Package ‘Zelig’

September 23, 2017

License GPL (>= 3)
Title Everyone’s Statistical Software
Description A framework that brings together an abundance of common statistical models found across packages into a unified interface, and provides a common architecture for estimation and interpretation, as well as bridging functions to absorb increasingly more models into the collective library. Zelig allows each individual package, for each statistical model, to be accessed by a common uniformly structured call and set of arguments. Moreover, Zelig automates all the surrounding building blocks of a statistical work-flow--procedures and algorithms that may be essential to one user’s application but which the original package developer did not use in their own research and might not themselves support. These include bootstrapping, jackknifing, and re-weighting of data. In particular, Zelig automatically generates predicted and simulated quantities of interest (such as relative risk ratios, average treatment effects, first differences and predicted and expected values) to interpret and visualize complex models.

URL https://cran.r-project.org/package=Zelig
BugReports https://github.com/IQSS/zelig/issues
Version 5.1-4
Date 2017-09-23
Depends survival
Imports AER, Amelia, coda, dplyr (>= 0.3.0.2), Formula, geepack, jsonlite, sandwich, MASS, MatchIt, maxLik, MCMCpack, methods, quantreg, survey, VGAM
Suggests ei, eiPack, knitr, networkD3, optmatch, rmarkdown, testthat, tidyverse, ZeligChoice, ZeligEI, zeligverse
Collate 'assertions.R' 'model-zelig.R' 'model-timeseries.R'
 'model-ma.R' 'model-ar.R' 'model-arima.R' 'model-weibull.R'
 'model-tobit.R' 'model-bayes.R' 'model-tobit-bayes.R'
 'model-glm.R' 'model-binchoice.R' 'model-probit.R'
 'model-probit-bayes.R' 'model-poisson.R'
'model-poisson-bayes.R' 'model-oprobit-bayes.R'
'model-normal.R' 'model-normal-bayes.R' 'model-mlogit-bayes.R'
'model-logit-bayes.R' 'model-factor-bayes.R'
'model-poisson-gee.R' 'model-normal-gee.R' 'model-gamma-gee.R'
'model-binchoice-gee.R' 'model-probit-gee.R'
'model-logit-gee.R' 'model-relogit.R' 'model-quantile.R'
'model-lognorm.R' 'model-exp.R' 'model-negbinom.R'
'model-ivreg.R' 'model-ls.R' 'utils.R' 'create-json.R'
'datasets.R' 'interface.R' 'model-survey.R'
'model-binchoice-survey.R' 'model-gamma-survey.R'
'model-logit-survey.R' 'model-normal-survey.R'
'model-poisson-survey.R' 'model-probit-survey.R' 'plots.R'
'wrappers.R'

RoxygenNote 6.0.1

NeedsCompilation no

Author Christine Choirat [aut],
Christopher Gandrud [aut, cre],
James Honaker [aut],
Kosuke Imai [aut],
Gary King [aut],
Olivia Lau [aut],
IQSS Harvard University [cph]

Maintainer Christopher Gandrud <zelig.zee@gmail.com>

Repository CRAN

Date/Publication 2017-09-23 14:14:27 UTC

R topics documented:

approval ... 5
ATT ... 6
avg ... 6
bivariate .. 7
ci.plot ... 7
CigarettesSW .. 8
cluster.formula .. 9
coaition .. 9
coaition2 ... 10
coeff,Zelig-method ... 11
coefficients,Zelig-method 11
combine_coef_se ... 12
createJSON ... 13
df.residual,Zelig-method 14
eidat ... 14
fitted,Zelig-method .. 15
free1 .. 15
R topics documented:

free2 ... 17
friendship ... 18
from_zelig_model 19
get_pvalue .. 20
get_qi .. 20
get_se .. 21
grunfeld .. 21
hoff .. 22
homerun ... 22
immigration .. 23
is_length_not_1 24
is_simsrange ... 24
is_simsrange1 ... 25
is_simsx ... 25
is_simsx1 ... 25
is_sims_present 26
is_timeseries .. 26
is_uninitializedField 27
is_varying .. 27
is_zelig ... 28
is_zeligei .. 28
klein ... 29
kmenta .. 29
macro .. 30
MatchIt.url .. 30
median .. 31
mexico ... 31
mi ... 32
mid .. 32
mode ... 33
model_lookup_df 33
names,Zelig-method 34
newpainters ... 34
or_summary .. 35
Perisk .. 35
plot,Zelig,ANY-method 36
predict,Zelig-method 37
qi.plot ... 37
qi_slimmer ... 38
residuals,Zelig-method 39
rocplot ... 39
sanction .. 40
seatshare ... 41
setx ... 41
setx1 .. 43
sim ... 44
simulations.plot 46
sna.ex ... 47
R topics documented:

summary.Zelig-method .. 47
summary.Arima .. 48
SupremeCourt .. 48
swiss ... 49
table.levels .. 49
tobin ... 50
to_zelig ... 51
to_zelig_mi .. 51
turnout ... 52
vcov.Zelig-method ... 53
vcov.gee ... 53
vcov_rq ... 54
voteincome ... 54
Weimar ... 55
zelig ... 56
Zelig-ar-class .. 57
Zelig-arima-class ... 59
Zelig-bayes-class ... 60
Zelig-binchoice-class ... 60
Zelig-binchoice-gee-class ... 61
Zelig-binchoice-survey-class 61
Zelig-class ... 61
Zelig-exp-class .. 63
Zelig-factor-bayes-class ... 65
Zelig-gamma-class ... 68
Zelig-gamma-gee-class .. 69
Zelig-gamma-survey-class ... 71
Zelig-gee-class .. 72
Zelig-glm-class .. 73
Zelig-ivreg-class ... 73
Zelig-logit-bayes-class .. 75
Zelig-logit-class ... 77
Zelig-logit-gee-class .. 79
Zelig-logit-survey-class ... 81
Zelig-lognorm-class .. 82
Zelig-ls-class .. 84
Zelig-ma-class ... 85
Zelig-mlogit-bayes-class .. 87
Zelig-negbin-class ... 89
Zelig-normal-bayes-class .. 90
Zelig-normal-class .. 92
Zelig-normal-gee-class ... 94
Zelig-normal-survey-class .. 96
Zelig-oprobit-bayes-class ... 97
Zelig-poisson-bayes-class .. 98
Zelig-poisson-class ... 100
Zelig-poisson-gee-class ... 102
Zelig-poisson-survey-class 103
approval

U.S. Presidential Approval Data

Description

Usage

```r
data(approval)
```

Format

A table containing 8 variables ("month", "year", "approve", "disapprove", "unsure", "sept.oct.2001", "iraq.war", and "avg.price") and 65 observations.

