized values are abbreviations of "none", "individual", "all". If set to "none", zero mad will result in NA for the corresponding correlation. If set to "individual", Pearson calculation will be used only for columns that have zero mad. If set to "all", the presence of a single zero mad will cause the whole variable to be treated in Pearson correlation manner (as if the corresponding robust option was set to FALSE). Has no effect for Pearson correlation. See \text{bicor}.

cosineCorrelation

Logical: should the cosine version of the correlation calculation be used? The cosine calculation differs from the standard one in that it does not subtract the mean.

replaceMissingAdjacencies

Logical: should missing values in the calculation of adjacency be replaced by 0?

suppressTOMForZeroAdjacencies

Logical: should TOM be set to zero for zero adjacencies?

useInternalMatrixAlgebra

Logical: should WGCNA's own, slow, matrix multiplication be used instead of R-wide BLAS? Only useful for debugging.

nThreads

Non-negative integer specifying the number of parallel threads to be used by certain parts of correlation calculations. This option only has an effect on systems on which a POSIX thread library is available (which currently includes Linux and Mac OSX, but excludes Windows). If zero, the number of online processors will be used if it can be determined dynamically, otherwise correlation calculations will use 2 threads.

verbose

Integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.

indent

Indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.
**transposeBigData**

**Value**
A matrix holding the topological overlap.

**Author(s)**
Peter Langfelder

**References**

**See Also**
TOMsimilarity

---

**transposeBigData**  
*Transpose a big matrix or data frame*

**Description**
This transpose command partitions a big matrix (or data frame) into blocks and applies the t() function to each block separately.

**Usage**
```r
transposeBigData(x, blocksize = 20000)
```

**Arguments**
- `x`  
a matrix or data frame
- `blocksize`  
a positive integer larger than 1, which determines the block size. Default is 20k.

**Details**
Assume you have a very large matrix with say 500k columns. In this case, the standard transpose function of R t() can take a long time. Solution: Split the original matrix into sub-matrices by dividing the columns into blocks. Next apply t() to each sub-matrix. The same holds if the large matrix contains a large number of rows. The function transposeBigData automatically checks whether the large matrix contains more rows or more columns. If the number of columns is larger than or equal to the number of rows then the block wise splitting will be applied to columns otherwise to the rows.

**Value**
A matrix or data frame (depending on the input x) which is the transpose of x.
Note
This function can be considered a wrapper of `t()`

Author(s)
Steve Horvath, UCLA

References
Any linear algebra book will explain the transpose.

See Also
The standard function `t`

Examples
```r
x = data.frame(matrix(rep(1, 10000), nrow = 4, ncol = 2500))
dimnames(x)[[2]] = paste("Y", 1:2500, sep = "")
transpose = transposeBigData(x)
x[1:4, 1:4]
xtranspose[1:4, 1:4]
```

### Description
Assume an imprecisely measured trait $y$ that is related to the true, unobserved trait $y_{TRUE}$ as follows $y_{TRUE} = y + \text{noise}$ where noise is assumed to have mean zero and a constant variance. Assume you have 1 or more surrogate markers for $y_{TRUE}$ corresponding to the columns of `datX`. The function implements several approaches for estimating $y_{TRUE}$ based on the inputs $y$ and/or `datX`.

### Usage
```r
TrueTrait(datX, y, datXtest = NULL,
 corFnc = "bicor", corOptions = "use = 'pairwise.complete.obs'",
 LeaveOneOut.CV = FALSE, skipMissingVariables = TRUE,
 addLinearModel = FALSE)
```

### Arguments
- `datX` is a vector or data frame whose columns correspond to the surrogate markers (variables) for the true underlying trait. The number of rows of `datX` equals the number of observations, i.e. it should equal the length of `y`
- `y` is a numeric vector which specifies the observed trait.
datXtest can be set as a matrix or data frame of a second, independent test data set. Its columns should correspond to those of datX, i.e. the two data sets should have the same number of columns but the number or rows (test set observations) can be different.

corfnc Character string specifying the correlation function to be used in the calculations. Recommended values are the default Pearson correlation "cor" or biweight mid-correlation "bicor". Additional arguments to the correlation function can be specified using corOptions.

corOptions Character string giving additional arguments to the function specified in corFnc.

leaveOneOut.CV logical. If TRUE then leave one out cross validation estimates will be calculated for y.true1 and y.true2 based on datX.

skipMissingVariables logical. If TRUE then variables whose values are missing for a given observation will be skipped when estimating the true trait of that particular observation. Thus, the estimate of a particular observation are determined by all the variables whose values are non-missing.

addLinearModel logical. If TRUE then the function also estimates the true trait based on the predictions of the linear model lm(y~., data=datX)

Details

This R function implements formulas described in Klemera and Doubal (2006). The assumptions underlying these formulas are described in Klemera et al. But briefly, the function provides several estimates of the true underlying trait under the following assumptions: 1) There is a true underlying trait that affects y and a list of surrogate markers corresponding to the columns of datX. 2) There is a linear relationship between the true underlying trait and y and the surrogate markers. 3) yTRUE = y + Noise where the Noise term has a mean of zero and a fixed variance. 4) Weighted least squares estimation is used to relate the surrogate markers to the underlying trait where the weights are proportional to 1/ssq.j where ssq.j is the noise variance of the j-th marker.

Specifically, output y.true1 corresponds to formula 31, y.true2 corresponds to formula 25, and y.true3 corresponds to formula 34.

Although the true underlying trait yTRUE is not known, one can estimate the standard deviation between the estimate y.true2 and yTRUE using formula 33. Similarly, one can estimate the SD for the estimate y.true3 using formula 42. These estimated SDs correspond to output components 2 and 3, respectively. These SDs are valuable since they provide a sense of how accurate the measure is.

To estimate the correlations between y and the surrogate markers, one can specify different correlation measures. The default method is based on the Person correlation but one can also specify the biweight midcorrelation by choosing "bicor", see help(bicor) to learn more.

When the datX is comprised of observations measured in different strata (e.g. different batches or independent data sets) then one can obtain stratum specific estimates by specifying the strata using the argument Strata. In this case, the estimation focuses on one stratum at a time.

Value

A list with the following components.
**datEstimates** is a data frame whose columns correspond to estimates of the true underlying trait. The number of rows equals the number of observations, i.e. the length of y. The first column y.true1 is the average value of standardized columns of datX where standardization subtracts out the intercept term and divides by the slope of the linear regression model lm(marker~y). Since this estimate ignores the fact that the surrogate markers have different correlations with y, it is typically inferior to y.true2. The second column y.true2 equals the weighted average value of standardized columns of datX. The standardization is described in section 2.4 of Klemera et al. The weights are proportional to r^2/(1+r^2) where r denotes the correlation between the surrogate marker and y. Since this estimate does not include y as additional surrogate marker, it may be slightly inferior to y.true3. Having said this, the difference between y.true2 and y.true3 is often negligible. An additional column called y.lm is added if codeaddLinearModel=TRUE. In this case, y.lm reports the linear model predictions. Finally, the column y.true3 is very similar to y.true2 but it includes y as additional surrogate marker. It is expected to be the best estimate of the underlying true trait (see Klemera et al 2006).