Source

ICPSR

References

Stuff here
ATT

Compute simulated (sample) average treatment effects on the treated from a Zelig model estimation

Description

Compute simulated (sample) average treatment effects on the treated from a Zelig model estimation

Usage

\[
\text{ATT} (\text{object}, \text{treatment}, \text{treated} = 1, \text{num} = \text{NULL})
\]

Arguments

- **object**: an object of class Zelig
- **treatment**: character string naming the variable that denotes the treatment and non-treated groups.
- **treated**: value of treatment variable indicating treatment
- **num**: number of simulations to run. Default is 1000.

Author(s)

Christopher Gandrud

Examples

```r
library(dplyr)
data(sanction)
z.att <- zelig(num ~ target + coop + mil, model = "poisson",
data = sanction)
ATT(treatment = "mil")
get_qi(qi = "ATT", xvalue = "TE")
```

avg

Compute central tendancy as appropriate to data type

Description

Compute central tendancy as appropriate to data type

Usage

\[
\text{avg} (\text{val})
\]
bivariate

Arguments

val: a vector of values

Value

a mean (if numeric) or a median (if ordered) or mode (otherwise)

bivariate Sample data for bivariate probit regression

Description

Sample data for the bivariate probit regression.

Usage

data(bivariate)

Format

A table containing 6 variables ("y1", "y2", "x1", "x2", "x3", and "x4") and 78 observations.

Source

This is a cleaned and relabelled version of the sanction data set, available in Zelig.

References

ci.plot Method for plotting qi simulations across a range within a variable, with confidence intervals

Description

Method for plotting qi simulations across a range within a variable, with confidence intervals

Usage

ci.plot(obj, qi="ev", var=NULL, ..., main = NULL, sub = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL, legcol="gray20", col=NULL, leg=1, legpos=NULL, ci = c(80, 95, 99.9), discont=NULL)
Arguments

- **obj**: A reference class zelig5 object
- **qi**: a character-string specifying the quantity of interest to plot
- **var**: The variable to be used on the x-axis. Default is the variable across all the chosen values with smallest nonzero variance
- **...**: Parameters to be passed to the ‘truehist’ function which is implicitly called for numeric simulations
- **main**: a character-string specifying the main heading of the plot
- **sub**: a character-string specifying the sub heading of the plot
- **xlab**: a character-string specifying the label for the x-axis
- **ylab**: a character-string specifying the label for the y-axis
- **xlim**: Limits to the x-axis
- **ylim**: Limits to the y-axis
- **legcol**: “legend color”, an valid color used for plotting the line colors in the legend
- **col**: a valid vector of colors of at least length 3 to use to color the confidence intervals
- **leg**: “legend position”, an integer from 1 to 4, specifying the position of the legend. 1 to 4 correspond to “SE”, “SW”, “NW”, and “NE” respectively. Setting to 0 or “n” turns off the legend.
- **legpos**: “legend type”, exact coordinates and sizes for legend. Overrides argument “leg.type”
- **ci**: vector of length three of confidence interval levels to draw.
- **discont**: optional point of discontinuity along the x-axis at which to interrupt the graph

Value

the current graphical parameters. This is subject to change in future implementations of Zelig

Author(s)

James Honaker

CigarettesSW
Cigarette Consumption Panel Data

Description

Cigarette Consumption Panel Data

Format

A data set with 96 observations and 9 variables

Source

cluster.formula

Generate Formulae that Consider Clustering

Description
This method is used internally by the "Zelig" Package to interpret clustering in GEE models.

Usage
cluster.formula(formula, cluster)

Arguments
- formula: a formula object
- cluster: a vector

Value
a formula object describing clustering

coalition
Coalition Dissolution in Parliamentary Democracies

Description
This data set contains survival data on government coalitions in parliamentary democracies (Belgium, Canada, Denmark, Finland, France, Iceland, Ireland, Israel, Italy, Netherlands, Norway, Portugal, Spain, Sweden, and the United Kingdom) for the period 1945-1987. For parsimony, country indicator variables are omitted in the sample data.

Usage
data(coalition)

Format
A table containing 7 variables ("duration", "ciep12", "invest", "fract", "polar", "numst2", "crisis") and 314 observations. For variable descriptions, please refer to King, Alt, Burns and Laver (1990).

Source
ICPSR
References

Gary King, James E. Alt, Nancy Burns, and Michael Laver. ICPSR Publication Related Archive, 1115.

coaition2

Coalition Dissolution in Parliamentary Democracies, Modified Version

Description

This data set contains survival data on government coalitions in parliamentary democracies (Belgium, Canada, Denmark, Finland, France, Iceland, Ireland, Israel, Italy, Netherlands, Norway, Portugal, Spain, Sweden, and the United Kingdom) for the period 1945-1987. Country indicator variables are included in the sample data.

Usage

data(coalition2)

Format

A data frame containing 8 variables ("duration", "ciep12", "invest", "fract", "polar", "numst2", "crisis", "country") and 314 observations. For variable descriptions, please refer to King, Alt, Burns and Laver (1990).

Source

ICPSR

References

Gary King, James E. Alt, Nancy Burns, and Michael Laver. ICPSR Publication Related Archive, 1115.
Description

Method for extracting estimated coefficients from Zelig objects

Usage

```r
## S4 method for signature 'Zelig'
coef(object)
```

Arguments

- `object`: An Object of Class Zelig

coefficients,Zelig-method

Method for extracting estimated coefficients from Zelig objects

Description

Method for extracting estimated coefficients from Zelig objects

Usage

```r
## S4 method for signature 'Zelig'
coefficients(object)
```

Arguments

- `object`: An Object of Class Zelig
combine_coef_se

Combines estimated coefficients and associated statistics from models estimated with multiply imputed data sets or bootstrapped.

Description

Combines estimated coefficients and associated statistics from models estimated with multiply imputed data sets or bootstrapped.

Usage

```r
combine_coef_se(obj, out_type = "matrix", bagging = FALSE, messages = TRUE)
```

Arguments

- `obj`: a zelig object with an estimated model.
- `out_type`: either "matrix" or "list" specifying whether the results should be returned as a matrix or a list.
- `bagging`: logical whether or not to bag the bootstrapped coefficients.
- `messages`: logical whether or not to return messages for what is being returned.

Value

If the model uses multiply imputed or bootstrapped data then a matrix (default) or list of combined coefficients (`coef`), standard errors (`se`), z values (`zvalue`), p-values (`p`) is returned. Rubin’s Rules are used to combine output from multiply imputed data. An error is returned if no imputations were included or there wasn’t bootstrapping. Please use `get_coef`, `get_se`, and `get_pvalue` methods instead in cases where there are no imputations or bootstrap.

Author(s)

Christopher Gandrud and James Honaker

Source

Partially based on `miNmeld` from Amelia.

Examples

```r
set.seed(123)

## Multiple imputation example
# Create fake imputed data
n <- 100
x1 <- runif(n)
x2 <- runif(n)
```
createJSON

Utility function for constructing JSON file that encodes the hierarchy of available statistical models in Zelig

Description

Utility function for construction a JSON file that encodes the hierarchy of available statistical models.

Usage

createJSON(movefile=TRUE)

Arguments

movefile Logical of whether to (TRUE) move the JSON file into path ./inst/JSON or (FALSE) leave in working directory.

Value

Returns TRUE on successful completion of json file

Author(s)

Christine Choirat, Vito D’Orazio, James Honaker
df.residual,Zelig-method

Method for extracting residual degrees-of-freedom from Zelig objects

Description

Method for extracting residual degrees-of-freedom from Zelig objects

Usage

```r
## S4 method for signature 'Zelig'
df.residual(object)
```

Arguments

- `object` An Object of Class Zelig

eidat

Simulation Data for Ecological Inference

Description

This dataframe contains a simulated data set to illustrate the models for ecological inference.

Usage

```r
data(eidat)
```

Format

A table containing 4 variables ("t0", "t1", "x0", "x1") and 10 observations.
fitted.Zelig-method

Method for extracting estimated fitted values from Zelig objects

Description

Method for extracting estimated fitted values from Zelig objects

Usage

```r
## S4 method for signature 'Zelig'
fitted(object, ...)
```

Arguments

- `object`: An Object of Class Zelig
- `...`: Additional parameters to be passed to fitted

free1

Freedom of Speech Data

Description

Selection of individual-level survey data for freedom of speech.

Usage

```r
data(free1)
```

Details

A table with 150 observations and 12 variables.

- `sex1` for men and 0 for women
- `age`: Age of respondent in years
- `educ`: Levels of education, coded as a numeric variable with
 - 1: No formal education
 - 2: Less than primary school education
 - 3: Completed primary school
 - 4: Completed secondary school
 - 5: Completed high school
 - 6: Completed college
 - 7: Completed post-graduate degree
• Self assessment (see below).
• v1-v6 Response to vignettes (see below).

Survey respondents were asked in almost the same language for a self-assessment and for an assessment of several hypothetical persons described by written vignettes. The self assessment (self, in the data set), “How free do you think [name/you] [is/are] to express [him-her/your]self without fear of government reprisal?” was first asked of the survey respondent with respect to him or herself, and then after each of vignette. The possible response categories are:

• 1 Completely free
• 2 Very free
• 3 Moderately free
• 4 Slightly free
• 5 Not free at all

The vignettes, ordered from most free to least free, are:

• vign1[Kay] does not like many of the government’s policies. She frequently publishes her opinion in newspapers, criticizing decisions by officials and calling for change. She sees little reason these actions could lead to government reprisal.
• vign2[Michael] disagrees with many of the government’s policies. Though he knows criticism is frowned upon, he doesn’t believe the government would punish someone for expressing critical views. He makes his opinion known on most issues without regard to who is listening.
• vign3[Bob] has political views at odds with the government. He has heard of people occasionally being arrested for speaking out against the government, and government leaders sometimes make political speeches condemning those who criticize. He sometimes writes letters to newspapers about politics, but he is careful not to use his real name.
• vign4[Connie] does not like the government’s stance on many issues. She has a friend who was arrested for being too openly critical of governmental leaders, and so she avoids voicing her opinions in public places.
• vign5[Vito] disagrees with many of the government’s policies, and is very careful about whom he says this to, reserving his real opinions for family and close friends only. He knows several men who have been taken away by government officials for saying negative things in public.
• vign6[Sonny] lives in fear of being harassed for his political views. Everyone he knows who has spoken out against the government has been arrested or taken away. He never says a word about anything the government does, not even when he is at home alone with his family.

References

WHO’s World Health Survey by Lydia Bendib, Somnath Chatterji, Alena Petrakova, Ritu Sadana, Joshua A. Salomon, Margie Schneider, Bedirhan Ustun, Maria Villanueva

Description
Selection of individual-level survey data for freedom of speech.

Usage
data(free2)

Details
A table with 150 observations and 12 variables.