**datEstimatestest** is output only if a test data set has been specified in the argument datXtest. In this case, it contains a data frame with columns ytrue1 and ytrue2. The number of rows equals the number of test set observations, i.e. the number of rows of datXtest. Since the value of y is not known in case of a test data set, one cannot calculate y.true3. An additional column with linear model predictions y.lm is added if codeaddLinearModel=TRUE.

**datEstimates.LeaveOneOut.CV** is output only if the argument LeaveOneOut.CV has been set to TRUE. In this case, it contains a data frame with leave-one-out cross validation estimates of ytrue1 and ytrue2. The number of rows equals the length of y. Since the value of y is not known in case of a test data set, one cannot calculate y.true3.

**SD.ytrue2** is a scalar. This is an estimate of the standard deviation between the estimate y.true2 and the true (unobserved) yTRUE. It corresponds to formula 33.

**SD.ytrue3** is a scalar. This is an estimate of the standard deviation between y.true3 and the true (unobserved) yTRUE. It corresponds to formula 42.

**datVariableInfo** is a data frame that reports information for each variable (column of datX) when it comes to the definition of y.true2. The rows correspond to the number of variables. Columns report the variable name, the center (intercept that is subtracted to scale each variable), the scale (i.e. the slope that is used in the denominator), and finally the weights used in the weighted sum of the scaled variables.

**datEstimatesByStratum** a data frame that will only be output if strata is different from NULL. In this case, it is has the same dimensions as datEstimates but the estimates were calculated separately for each level of strata.

**SD.ytrue2ByStratum** a vector of length equal to the different levels of strata. Each component reports the estimate of SD.ytrue2 for observations in the stratum specified by unique(Strata).


**Description**

Calculation of the unsigned network adjacency from expression data. The restricted set of parameters for this function should allow a faster and less memory-hungry calculation.
Usage

unsignedAdjacency(
  datExpr, datExpr2 = NULL, power = 6, corFnc = "cor", corOptions = "use = 'p'")

Arguments

datExpr expression data. A data frame in which columns are genes and rows are samples. Missing values are ignored.
datExpr2 optional specification of a second set of expression data. See details.
power soft-thresholding power for network construction.
corFnc character string giving the correlation function to be used for the adjacency calculation. Recommended choices are "cor" and "bicor", but other functions can be used as well.
corOptions character string giving further options to be passed to the correlation function

Details

The correlation function will be called with arguments datExpr, datExpr2 plus any extra arguments given in corOptions. If datExpr2 is NULL, the standard correlation functions will calculate the correlation of columns in datExpr.

Value

Adjacency matrix of dimensions n*n, where n is the number of genes in datExpr.

Author(s)

Steve Horvath and Peter Langfelder

References


See Also

adjacency
userListEnrichment
Measure enrichment between inputted and user-defined lists

Description
This function measures list enrichment between inputted lists of genes and files containing user-defined lists of genes. Significant enrichment is measured using a hypergeometric test. A pre-made collection of brain-related lists can also be loaded. The function writes the significant enrichments to a file, but also returns all overlapping genes across all comparisons.

Usage

userListEnrichment(
  geneR, labelR,
  fnIn = NULL, catNmIn = fnIn,
  nameOut = "enrichment.csv",
  useBrainLists = FALSE, useBloodAtlases = FALSE, omitCategories = "grey",
  outputCorrectedPvalues = TRUE, useStemCellLists = FALSE,
  outputGenes = FALSE,
  minGenesInCategory = 1,
  useBrainRegionMarkers = FALSE, useImmunePathwayLists = FALSE,
  usePalazzoloWang = FALSE)

Arguments

geneR A vector of gene (or other) identifiers. This vector should include ALL genes in your analysis (i.e., the genes corresponding to your labeled lists AND the remaining background reference genes).

labelR A vector of labels (for example, module assignments) corresponding to the geneR list. NOTE: For all background reference genes that have no corresponding label, use the label "background" (or any label included in the omitCategories parameter).

fnIn A vector of file names containing user-defined lists. These files must be in one of three specific formats (see details section). The default (NULL) may only be used if one of the "use____" parameters is TRUE.

catNmIn A vector of category names corresponding to each fnIn. This name will be appended to each overlap corresponding to that filename. The default sets the category names as the corresponding file names.

nameOut Name of the file where the output enrichment information will be written. (Note that this file includes only a subset of what is returned by the function.)

useBrainLists If TRUE, a pre-made set of brain-derived enrichment lists will be added to any user-defined lists for enrichment comparison. The default is FALSE. See references section for related references.
userListEnrichment

useBloodAtlases
If TRUE, a pre-made set of blood-derived enrichment lists will be added to any user-defined lists for enrichment comparison. The default is FALSE. See references section for related references.

omitCategories
Any labelR entries corresponding to these categories will be ignored. The default ("grey") will ignore unassigned genes in a standard WGCNA network.

outputCorrectedPvalues
If TRUE (default) only p-values that are significant after correcting for multiple comparisons (using Bonferroni method) will be outputted to nameOut. Otherwise the uncorrected p-values will be outputted to the file. Note that both sets of p-values for all comparisons are reported in the returned "pValues" parameter.

useStemCellLists
If TRUE, a pre-made set of stem cell (SC)-derived enrichment lists will be added to any user-defined lists for enrichment comparison. The default is FALSE. See references section for related references.

outputGenes
If TRUE, will output a list of all genes in each returned category, as well as a count of the number of genes in each category. The default is FALSE.

minGenesInCategory
Will omit all significant categories with fewer than minGenesInCategory genes (default is 1).

useBrainRegionMarkers
If TRUE, a pre-made set of enrichment lists for human brain regions will be added to any user-defined lists for enrichment comparison. The default is FALSE. These lists are derived from data from the Allen Human Brain Atlas (http://human.brain-map.org/). See references section for more details.

useImmunePathwayLists
If TRUE, a pre-made set of enrichment lists for immune system pathways will be added to any user-defined lists for enrichment comparison. The default is FALSE. These lists are derived from the lab of Daniel R Saloman. See references section for more details.

usePalazzoloWang
If TRUE, a pre-made set of enrichment lists compiled by Mike Palazzolo and Jim Wang from CHDI will be added to any user-defined lists for enrichment comparison. The default is FALSE. See references section for more details.

Details
User-inputted files for fnIn can be in one of three formats:

1) Text files (must end in ".txt") with one list per file, where the first line is the list descriptor and the remaining lines are gene names corresponding to that list, with one gene per line. For example Ribosome RPS4 RPS8 ...

2) Gene / category files (must be csv files), where the first line is the column headers corresponding to Genes and Lists, and the remaining lines correspond to the genes in each list, for any number of genes and lists. For example: Gene, Category RPS4, Ribosome RPS8, Ribosome ... NDUF1, Mitochondria NDUF3, Mitochondria ... MAPT, AlzheimersDisease PSEN1, Alzheimer's Disease PSEN2, Alzheimer's Disease ...
3) Module membership (kME) table in csv format. Currently, the module assignment is the only thing that is used, so as long as the Gene column is 2nd and the Module column is 3rd, it doesn’t matter what is in the other columns. For example, PSID, Gene, Module, <other columns> <psid>, RPS4, blue, <other columns> <psid>, NDUF1, red, <other columns> <psid>, RPS8, blue, <other columns> <psid>, NDUF3, red, <other columns> <psid>, MAPT, green, <other columns> ...

Value

pValues
A data frame showing, for each comparison, the input category, user defined category, type, the number of overlapping genes and both the uncorrected and Bonferroni corrected p-values for every pair of list overlaps tested.

ovGenes
A list of character vectors corresponding to the overlapping genes for every pair of list overlaps tested. Specific overlaps can be found by typing <variable-Name>$ovGenes$'<labelR> – <comparisonCategory>'. See example below.

sigOverlaps
Identical information that is written to nameOut. A data frame ith columns giving the input category, user defined category, type, and P-values (corrected or uncorrected, depending on outputCorrectedPvalues) corresponding to all significant enrichments.

Author(s)

Jeremy Miller

References


If you have any suggestions for lists to add to this function, please e-mail Jeremy Miller at jeremyinla@gmail.com

References for the pre-defined brain lists (useBrainLists=TRUE, in alphabetical order by category descriptor) are as follows:


DiseaseGenes ==> Probable (C or better rating as of 16 Mar 2011) and possible (all genes in database as of ~2008) genetics-based disease genes from: http://www.alzforum.org/


JAXdiseaseGene ==> Genes where mutations in mouse and/or human are known to cause any disease. WARNING: this list represents an oversimplification of data! This list was created from the Jackson Laboratory: Bult CJ, Eppig JT, Kadin JA, Richardson JE, Blake JA; Mouse Genome Database Group (2008) The Mouse Genome Database (MGD): Mouse biology and model systems. Nucleic Acids Res 36 (database issue):D724-D728.


References for the pre-defined blood atlases (useBloodAtlases=TRUE, in alphabetical order by category descriptor) are as follows:


References for the pre-defined stem cell (SC) lists (useStemCellLists=TRUE, in alphabetical order by category descriptor) are as follows:


References and more information for the pre-defined human brain region lists (useBrainRegionMarkers=TRUE):

HBA ==> Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. (2012) An Anatomically Comprehensive Atlas of the Adult Human Brain Transcriptome. Nature (in press) Three categories of marker genes are presented: 1. globalMarker(top200) = top 200 global marker genes for 22 large brain structures. Genes are ranked based on fold change enrichment (expression in region vs. expression in rest of brain) and the ranks are averaged between brains 2001 and 2002 (humanbrain-map.org). 2. localMarker(top200) = top 200 local marker genes for 90 large brain structures. Same as 1, except fold change is defined as expression in region vs. expression in larger region (format: <region>_IN_<largerRegion>). For example, enrichment in CA1 is relative to other subcompartments of the hippocampus. 3. localMarker(FC>2) = same as #2, but only local marker genes with fold change > 2 in both brains are included. Regions with <10 marker genes are omitted.

More information for the pre-defined immune pathways lists (useImmunePathwayLists=TRUE):

ImmunePathway ==> These lists were created by Brian Modena (a member of Daniel R Salomon’s lab at Scripps Research Institute), with input from Sunil M Kurian and Dr. Salomon, using Ingenuity, WikiPathways and literature search to assemble them. They reflect knowledge-based immune pathways and were in part informed by Dr. Salomon and colleague’s work in expression profiling of biopsies and peripheral blood but not in some highly organized process. These lists are not from any particular publication, but are culled to include only genes of reasonably high confidence.

References for the pre-defined lists from CHDI (usePalazzoloWang=TRUE, in alphabetical order by category descriptor) are as follows:


Kegg NCBI Biosystems ==> Several gene sets from the "Kegg" component of NCBI Biosystems: Geer LY et al 2010 (full citation above).

Palazzolo and Wang ==> These gene sets were compiled from a variety of sources by Mike Palazzolo and Jim Wang at CHDI.

Pathway Interaction Database NCBI Biosystems ==> Several gene sets from the "Pathway Interaction Database" component of NCBI Biosystems: Geer LY et al 2010 (full citation above).


Reactome NCBI Biosystems ==> Several gene sets from the "Reactome" component of NCBI Biosystems: Geer LY et al 2010 (full citation above).

Wiki Pathways NCBI Biosystems ==> Several gene sets from the "Wiki Pathways" component of NCBI Biosystems: Geer LY et al 2010 (full citation above).

Yang ==> These gene sets were compiled from a variety of sources by Mike Palazzolo and Jim Wang at CHDI.

Examples

# Example: first, read in some gene names and split them into categories
data(BrainLists);
listGenes = unique(as.character(BrainLists[,1]))
set.seed(100)
genR = sort(sample(listGenes,2000))
categories = sort(rep(standardColors(10),2000))
categories[sample(1:2000,2000)] = "grey"
write(c("TESTLIST1",geneR[300:400], sep="\n"),"TESTLIST1.txt")
write(c("TESTLIST2",geneR[800:1000],sep="\n"),"TESTLIST2.txt")

# Now run the function!
testResults = userListEnrichment(genR, labelR=categories,
                            fnIn=c("TESTLIST1.txt","TESTLIST2.txt"),
catNmIn=c("TEST1","TEST2"),
nameOut = "testEnrichment.csv",useBrainLists=TRUE, omitCategories ="grey")

# To see a list of all significant enrichments, either open
# the file "testEnrichments.csv" in the current directory, or type:
testResults$signOverlaps

# To see all of the overlapping genes between two categories
#(whether or not the p-value is significant), type
#restResults$ovGenes$<label1R> -- <comparisonCategory>'s. For example:
testResults$ovGenes$"black -- TESTLIST1__TEST1"
testResults$ovGenes$"red -- salmon_M12_Ribosome__HumanMeta"
vectorizeMatrix

**Description**

A convenient function to turn a matrix into a vector of non-redundant components. If the matrix is non-symmetric, returns a vector containing all entries of the matrix. If the matrix is symmetric, only returns the upper triangle and optionally the diagonal.