- `sex1` for men and 0 for women
- `age` age of respondent in years
- `educ` levels of education, coded as a numeric variable with
 - 1 No formal education
 - 2 Less than primary school education
 - 3 Completed primary school
 - 4 Completed secondary school
 - 5 Completed high school
 - 6 Completed college
 - 7 Completed post-graduate degree
- `country` character strings consisting of "Oceana", "Eurasia", and "Eastasia", after Orwell’s *1984*.
- `y` self assessment (see below).
- `v1`-`v6` response to vignettes (see below).

Survey respondents were asked in almost the same language for a self-assessment and for an assessment of several hypothetical persons described by written vignettes. The self-assessment (`self`, in the data set), "How free do you think [name/you] [is/are] to express [him-her/your]self without fear of government reprisal?" was first asked of the survey respondent with respect to him or herself, and then after each of vignette. The possible response categories are:

- 1 Completely free
- 2 Very free
- 3 Moderately free
- 4 Slightly free
- 5 Not free at all

The vignettes, ordered from most free to least free, are:
• vign1[Kay] does not like many of the government’s policies. She frequently publishes her opinion in newspapers, criticizing decisions by officials and calling for change. She sees little reason these actions could lead to government reprisal.

• vign2[Michael] disagrees with many of the government’s policies. Though he knows criticism is frowned upon, he doesn’t believe the government would punish someone for expressing critical views. He makes his opinion known on most issues without regard to who is listening.

• vign3[Bob] has political views at odds with the government. He has heard of people occasionally being arrested for speaking out against the government, and government leaders sometimes make political speeches condemning those who criticize. He sometimes writes letters to newspapers about politics, but he is careful not to use his real name.

• vign4[Connie] does not like the government’s stance on many issues. She has a friend who was arrested for being too openly critical of governmental leaders, and so she avoids voicing her opinions in public places.

• vign5[Vito] disagrees with many of the government’s policies, and is very careful about whom he says this to, reserving his real opinions for family and close friends only. He knows several men who have been taken away by government officials for saying negative things in public.

• vign6[Sonny] lives in fear of being harassed for his political views. Everyone he knows who has spoken out against the government has been arrested or taken away. He never says a word about anything the government does, not even when he is at home alone with his family.

References

WHO’s World Health Survey by Lydia Bendib, Somnath Chatterji, Alena Petrakova, Ritu Sadana, Joshua A. Salomon, Margie Schneider, Bedirhan Ustun, Maria Villanueva

friendship

Simulated Example of Schoolchildren Friendship Network

Description

This data set contains six sociomatrices of simulated data on friendship ties among schoolchildren.

Usage

data(friendship)
from_zelig_model

Format
Each variable in the dataset is a 15 by 15 matrix representing some form of social network tie held by the fictitious children. The matrices are labeled "friends", "advice", "prestige", "authority", "perpower" and "per".
The sociomatrices were combined into the friendship dataset using the format.network.data function from the netglm package by Skyler Cranmer as shown in the example.

Source
fictitious

Examples
Not run:
friendship <- format.network.data(friends, advice, prestige, authority, perpower, per)
End(Not run)

from_zelig_model Extract the original fitted model object from a zelig estimation

Description
Extract the original fitted model object from a zelig estimation

Usage
from_zelig_model(obj)

Arguments
obj a zelig object with an estimated model

Details
Extracts the original fitted model object from a zelig estimation. This can be useful for passing output to non-Zelig post-estimation functions and packages such as texreg and stargazer for creating well-formatted presentation document tables.

Author(s)
Christopher Gandrud

Examples
z5 <- zls$new()
z5$zelig(Fertility ~ Education, data = swiss)
from_zelig_model(z5)
get_pvalue
Extract p-values from a Zelig estimated model

Description
Extract p-values from a Zelig estimated model

Usage
get_pvalue(object)

Arguments
object
an object of class Zelig

Author(s)
Christopher Gandrud

get_qi
Extract quantities of interest from a Zelig simulation

Description
Extract quantities of interest from a Zelig simulation

Usage
get_qi(object, qi = "ev", xvalue = "x", subset = NULL)

Arguments
object
an object of class Zelig
qi
character string with the name of quantity of interest desired: "ev" for expected values, "pv" for predicted values or "fd" for first differences.
xvalue
character string stating which of the set of values of x should be used for getting the quantity of interest.
subset
subset for multiply imputed data (only relevant if multiply imputed data is supplied in the original call.)

Author(s)
Christopher Gandrud
get_se

Extract standard errors from a Zelig estimated model

Description
Extract standard errors from a Zelig estimated model

Usage
get_se(object)

Arguments
object an object of class Zelig

Author(s)
Christopher Gandrud

grunfeld
Simulation Data for model Seemingly Unrelated Regression (sur) that corresponds to method SUR of systemfit

Description
Dataframe contains 20 annual observations from 1935 to 1954 of 7 variables for two firms General Electric and Westinghouse. Columns are Year; Ige and Iw = Gross investment for GE and W, respectively; Fge and Fw=Market value of Firm as of begin of the year; Cge and Cw= Capital stock measure as of begin of the year.

Usage
data(grunfeld)

Format
A table containing 7 variables ("Year", "Ige", "Fge", "Cge", "Iw", "Fw", "Cw") and 20 observations.
hoff

Social Security Expenditure Data

Description

This data set contains annual social security expenditure (as percent of budget lagged by two years), the relative frequency of mentions social justice received in the party’s platform in each year, and whether the president is Republican or Democrat.

Usage

data(hoff)

Format

A table containing 5 variables ("year", "L2SocSec", "Just503D", "Just503R", "RGovDumy") and 36 observations.

Source

ICPSR (replication dataset s1109)

References

homerun

Sample Data on Home Runs Hit By Mark McGwire and Sammy Sosa in 1998.

Description

Game-by-game information for the 1998 season for Mark McGwire and Sammy Sosa. Data are a subset of the dataset provided in Simonoff (1998).