**Usage**

```r
vectorizeMatrix(M, diag = FALSE)
```

**Arguments**

- `M`: the matrix or data frame to be vectorized.
- `diag`: logical: should the diagonal be included in the output?

**Value**

A vector containing the non-redundant entries of the input matrix.

**Author(s)**

Steve Horvath

vectorTOM

**Description**

This function calculates topological overlap of a small set of vectors with respect to a whole data set.

**Usage**

```r
vectorTOM(
 datExpr,
 vect,
 subtract1 = FALSE,
 blockSize = 2000,
 corFnc = "cor", corOptions = "use = 'p'",
 networkType = "unsigned",
 power = 6,
 verbose = 1, indent = 0)
```
vectorTOM

Arguments

datExpr a data frame containing the expression data of the whole set, with rows corresponding to samples and columns to genes.
vect a single vector or a matrix-like object containing vectors whose topological overlap is to be calculated.
subtractQ logical: should calculation be corrected for self-correlation? Set this to TRUE if vect contains a subset of datExpr.
blockSize maximum block size for correlation calculations. Only important if vect contains a large number of columns.
corFnc character string giving the correlation function to be used for the adjacency calculation. Recommended choices are "cor" and "bicor", but other functions can be used as well.
corOptions character string giving further options to be passed to the correlation function.
networkType character string giving network type. Allowed values are (unique abbreviations of) "unsigned", "signed", "signed hybrid". See adjacency.
power soft-thresholding power for network construction.
verbose integer level of verbosity. Zero means silent, higher values make the output progressively more and more verbose.
indent indentation for diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

Topological overlap can be viewed as the normalized count of shared neighbors encoded in an adjacency matrix. In this case, the adjacency matrix is calculated between the columns of vect and datExpr and the topological overlap of vectors in vect measures the number of shared neighbors in datExpr that vectors of vect share.

Value

A matrix of dimensions n*n, where n is the number of columns in vect.

Author(s)

Peter Langfelder

References


See Also

TOMsimilarity for standard calculation of topological overlap.
verboseBarplot

Barplot with error bars, annotated by Kruskal-Wallis or ANOVA p-value

Description

Produce a barplot with error bars, annotated by Kruskal-Wallis or ANOVA p-value.

Usage

verboseBarplot(x, g,  
  main = "", xlab = NA, ylab = NA,  
  cex = 1, cex.axis = 1.5, cex.lab = 1.5, cex.main = 1.5,  
  color = "grey", numberStandardErrors = 1,  
  KruskalTest = TRUE, AnovaTest = FALSE, two.sided = TRUE,  
  addCellCounts = FALSE, horiz = FALSE, ylim = NULL, ...,  
  addScatterplot = FALSE,  
  pt.cex = 0.8, pch = 21, pt.col = "blue", pt.bg = "skyblue",  
  randomSeed = 31425, jitter = 0.6,  
  pointLabels = NULL,  
  label.cex = 0.8,  
  label.offs = 0.06,  
  adjustYLim = TRUE)

Arguments

x
  numerical or binary vector of data whose group means are to be plotted

xlab
  a factor or a an object coercible to a factor giving the groups whose means are to be calculated.

main
  main title for the plot.

xlab
  label for the x-axis.

ylab
  label for the y-axis.

cex
  character expansion factor for plot annotations.

cex.axis
  character expansion factor for axis annotations.

cex.lab
  character expansion factor for axis labels.

cex.main
  character expansion factor for the main title.

color
  a vector giving the colors of the bars in the barplot.

numberStandardErrors
  size of the error bars in terms of standard errors. See details.

KruskalTest
  logical: should Kruskal-Wallis test be performed? See details.

AnovaTest
  logical: should ANOVA be performed? See details.

two.sided
  logical: should the printed p-value be two-sided? See details.

addCellCounts
  logical: should counts be printed above each bar?
verboseBarplot

horiz logical: should the bars be drawn horizontally?
ylim optional specification of the limits for the y axis. If not given, they will be
determined automatically.
... other parameters to function barplot.
addScatterplot logical: should a scatterplot of the data be overlaid?
pt.cex character expansion factor for the points.
pch shape code for the points.
pt.col color for the points.
pt.bg background color for the points.
randomSeed integer random seed to make plots reproducible.
jitter amount of random jitter to add to the position of the points along the x axis.
pointLabels Optional text labels for the points displayed using the scatterplot. If given,
should be a character vector of the same length as x. See labelPoints.
label.cex Character expansion (size) factor for pointLabels.
label.off Offset for pointLabels, as a fraction of the plot width.
adjustYLim logical: should the limits of the y axis be set so as to accomodate the individual points? The adjustment is only carried out if input ylim is NULL and addScatterplot is TRUE. In particular, if the user supplies ylim, it is not touched.

Details

This function creates a barplot of a numeric variable (input x) across the levels of a grouping variable (input g). The height of the bars equals the mean value of x across the observations with a given level of g. By default, the barplot also shows plus/minus one standard error. If you want only plus one standard error (not minus) choose two-sided=TRUE. But the number of standard errors can be determined with the input numberStandardErrors. For example, if you want a 95% confidence interval around the mean, choose numberStandardErrors=2. If you don’t want any standard errors set numberStandardErrors=-1. The function also outputs the p-value of a Kruskal Wallis test (Fisher test for binary input data), which is a non-parametric multi group comparison test. Alternatively, one can use Analysis of Variance (Anova) to compute a p-value by setting AnovaTest=TRUE. Anova is a generalization of the Student t-test to multiple groups. In case of two groups, the Anova p-value equals the Student t-test p-value. Anova should only be used if x follows a normal distribution. Anova also assumes homoscedasticity (equal variances). The Kruskal Wallis test is often advantageous since it makes no distributional assumptions. Since the Kruskal Wallis test is based on the ranks of x, it is more robust with regard to outliers. All p-values are two-sided.

Value

None.

Author(s)

Steve Horvath, with contributions from Zhijin (Jean) Wu and Peter Langfelder
See Also

barplot

Examples

group = sample(c(1,2),100,replace=TRUE)
height = rnorm(100,mean=group)
par(mfrow=c(2,2))
verboseBarplot(height,group, main="1 SE, Kruskal Test")
verboseBarplot(height,group,numberStandardErrors=2,
               main="2 SE, Kruskal Test")
verboseBarplot(height,group,numberStandardErrors=2,AnovaTest=TRUE,
               main="2 SE, Anova")
verboseBarplot(height,group,numberStandardErrors=2,AnovaTest=TRUE,
               main="2 SE, Anova, only plus SE", two.sided=FALSE)

Description

Plot a boxplot annotated by the Kruskal-Wallis p-value. Uses the function boxplot for the actual
drawing.