Usage

data(homerun)
immigration

Format

A data frame containing 5 variables ("gameno", "month", "homeruns", "playerstatus", "player") and 326 observations.

- **gameno**: an integer variable denoting the game number
- **month**: a factor variable taking with levels "March" through "September" denoting the month of the game
- **homeruns**: an integer vector denoting the number of homeruns hit in that game for that player
- **playerstatus**: an integer vector equal to "0" if the player played in the game, and "1" if they did not.
- **player**: an integer vector equal to "0" (McGwire) or "1" (Sosa)

Source

References

immigration

Individual Preferences Over Immigration Policy

Description

These five datasets are part of a larger set of 10 multiply imputed data sets describing individual preferences toward immigration policy. Imputation was performed via Amelia.

Format

Source

National Election Survey

References

is_length_not_1
Check if an object has a length greater than 1

Description
Check if an object has a length greater than 1

Usage
is_length_not_1(x, msg = "Length is 1.", fail = TRUE)

Arguments
x an object
msg character string with the error message to return if fail = TRUE.
fail logical whether to return an error if length is not greater than 1.

is_simsrange
Check if simulations for a range of fitted values are present in sim.out

Description
Check if simulations for a range of fitted values are present in sim.out

Usage
is_simsrange(x, fail = TRUE)

Arguments
x a sim.out method
fail logical whether to return an error if simulation range is not present.
is_simsrange1

Check if simulations for a range1 of fitted values are present in sim.out

Description
Check if simulations for a range1 of fitted values are present in sim.out

Usage
is_simsrange1(x, fail = TRUE)

Arguments
x
a sim.out method
fail
logical whether to return an error if simulation range is not present.

is_simsx

Check if simulations for individual values are present in sim.out

Description
Check if simulations for individual values are present in sim.out

Usage
is_simsx(x, fail = TRUE)

Arguments
x
a sim.out method
fail
logical whether to return an error if simulation range is not present.

is_simsx1

Check if simulations for individual values for x1 are present in sim.out

Description
Check if simulations for individual values for x1 are present in sim.out

Usage
is_simsx1(x, fail = TRUE)

Arguments
x
a sim.out method
fail
logical whether to return an error if simulation range is not present.
is_sims_present Check if any simulations are present in sim.out

Description

Check if any simulations are present in sim.out

Usage

is_sims_present(x, fail = TRUE)

Arguments

x a sim.out method
fail logical whether to return an error if no simulations are present.

is_timeseries Check if a zelig object contains a time series model

Description

Check if a zelig object contains a time series model

Usage

is_timeseries(x, msg = "Not a timeseries object.", fail = FALSE)

Arguments

x a zelig object
msg character string with the error message to return if fail = TRUE.
fail logical whether to return an error if x is not a timeseries.
is_uninitializedField
Check if uninitializedField

Description

Check if uninitializedField

Usage

```r
is_uninitializedField(x, msg = "Zelig model has not been estimated.", fail = TRUE)
```

Arguments

- `x` a zelig.out method
- `msg` character string with the error message to return if `fail = TRUE`.
- `fail` logical whether to return an error if `x` uninitialized.

is_varying
Check if the values in a vector vary

Description

Check if the values in a vector vary

Usage

```r
is_varying(x, msg = "Vector does not vary.", fail = TRUE)
```

Arguments

- `x` a vector
- `msg` character string with the error message to return if `fail = TRUE`.
- `fail` logical whether to return an error if `x` does not vary.
is_zelig
Check if is a zelig object

Description

Check if is a zelig object

Usage

```r
is_zelig(x, fail = TRUE)
```

Arguments

- `x` an object
- `fail` logical whether to return an error if `x` is not a Zelig object.

is_zeligei
Check if an object was created with ZeligEI

Description

Check if an object was created with ZeligEI

Usage

```r
is_zeligei(x, msg = "Function is not relevant for ZeligEI objects.", fail = TRUE)
```

Arguments

- `x` a zelig object
- `msg` character string with the error message to return if `fail` = `TRUE`
- `fail` logical whether to return an error if `x` is not a timeseries.
klein

Simulation Data for model Two-Stage Least Square (twosls) that corresponds to method 2SLS of systemfit

Description

Dataframe contains annual observations of US economy from 1920 to 1940. The columns are, Year, C=Consumption, P=Corporate profits, P1=Previous year corporate profit, Wtot=Total wage, Wp=Private wage bill, Wg=Government wage bill, I=Investment, K1=Previous year capital stock, X=GNP, G=Government spending, T=Taxes, X1=Previous year GNP, Tm=Year-1931.

Usage

data(klein)

Format

Source

http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm

kmenta

Simulation Data for model Three-Stage Least Square (threesls) that corresponds to method 3SLS of systemfit

Description

Dataframe contains 20 annual observations of a supply/demand model with 5 variables. Columns are q=Food consumption per capita, p=Ratio of food price to general consumer prices, d=Disposable income in constant dollars, f=Ratio of preceding year’s prices received by farmers to general consumer prices, a=Time index.

Usage

data(kmenta)

Format

A table containing 5 variables ("q", "p", "d", "f","a") and 20 observations.
Macroeconomic Data

Description

Selected macroeconomic indicators for Austria, Belgium, Canada, Denmark, Finland, France, Italy, Japan, the Netherlands, Norway, Sweden, the United Kingdom, the United States, and West Germany for the period 1966-1990.

Usage

data(macro)

Format

A table containing 6 variables ("country", "year", "gdp", "unem", "capmob", and "trade") and 350 observations.

Source

ICPSR

References

King, Gary, Michael Tomz and Jason Wittenberg. ICPSR Publication Related Archive, 1225.

Table of links for Zelig

Description

Table of links for help.zelig for the companion MatchIt package.
Median

Compute the Statistical Median of a Vector

Description

Compute the Statistical Median of a Vector

Usage

Median(x, na.rm = NULL)

Arguments

- **x**: a vector of numeric or ordered values
- **na.rm**: ignored

Value

the median of the vector

Author(s)

Matt Owen

mexico

Voting Data from the 1988 Mexican Presidential Election

Description

This dataset contains voting data for the 1988 Mexican presidential election.

Usage

data(mexico)

Format

A table containing 33 variables and 1,359 observations.

Source

ICPSR
References

King, Tomz and Wittenberg. ICPSR Publication Related Archive, 1255.

mi

Enables backwards compatibility for preparing non-amelia imputed data sets for zelig.

Description

See `to_zelig_mi`

Usage

mi(...)

Arguments

... a set of data.frame's

Value

an mi object composed of a list of data frames.

mid

Militarized Interstate Disputes

Description

A small sample from the militarized interstate disputes (MID) database.

Usage

data(mid)

Format

A table containing 6 variables ("conflict", "major", "contig", "power", "maxdem", "mindem", and "years") and 3,126 observations. For full variable descriptions, please see King and Zeng, 2001.

Source

Militarized Interstate Disputes database
Mode

References

Mode

Compute the Statistical Mode of a Vector

Description

Compute the Statistical Mode of a Vector

Usage

Mode(x)

Arguments

x a vector of numeric, factor, or ordered values

Value

the statistical mode of the vector. If more than one mode exists, the last one in the factor order is arbitrarily chosen (by design)

Author(s)

Christopher Gandrud and Matt Owen

model_lookup_df

Instructions for how to convert non-Zelig fitted model objects to Zelig. Used in to_zelig

Description

Instructions for how to convert non-Zelig fitted model objects to Zelig. Used in to_zelig

Usage

model_lookup_df

Format

An object of class data.frame with 9 rows and 4 columns.
Description

Names method for Zelig objects

Usage

```r
## S4 method for signature 'Zelig'
names(x)
```

Arguments

- `x` An Object of Class Zelig

newpainters

The Discretized Painter's Data of de Piles

Description

The original painters data contain the subjective assessment, on a 0 to 20 integer scale, of 54 classical painters. The newpainters data discretizes the subjective assessment by quartiles with thresholds 25%, 50%, 75%. The painters were assessed on four characteristics: composition, drawing, colour and expression. The data is due to the Eighteenth century art critic, de Piles.

Usage

```r
data(newpainters)
```

Format

A table containing 5 variables ("Composition", "Drawing", "Colour", "Expression", and "School") and 54 observations.

Source

References

or_summary

Find odds ratios for coefficients and standard errors for glm.summary class objects

Usage

```
or_summary(obj, label_mod_coef = "(OR)", label_mod_se = "(OR)"
```

Arguments

- `obj` a glm.summary class object
- `label_mod_coef` character string for how to modify the coefficient label.
- `label_mod_se` character string for how to modify the standard error label.

PERisk

Political Economic Risk Data from 62 Countries in 1987

Description

Political Economic Risk Data from 62 Countries in 1987.

Usage

```
data(PERisk)
```

Format

A data frame with 62 observations on the following 6 variables. All data points are from 1987. See Quinn (2004) for more details.

- `country`: a factor with levels 'Argentina' 'Australia' 'Austria' 'Bangladesh' 'Belgium' 'Bolivia' 'Botswana' 'Brazil' 'Burma' 'Cameroon' 'Canada' 'Chile' 'Colombia' 'Congo-Kinshasa' 'Costa Rica' 'Cote d'Ivoire' 'Denmark' 'Dominican Republic' 'Ecuador' 'Finland' 'Gambia, The' 'Ghana' 'Greece' 'Hungary' 'India' 'Indonesia' 'Iran' 'Ireland' 'Israel' 'Italy' 'Japan' 'Kenya' 'Korea, South' 'Malawi' 'Malaysia' 'Mexico' 'Morocco' 'New Zealand' 'Nigeria' 'Norway' 'Papua New Guinea' 'Paraguay' 'Philippines' 'Poland' 'Portugal' 'Sierra Leone' 'Singapore' 'South Africa' 'Spain' 'Sri Lanka' 'Sweden' 'Switzerland' 'Syria' 'Thailand' 'Togo' 'Tunisia' 'Turkey' 'United Kingdom' 'Uruguay' 'Venezuela' 'Zambia' 'Zimbabwe'

- `courts`: an ordered factor with levels '0' < '1'. 'courts' is an indicator of whether the country in question is judged to have an independent judiciary. From Henisz (2002).
barb2: a numeric vector giving the natural log of the black market premium in each country. The black market premium is coded as the black market exchange rate (local currency per dollar) divided by the official exchange rate minus 1. From Marshall, Gurr, and Harff (2002).

prsexp2: an ordered factor with levels '0' < '1' < '2' < '3' < '4' < '5', giving the lack of expropriation risk. From Marshall, Gurr, and Harff (2002).

prscorr2: an ordered factor with levels '0' < '1' < '2' < '3' < '4' < '5', measuring the lack of corruption. From Marshall, Gurr, and Harff (2002).

Source

References

predict.Zelig-method Method for getting predicted values from Zelig objects

Description
Method for getting predicted values from Zelig objects

Usage
S4 method for signature 'Zelig'
predict(object, ...)

Arguments
- object: An Object of Class Zelig
- ...: Additional parameters to be passed to predict

qi.plot Default Plot Design For Zelig Model QI's

Description
Default Plot Design For Zelig Model QI's

Usage
qi.plot(obj, ...)

Arguments
- obj: A reference class zelig5 object
- ...: Parameters to be passed to the ‘truehist’ function which is implicitly called for numeric simulations

Author(s)
James Honaker with panel layouts from Matt Owen
qi.slimmer

Find the median and a central interval of simulated quantity of interest distributions

Description

Find the median and a central interval of simulated quantity of interest distributions

Usage

qi.slimmer(df, qi_type = "ev", ci = 0.95)

Arguments

df a tidy-formatted data frame of simulated quantities of interest created by zelig_qi_to_df.
qi_type character string either ev or pv for returning the central intervals for the expected value or predicted value, respectively.
 ci numeric. The central interval to return, expressed on the (0, 100] or the equivalent [0, 1] interval.