Usage

verboseBoxplot(x, g, main = "", xlab = NA, ylab = NA,
cex = 1, cex.axis = 1.5, cex.lab = 1.5, cex.main = 1.5,
notch = TRUE, varwidth = TRUE, ...,
addScatterplot = FALSE,
pt.cex = 0.8, pch = 21, pt.col = "blue", pt.bg = "skyblue",
randomSeed = 31425, jitter = 0.6)

Arguments

x numerical vector of data whose group means are to be plotted

g a factor or a an object coercible to a factor giving the groups that will go into
each box.

main main title for the plot.

xlab label for the x-axis.
verboseIplot

ylab

label for the y-axis.
cex

character expansion factor for plot annotations.
cex.axis

character expansion factor for axis annotations.
cex.lab

character expansion factor for axis labels.
cex.main

character expansion factor for the main title.
notch

logical: should the notches be drawn? See boxplot and boxplot.stats for details.

varwidth

logical: if TRUE, the boxes are drawn with widths proportional to the square-roots of the number of observations in the groups.

... other arguments to the function boxplot. Of note is the argument las that specifies label orientation. Value las=1 will result in horizontal labels (the default), while las=2 will result in vertical labels, useful when the labels are long.

addScatterplot

logical: should a scatterplot of the data be overlaid?
pt.cex

character expansion factor for the points.
pch

shape code for the points.
pt.col

color for the points.
pt.bg

background color for the points.
randomSeed

integer random seed to make plots reproducible.
jitter

amount of random jitter to add to the position of the points along the x axis.

Value

Returns the value returned by the function boxplot.

Author(s)

Steve Horvath, with contributions from Zhijin (Jean) Wu and Peter Langfelder

See Also

boxplot

verboseIplot Scatterplot with density

Description

Produce a scatterplot that shows density with color and is annotated by the correlation, MSE, and regression line.
Usage

verboseIplot(
  x, y,
  xlim = NA, ylim = NA,
  nBinsX = 150, nBinsY = 150,
  ztransf = function(x) {x}, gamma = 1,
  sample = NULL, corFnc = "cor", corOptions = "use = 'p'",
  main = "", xlab = NA, ylab = NA, cex = 1,
  cex.axis = 1.5, cex.lab = 1.5, cex.main = 1.5,
  abline = FALSE, abline.color = 1, abline.lty = 1,
  corLabel = corFnc, ...
)

Arguments

x           numerical vector to be plotted along the x axis.
y           numerical vector to be plotted along the y axis.
xlim        define the range in x axis
ylim        define the range in y axis
nBinsX      number of bins along the x axis
nBinsY      number of bins along the y axis
ztransf     Function to transform the number of counts per pixel, which will be mapped by
             the function in colramp to well defined colors. The user has to make sure that
             the transformed density lies in the range [0,zmax], where zmax is any positive
             number (>=2).
gamma       color correction power
sample      either a number of points to be sampled or a vector of indices input x and y for
            points to be plotted. Useful when the input vectors are large and plotting all
            points is not practical.
corFnc      character string giving the correlation function to annotate the plot.
corOptions  character string giving further options to the correlation function.
main        main title for the plot.
xlab        label for the x-axis.
ylab        label for the y-axis.
cex          character expansion factor for plot annotations.
cex.axis    character expansion factor for axis annotations.
cex.lab     character expansion factor for axis labels.
cex.main    character expansion factor for the main title.
abline      logical: should the linear regression fit line be plotted?
abline.color color specification for the fit line.
abline.lty   line type for the fit line.
corLabel    character string to be used as the label for the correlation value printed in the
             main title.
...          other arguments to the function plot.
Details

Irrespective of the specified correlation function, the MSE is always calculated based on the residuals of a linear model.

Value

If sample above is given, the indices of the plotted points are returned invisibly.

Note

This function is based on verboseScatterplot (Steve Horvath and Peter Langfelder), iplot (Andreas Ruckstuhl, Rene Locher) and greenWhiteRed(Peter Langfelder)

Author(s)

Chaochao Cai, Steve Horvath

See Also

image for more parameters

---

verboseScatterplot  Scatterplot annotated by regression line and p-value

Description

Produce a scatterplot annotated by the correlation, p-value, and regression line.

Usage

verboseScatterplot(x, y,
    sample = NULL,
    corFnc = "cor", corOptions = "use = 'p'",
    main = "", xlab = NA, ylab = NA,
    cex = 1, cex.axis = 1.5, cex.lab = 1.5, cex.main = 1.5,
    abline = FALSE, abline.color = 1, abline.lty = 1,
    corLabel = corFnc,
    displayAsZero = 1e-5,
    col = 1, bg = 0, pch = 1,
    lmFnc = lm,
    plotPriority = NULL,
    ...)
Arguments

- **x**  
  numerical vector to be plotted along the x axis.

- **y**  
  numerical vector to be plotted along the y axis.

- **sample**  
  determines whether x and y should be sampled for plotting, useful to keep the plot manageable when x and y are large vectors. The default NULL value implies no sampling. A single numeric value will be interpreted as the number of points to sample randomly. If a vector is given, it will be interpreted as the indices of the entries in x and y that should be plotted. In either case, the correlation and p value will be determined from the full vectors x and y.

- **corFnc**  
  character string giving the correlation function to annotate the plot.

- **corOptions**  
  character string giving further options to the correlation function.

- **main**  
  main title for the plot.

- **xlab**  
  label for the x-axis.

- **ylab**  
  label for the y-axis.

- **cex**  
  character expansion factor for plot annotations, recycled as necessary.

- **cex.axis**  
  character expansion factor for axis annotations.

- **cex.lab**  
  character expansion factor for axis labels.

- **cex.main**  
  character expansion factor for the main title.

- **abline**  
  logical: should the linear regression fit line be plotted?

- **abline.color**  
  color specification for the fit line.

- **abline.lty**  
  line type for the fit line.

- **corLabel**  
  character string to be used as the label for the correlation value printed in the main title.

- **displayAsZero**  
  Correlations whose absolute value is smaller than this number will be displayed as zero. This can result in a more intuitive display (for example, cor=0 instead of cor=2.6e-17).

- **col**  
  color of the plotted symbols. Recycled as necessary.

- **bg**  
  fill color of the plotted symbols (used for certain symbols). Recycled as necessary.

- **pch**  
  Integer code for plotted symbols (see link{plot.default}). Recycled as necessary.

- **lmFnc**  
  linear model fit function. Used to calculate the linear model fit line if 'abline' is TRUE. For example, robust linear models are implemented in the function rlm.

- **plotPriority**  
  Optional numeric vector of same length as x. Points with higher plot priority will be plotted later, making them more visible if points overlap.

- **...**  
  other arguments to the function plot.

Details

Irrespective of the specified correlation function, the p-value is always calculated for pearson correlation.
Value
If sample above is given, the indices of the plotted points are returned invisibly.

Author(s)
Steve Horvath and Peter Langfelder

See Also
plot.default for standard scatterplots

---

votingLinearPredictor  Voting linear predictor

Description
Predictor based on univariate regression on all or selected given features that pools all predictions using weights derived from the univariate linear models.

Usage
votingLinearPredictor(
  x, y, xtest = NULL,
  classify = FALSE,
  CVfold = 0,
  randomSeed = 12345,
  assocFnc = "cor", assocOptions = "use = 'p'",
  featureWeightPowers = NULL, priorWeights = NULL,
  weighByPrediction = 0,
  nFeatures_hi = NULL, nFeatures.lo = NULL,
  dropUnusedDimensions = TRUE,
  verbose = 2, indent = 0
)

Arguments
x  Training features (predictive variables). Each column corresponds to a feature and each row to an observation.
y  The response variable. Can be a single vector or a matrix with arbitrary many columns. Number of rows (observations) must equal to the number of rows (observations) in x.
xtest  Optional test set data. A matrix of the same number of columns (i.e., features) as x. If test set data are not given, only the prediction on training data will be returned.
classify  Should the response be treated as a categorical variable? Classification really only works with two classes. (The function will run for multiclass problems as well, but the results will be sub-optimal.)
votingLinearPredictor

CVfold
Optional specification of cross-validation fold. If 0 (the default), no cross-validation is performed.

randomSeed
Random seed, used for observation selection for cross-validation. If NULL, the random generator is not reset.

assocFnc
Function to measure association. Usually a measure of correlation, for example Pearson correlation or bicor.

assocOptions
Character string specifying the options to be passed to the association function.

featureWeightPowers
Powers to which to raise the result of assocFnc to obtain weights. Can be a single number or a vector of arbitrary length; the returned value will contain one prediction per power.

priorWeights
Prior weights for the features. If given, must be either (1) a vector of the same length as the number of features (columns in x); (2) a matrix of dimensions length(featureWeightPowers)x(number of features); or (3) array of dimensions (number of response variables)xlength(featureWeightPowers)x(number of features).

weighByPrediction
(Optional) power to downweight features that are not well predicted between training and test sets. See details.

nFeatures.hi
Optional restriction of the number of features to use. If given, this many features with the highest association and lowest association (if nFeatures.lo is not given) will be used for prediction.

nFeatures.lo
Optional restriction of the number of lowest (i.e., most negatively) associated features to use. Only used if nFeatures.hi is also non-NULL.

dropUnusedDimensions
Logical: should unused dimensions be dropped from the result?

verbose
Integer controlling how verbose the diagnostic messages should be. Zero means silent.

indent
Indentation for the diagnostic messages. Zero means no indentation, each unit adds two spaces.

Details

The predictor calculates the association of each (selected) feature with the response and uses the association to calculate the weight of the feature as \( \text{sign}(\text{association}) \times (\text{association})^{\text{featureWeightPower}} \). Optionally, this weight is multiplied by priorWeights. Further, a feature prediction weight can be used to downweigh features that are not well predicted by other features (see below).

For classification, the (continuous) result of the above calculation is turned into ordinal values essentially by rounding.

If features exhibit non-trivial correlations among themselves (such as, for example, in gene expression data), one can attempt to down-weigh features that do not exhibit the same correlation in the test set. This is done by using essentially the same predictor to predict _features_ from all other features in the test data (using the training data to train the feature predictor). Because test features are known, the prediction accuracy can be evaluated. If a feature is predicted badly (meaning the error in the test set is much larger than the error in the cross-validation prediction in training data),
it may mean that its quality in the training or test data is low (for example, due to excessive noise or outliers). Such features can be downweighted using the argument `weighbyprediction`. The extra factor is \( \min(1, (\text{root mean square prediction error in test set})/(\text{root mean square cross-validation prediction error in the training data})^{\text{weighbyprediction}}) \), that is it is never bigger than 1.

**Value**

A list with the following components:

- `predicted`: The back-substitution prediction on the training data. Normally an array of dimensions (number of observations) x (number of response variables) x length(featureWeightPowers), but unused are dropped unless `dropUnusedDimensions = FALSE`.
- `weightBase`: Absolute value of the associations of each feature with each response.
- `variableImportance`: The weight of each feature in the prediction (including the sign).
- `predictedTest`: If input `xtest` is non-`NULL`, the predicted test response, in format analogous to `predicted` above.
- `CVpredicted`: If input `CVfold` is non-zero, cross-validation prediction on the training data.

**Note**

It makes little practical sense to supply neither `xtest` nor `CVfold` since the prediction accuracy on training data will be highly biased.

**Author(s)**

Peter Langfelder

**See Also**

- `bicor` for robust correlation that can be used as an association measure
Index

*Topic cluster
  consensusProjectiveKMeans, 104
  moduleNumber, 231
  projectiveKMeans, 317
*Topic color
  blueWhiteRed, 64
  greenBlackRed, 157
  greenWhiteRed, 158
  labels2colors, 209
  redWhiteGreen, 341
  rgcolors.func, 347
  standardColors, 379
*Topic datasets
  BloodLists, 63
  BrainLists, 65
  BrainRegionMarkers, 65
  ImmunePathwayLists, 187
  PWLists, 327
  SCsLists, 354
*Topic graphics
  verboseIplot, 415
*Topic hplot
  addErrorBars, 9
  addGrid, 9
  addGuideLines, 10
  labeledBarplot, 198
  labeledHeatmap, 199
  plotClusterTreeSamples, 293
  plotColorUnderTree, 295
  plotCor, 297
  plotDendroAndColors, 298
  plotEigengeneNetworks, 301
  plotMat, 303
  plotMpairs, 304
  plotModuleSignificance, 305
  plotNetworkHeatmap, 308
  verboseScatterplot, 417
*Topic misc
  accuracyMeasures, 6
  addTraitToMEs, 11
  adjacency, 12
  adjacency.polyReg, 14
  adjacency.splineReg, 16
  AFcorMI, 18
  alignExpr, 19
  allocateJobs, 20
  allowWGCNAThreads, 21
  automaticNetworkScreening, 22
  automaticNetworkScreeningGS, 23
  BD.getData, 25
  bicovWeights, 30
  binarizeCategoricalColumns, 32
  binarizeCategoricalVariable, 35
  blockSize, 38
  blockwiseConsensusModules, 39
  blockwiseIndividualTOMs, 50
  blockwiseModules, 55
  branchEigengeneDissim, 66
  branchSplit, 68
  branchSplit.dissim, 69
  branchSplitFromStabilityLabels, 70
  checkAdjMat, 71
  checkSets, 72
  chooseOneHubInEachModule, 73
  chooseTopHubInEachModule, 75
  clusterCoeff, 76
  coClustering, 77
  coClustering.permutationTest, 78
  collapseRows, 80
  collapseRowsUsingKME, 85
  colQuantileC, 87
  conformityBasedNetworkConcepts, 88
  conformityDecomposition, 90
  consensusCalculation, 92
  consensusDissTOMandTree, 95
  consensusKME, 97
  consensusMEDissimilarity, 102
  consensusOrderMEs, 103