Details

A tidy-formatted data frame with the following columns:

• The values fitted with setx
• qi_ci_min: the minimum value of the central interval specified with ci
• qi_ci_median: the median of the simulated quantity of interest distribution
• qi_ci_max: the maximum value of the central interval specified with ci

Author(s)

Christopher Gandrud

See Also

zelig_qi_to_df

Examples

library(dplyr)
qi.central.interval <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "ls") %>%
 setx(Petal.Length = 2:4, Species = "setosa") %>%
 sim() %>%
 zelig_qi_to_df() %>%
 qi.slimmer()
residuals,Zelig-method

Method for extracting residuals from Zelig objects

Description
Method for extracting residuals from Zelig objects

Usage
```r
## S4 method for signature 'Zelig'
residuals(object)
```

Arguments
- `object`: An Object of Class Zelig

rocplot

Receiver Operator Characteristic Plots

Description
The `rocplot` command generates a receiver operator characteristic plot to compare the in-sample (default) or out-of-sample fit for two logit or probit regressions.

Usage
```r
rocplot(z1, z2, 
cutoff = seq(from=0, to=1, length=100), lty1="solid", 
lty2="dashed", lwd1=par("lwd"), lwd2=par("lwd"), 
col1=par("col"), col2=par("col"), 
main="ROC Curve", 
xlim = "Proportion of 1's Correctly Predicted", 
ylim="Proportion of 0's Correctly Predicted", 
plot = TRUE, 
```}

Arguments
- `z1`: first model
- `z2`: second model
- `cutoff`: A vector of cut-off values between 0 and 1, at which to evaluate the proportion of 0s and 1s correctly predicted by the first and second model. By default, this is 100 increments between 0 and 1 inclusive
\begin{verbatim}
 lty1 the line type of the first model (defaults to 'line')
 lty2 the line type of the second model (defaults to 'dashed')
 lwd1 the line width of the first model (defaults to 1)
 lwd2 the line width of the second model (defaults to 1)
 col1 the color of the first model (defaults to 'black')
 col2 the color of the second model (defaults to 'black')
 main a title for the plot (defaults to "ROC Curve")
 xlab a label for the X-axis
 ylab a label for the Y-axis
 plot whether to generate a plot to the selected device

 ... additional parameters to be passed to the plot
\end{verbatim}

\textbf{Value}

if plot is TRUE, rocplot simply generates a plot. Otherwise, a list with the following is produced:

\begin{verbatim}
 roc1 a matrix containing a vector of x-coordinates and y-coordinates corresponding
to the number of ones and zeros correctly predicted for the first model.
 roc2 a matrix containing a vector of x-coordinates and y-coordinates corresponding
to the number of ones and zeros correctly predicted for the second model.
 area1 the area under the first ROC curve, calculated using Reimann sums.
 area2 the area under the second ROC curve, calculated using Reimann sums.
\end{verbatim}

\textbf{sanction} \hspace{1cm} \textit{Multilateral Economic Sanctions}

\textbf{Description}

Data on bilateral sanctions behavior for selected years during the general period 1939-1983. This data contains errors that have since been corrected. Please contact Lisa Martin before using this data for publication.

\textbf{Usage}

\begin{verbatim}
data(sanction)
\end{verbatim}

\textbf{Format}

A table containing 8 variables ("mil", "coop", "target", "import", "export", "cost", "num", and "ncost") and 78 observations. For full variable description, see Martin, 1992.

\textbf{Source}

Martin, 1992
References

seatshare
Left Party Seat Share in 11 OECD Countries

Description

This data set contains time-series data of the seat shares in the lower legislative house of left leaning parties over time, as well as the level of unemployment. Data follows the style used in Hibbs (1977).

Usage

```r
data(seatshare)
```

Format

A table containing N variables ("country","year","unemp","leftseat") and 384 observations split across 11 countries.

Source

OECD data and Mackie and Rose (1991), extended to further years.

References

setx
Setting Explanatory Variable Values

Description

The `setx` function uses the variables identified in the formula generated by `zelig` and sets the values of the explanatory variables to the selected values. Use `setx` after `zelig` and before `sim` to simulate quantities of interest.

Usage

```r
setx(obj, fn = NULL, data = NULL, cond = FALSE, ...)
```
Arguments

obj output object from `zelig`

fn a list of functions to apply to the data frame

data a new data frame used to set the values of explanatory variables. If `data = NULL` (the default), the data frame called in `zelig` is used

cond a logical value indicating whether unconditional (default) or conditional (choose `cond = TRUE`) prediction should be performed. If you choose `cond = TRUE`, `setx` will coerce `fn = NULL` and ignore the additional arguments in ... If `cond = TRUE` and `data = NULL`, `setx` will prompt you for a data frame.

... user-defined values of specific variables for overwriting the default values set by the function `fn`. For example, adding `var1 = mean(data$var1)` or `x1 = 12` explicitly sets the value of `x1` to 12. In addition, you may specify one explanatory variable as a range of values, creating one observation for every unique value in the range of values

Details

This documentation describes the `setx` Zelig 4 compatibility wrapper function.

Value

The output is returned in a field to the Zelig object. For unconditional prediction, `x.out` is a model matrix based on the specified values for the explanatory variables. For multiple analyses (i.e., when choosing the `by` option in `zelig`, `setx` returns the selected values calculated over the entire data frame. If you wish to calculate values over just one subset of the data frame, the 5th subset for example, you may use: `x.out <- setx(z.out[[5]])`

Author(s)

Matt Owen, Olivia Lau and Kosuke Imai

See Also

The full Zelig manual may be accessed online at http://docs.zeligproject.org/articles/

Examples

```r
# Unconditional prediction:
data(turnout)
z.out <- zelig(vote ~ race + educate, model = 'logit', data = turnout)
x.out <- setx(z.out)
s.out <- sim(z.out, x = x.out)
```
setx1

Setting Explanatory Variable Values for First Differences

Description

This documentation describes the setx1 Zelig 4 compatibility wrapper function. The wrapper is primarily useful for setting fitted values for creating first differences in piped workflows.