422
INDEX

consensusRepresentatives, 106
consensusTOM, 109
consensusTreeInputs, 117
convertNumericColumnsToNumeric, 117
cor, 118
corPredictionSuccess, 123
corPValueFisher, 124
corPValueStudent, 124
correlationPreservation, 125
coxRegressionResiduals, 126
cutreeStatic, 127
cutreeStaticColor, 128
displayColors, 129
dynamicMergeCut, 130
exportNetworkToCytoscape, 136
exportNetworkToVisANT, 137
factorizeNonNumericColumns, 138
fixDataStructure, 139
formatLabels, 140
fundamentalNetworkConcepts, 141
GOEnrichmentAnalysis, 143
goodGenes, 147
goodGenesMS, 149
goodSamples, 151
goodSamplesGenes, 152
goodSamplesGenesMS, 154
goodSamplesMS, 155
GTOMdist, 159
hierarchicalConsensusCalculation, 160
hierarchicalConsensusKME, 163
hierarchicalConsensusMEDissimilarity, 170
hierarchicalConsensusModules, 171
hierarchicalConsensusTOM, 179
hierarchicalMergeCloseModules, 183
hubGeneSignificance, 186
imputeByModule, 187
individualTOMs, 188
Inline display of progress, 191
intramodularConnectivity, 193
isMultiData, 194
keepCommonProbes, 195
kMEcomparisonScatterplot, 196
labeledHeatmap.multiPage, 204
list2multiData, 210
lowerTri2matrix, 211
matchLabels, 212
matrixToNetwork, 213
mergeCloseModules, 215
metaAnalysis, 218
metaZfunction, 223
moduleColor.getMEprefix, 225
moduleEigenvalues, 226
moduleMergeUsingKME, 229
modulePreservation, 232
mtd.apply, 237
mtd.mapply, 239
mtd.rbindSelf, 241
mtd.setAttr, 242
mtd.setColnames, 243
mtd.simplify, 244
mtd.subset, 245
multiData, 246
multiData.eigengeneSignificance, 247
multiGSub, 249
multiSetMEs, 250
multiUnion, 253
mutualInfoAdjacency, 254
nearestCentroidPredictor, 257
nearestNeighborConnectivity, 261
nearestNeighborConnectivityMS, 262
networkConcepts, 264
networkScreening, 267
networkScreeningGS, 268
newBlockInformation, 270
newBlockwiseData, 271
newConsensusData, 273
newConsensusTree, 274
newCorrelationOptions, 275
newNetworkOptions, 276
normalizeLabels, 277
nPresent, 278
nSets, 279
numbers2colors, 279
orderBranchesUsingHubGenes, 281
orderMEs, 283
orderMEsByHierarchicalConsensus, 285
overlapTable, 286
overlapTableUsingKME, 287
pickHardThreshold, 289
pickSoftThreshold, 291
plotClusterTreeSamples, 293
INDEX

corpvaluefisher, 124
corpvaluestudent, 124
CorrelationOptions
  (newCorrelationOptions), 275
correlationPreservation, 125
coxRegressionResiduals, 126
cutree, 128, 129, 232
cutreeDynamic, 23, 24, 45, 46, 50, 59, 60, 63, 175, 176, 297, 334, 335, 337–339, 341
cutreeHybrid, 179
cutreeStatic, 127, 128, 129
cutreeStaticColor, 128
disableWGCNAThreads
  (allowWGCNAThreads), 21
displayColors, 129
dist, 13, 49, 193, 194, 295
dynamicMergeCut, 130
disabledBayesLM, 131
enableWGCNAThreads, 235, 292
enableWGCNAThreads (allowWGCNAThreads), 21
exportNetworkToCytoscape, 136
exportNetworkToVisANT, 137, 137
factorizeNonNumericColumns, 138
fisher.test, 286
fixDataStructure, 139
formatLabels, 140, 358
fundamentalNetworkConcepts, 89, 141, 267
glm, 15, 17
GOenrichmentAnalysis, 143
goodGenes, 147, 150, 153, 155, 157
goodGenesMS, 149, 155, 157
goodSamples, 149, 150, 151, 152, 153, 155, 157
goodSamplesGenes, 63, 149, 150, 152, 152, 155, 157, 207, 334
goodSamplesGenesMS, 50, 54, 115, 150, 154, 157, 234, 237, 270, 338
goodSamplesMS, 150, 155, 155
greenBlackRed, 157
greenWhiteRed, 158
gregexpr, 358
grep, 249, 250
grepl, 250
gsub, 250
gTOMdist, 159
hclust, 11, 50, 63, 128, 129, 179, 232, 295, 296, 299, 303
heat.colors, 201, 302
heatmap, 202, 203, 392, 393
hierarchicalBranchEigengeneDissim
  (branchEigengeneDissim), 66
hierarchicalConsensusCalculation, 68, 160, 170, 171, 182, 274, 275, 364
hierarchicalConsensusKME, 163
hierarchicalConsensusMEDissimilarity, 170, 186, 285
hierarchicalConsensusModules, 71, 171, 351, 352
hierarchicalConsensusTOM, 175, 177–179, 179
hierarchicalMergeCloseModules, 183, 324
hist, 308
hubGeneSignificance, 23, 24, 186
image, 298, 304, 347, 417
ImmunePathwayLists, 187
impute.knn, 173, 184, 187–189, 323, 325
imputeByModule, 184, 187
individualTOMs, 181, 182, 188
initProgInd (Inline display of progress), 191
Inline display of progress, 191
intersect, 253, 254
intraModularConnectivity, 193
is.numeric, 35
isMultiData, 194, 240
kappa, 321
keepCommonProbes, 195
kmECmparisonScatterplot, 196
labeledBarplot, 198, 303
labeledHeatmap, 199, 206, 207, 302, 303
labeledHeatmap.multiPage, 204
labelPoints, 207, 413
labels2colors, 178, 209, 280
lapply, 237
layout, 392
length, 25, 272
list2multiData, 210, 247
lm, 132, 321, 344
INDEX

lmRob, 132
load, 44, 59, 114
lowerTri2Matrix, 211
mapply, 239
matchLabels, 312, 286
matrixToNetwork, 213
mean, 313
median, 313
mergeBlockwiseData, 26
mergeBlockwiseData (newBlockwiseData), 271
mergeCloseModules, 48, 50, 61, 63, 130, 177, 179, 215, 336, 337, 340, 341
metaAnalysis, 218
metaZfunction, 223
minWhichMin, 224
model.matrix, 34
moduleColor.getMEprefix, 225
moduleEigengenes, 12, 46, 60, 104, 130, 176, 184, 216, 225, 226, 252, 253, 284, 322, 324, 326, 335, 340
moduleMergeUsingKME, 229
moduleNumber, 231
modulePreservation, 78, 79, 232
mtd.apply, 237, 247
mtd.applyToSubsetData, 239, 247
mtd.applyToSubsetData (mtd.apply), 237
mtd.branchEigengeneDissim (branchEigengeneDissim), 66
mtd.colnames (mtd.setColnames), 243
mtd.mapply, 239, 239, 247
mtd.rbindSelf, 241
mtd.setAttr, 242
mtd.setColnames, 243
mtd.simplify, 244
mtd.subsetData, 245
multiData, 93, 107, 109, 160, 170, 174, 181, 184, 190, 191, 239, 241–244, 246, 246, 285, 323, 326, 351, 355, 356, 362, 363
multiData.eigengeneSignificance, 247
multiData2List, 244, 247
multiData2List (list2multiData), 210
multiGrep (multiGSub), 249
multiGrep (multiGSub), 249
multiGSub, 249
multiIntersect (multiUnion), 253
multiSetMes, 48, 104, 125, 178, 186, 250, 284, 341, 357
multiSub (multiGSub), 249
multiUnion, 253
mutualInfoAdjacency, 18, 254
nearestCentroidPredictor, 257
nearestNeighborConnectivity, 261, 263
nearestNeighborConnectivityMS, 262
networkConcepts, 89, 143, 264
NetworkOptions, 67, 170, 174, 181, 184, 190, 191, 285, 323, 326, 351
NetworkOptions (newNetworkOptions), 276
networkScreening, 23, 24, 267, 269
networkScreeningGS, 24, 268
newBlockInformation, 270
newBlockwiseData, 26, 271
newConsensusOptions, 93, 162, 171, 273, 274, 362, 364
newConsensusTree, 117, 166, 170, 184, 186, 274, 285
ewCorrelationOptions, 275, 277
newNetworkOptions, 276
normalize.quantiles, 47, 94, 95, 115
normalizeLabels, 232, 277
nPresent, 278
ns, 16, 17
nSets, 279
numbers2colors, 64, 158, 279
orderBranchesUsingHubGenes, 281
orderMES, 103, 104, 283
orderMESByHierarchicalConsensus, 285
overlapTable, 213, 286, 288
overlapTableUsingKME, 287
pairs, 305
par, 10, 11, 201, 208, 294, 296, 298, 301, 302, 304, 347
paste, 378
pdf, 303
pickHardThreshold, 289
pickSoftThreshold, 291
plot, 306, 418
plot.default, 209, 419
plot.hclust, 294, 300
plotClusterTreeSamples, 293
plotColorUnderTree, 295, 300
plotCor, 297, 304, 347
INDEX

plotDendroAndColors, 295, 297, 298
plotEigengeneNetworks, 301, 357
plotMat, 298, 303, 347
plotMEpairs, 304
plotModuleSignificance, 305
plotMultiHist, 307
plotNetworkHeatmap, 308
plotOrderedColors (plotColorUnderTree), 295
pmean (pquantile), 312
pmedian (pquantile), 312
pminWhichFromList (pquantile), 312
poly, 15
populationMeansInAdmixture, 309
postscript, 303
pquantile, 87, 312
prepComma, 314
prependZeros, 314
preservationNetworkConnectivity, 315
projectiveKMeans, 61, 106, 317
proportionsInAdmixture, 319
propVarExplained, 321
pruneAndMergeConsensusModules, 322
pruneConsensusModules, 324, 325
PWLists, 327
quantile, 87, 312, 313
qvalue, 327, 329, 333
qvalue.restricted, 329
randIndex, 330
rank, 331, 333
rankPvalue, 98, 100, 165, 168, 219, 220, 330
rbind, 242
rcorr.cens, 222, 381
recutBlockwiseTrees, 333
recutConsensusTrees, 337
redWhiteGreen, 302, 341
reflectBranch (swapTwoBranches), 390
relativeCorPredictionSuccess, 123, 342
removeGreyME, 343
removePrincipalComponents, 344
replaceMissing, 344
returnGeneSetsAsList, 345
rgb, 298, 304, 347
rgcolors.func, 298, 304, 347
rlm, 132, 418
round, 360, 361
rowQuantileC(colQuantileC), 87
sampledBlockwiseModules, 348, 352
sampledHierarchicalConsensusModules,
350, 350
scaleFreeFitIndex, 352
scaleFreePlot, 353
SCSLists, 354
selectBranch (swapTwoBranches), 390
selectFewestConsensusMissing, 355
set.seed, 259
setCorrelationPreservation, 356
shortenStrings, 357
sigmoidAdjacencyFunction, 358
signedKME, 101, 170, 359
signif, 360, 361
signifNumeric, 360
signumAdjacencyFunction, 290, 361
simpleConsensusCalculation, 362, 364
simpleHierarchicalConsensusCalculation,
363
simulateDatExpr, 364, 368, 371, 373–375
simulateDatExprSModesules, 367, 367, 371, 374
simulateEigengeneNetwork, 367, 369, 371, 374
simulateModule, 367, 368, 370, 374, 375
simulateMultiExpr, 367, 371, 371
simulateSmallLayer, 374
sizeGrWindow, 376
softConnectivity, 262, 263, 293, 354, 376
spaste, 378
standardColors, 128, 129, 213, 379
standardScreeningBinaryTrait, 218, 221,
223, 379, 385
standardScreeningCensoredTime, 382, 385
standardScreeningNumericTrait, 218, 221,
223, 384
stderr, 386
stratifiedBarplot, 386
strsplit, 141
strwidth, 141
sub, 249, 250
subsetTOM, 388
svd, 229, 344
swapTwoBranches, 390

t, 398
t.test, 219
table, 7
text, 201, 208, 209
INDEX

TOMdist (TOMsimilarity), 393
TOMplot, 392
TOMsimilarity, 50, 63, 309, 389, 393, 397, 411
TOMsimilarityFromExpr, 191, 394, 395
transposeBigData, 397
TrueTrait, 398

union, 253, 254
unsignedAdjacency, 401
updateProgInd (Inline display of progress), 191
userListEnrichment, 63, 65, 66, 187, 327, 354, 403

vectorizeMatrix, 410
vectorTOM, 410
verboseBarplot, 388, 412
verboseBoxplot, 414
verboseIplot, 415
verboseScatterplot, 417
votingLinearPredictor, 261, 419

WGCNANThreads (allowWGCNAThreads), 21