Usage

setx1(obj, fn = NULL, data = NULL, cond = FALSE, ...)

Arguments

obj output object from zelig
fn a list of functions to apply to the data frame
data a new data frame used to set the values of explanatory variables. If data = NULL (the default), the data frame called in zelig is used
cond a logical value indicating whether unconditional (default) or conditional (choose cond = TRUE) prediction should be performed. If you choose cond = TRUE, setx1 will coerce fn = NULL and ignore the additional arguments in If cond = TRUE and data = NULL, setx1 will prompt you for a data frame.

... user-defined values of specific variables for overwriting the default values set by the function fn. For example, adding var1 = mean(data$var1) or x1 = 12 explicitly sets the value of x1 to 12. In addition, you may specify one explanatory variable as a range of values, creating one observation for every unique value in the range of values

Value

The output is returned in a field to the Zelig object. For unconditional prediction, x.out is a model matrix based on the specified values for the explanatory variables. For multiple analyses (i.e., when choosing the by option in zelig, setx1 returns the selected values calculated over the entire data frame. If you wish to calculate values over just one subset of the data frame, the 5th subset for example, you may use: x.out <- setx(z.out[[5]])

Author(s)

Christopher Gandrud, Matt Owen, Olivia Lau, Kosuke Imai

See Also

The full Zelig manual may be accessed online at http://docs.zeligproject.org/articles/
Examples

library(dplyr) # contains pipe operator %>%
data(turnout)

plot first differences
zelig(Fertility ~ Education, data = swiss, model = 'ls') %>%
 setx(z4, Education = 10) %>%
 setx1(z4, Education = 30) %>%
 sim() %>%
 plot()

sim

Generic Method for Computing and Organizing Simulated Quantities of Interest

Description

Simulate quantities of interest from the estimated model output from `zelig()` given specified values of explanatory variables established in `setx()`. For classical maximum likelihood models, `sim()` uses asymptotic normal approximation to the log-likelihood. For Bayesian models, Zelig simulates quantities of interest from the posterior density, whenever possible. For robust Bayesian models, simulations are drawn from the identified class of Bayesian posteriors. Alternatively, you may generate quantities of interest using bootstrapped parameters.

Usage

```r
sim(obj, x, x1, y = NULL, num = 1000, bootstrap = F, bootfn = NULL,
cond.data = NULL, ...)
```

Arguments

- `obj` output object from `zelig`
- `x` values of explanatory variables used for simulation, generated by `setx`. Not if omitted, then `sim` will look for values in the reference class object
- `x1` optional values of explanatory variables (generated by a second call of `setx`) particular computations of quantities of interest
- `y` a parameter reserved for the computation of particular quantities of interest (average treatment effects). Few models currently support this parameter
- `num` an integer specifying the number of simulations to compute
- `bootstrap` currently unsupported
- `bootfn` currently unsupported
- `cond.data` currently unsupported
- `...` arguments reserved future versions of Zelig
Details

This documentation describes the `sim` Zelig 4 compatibility wrapper function.

Value

The output stored in `s.out` varies by model. Use the `names` function to view the output stored in `s.out`. Common elements include:

- **x**: the `setx` values for the explanatory variables, used to calculate the quantities of interest (expected values, predicted values, etc.).
- **x1**: the optional `setx` object used to simulate first differences, and other model-specific quantities of interest, such as risk-ratios.
- **call**: the options selected for `sim`, used to replicate quantities of interest.
- **zelig.call**: the original function and options for `zelig`, used to replicate analyses.
- **num**: the number of simulations requested.
- **par**: the parameters (coefficients, and additional model-specific parameters). You may wish to use the same set of simulated parameters to calculate quantities of interest rather than simulating another set.

- **qi$ev**: simulations of the expected values given the model and `x`.
- **qi$pr**: simulations of the predicted values given by the fitted values.
- **qi$fd**: simulations of the first differences (or risk difference for binary models) for the given `x` and `x1`. The difference is calculated by subtracting the expected values given `x` from the expected values given `x1`. (If do not specify `x1`, you will not get first differences or risk ratios.)
- **qi$rr**: simulations of the risk ratios for binary and multinomial models. See specific models for details.
- **qi$ate.ev**: simulations of the average expected treatment effect for the treatment group, using conditional prediction. Let t_i be a binary explanatory variable defining the treatment ($t_i = 1$) and control ($t_i = 0$) groups. Then the average expected treatment effect for the treatment group is

$$ \frac{1}{n} \sum_{i=1}^{n} [Y_i(t_i = 1) - E[Y_i(t_i = 0)] \mid t_i = 1], $$

where $Y_i(t_i = 1)$ is the value of the dependent variable for observation i in the treatment group. Variation in the simulations are due to uncertainty in simulating $E[Y_i(t_i = 0)]$, the counterfactual expected value of Y_i for observations in the treatment group, under the assumption that everything stays the same except that the treatment indicator is switched to $t_i = 0$.

- **qi$ate.pr**: simulations of the average predicted treatment effect for the treatment group, using conditional prediction. Let t_i be a binary explanatory variable defining the treatment ($t_i = 1$) and control ($t_i = 0$) groups. Then the average predicted treatment effect for the treatment group is

$$ \frac{1}{n} \sum_{i=1}^{n} [Y_i(t_i = 1) - \hat{Y}_i(t_i = 0) \mid t_i = 1], $$
where \(Y_i(t_i = 1) \) is the value of the dependent variable for observation \(i \) in the treatment group. Variation in the simulations are due to uncertainty in simulating \(\hat{Y}_i(t_i = 0) \), the counterfactual predicted value of \(Y_i \) for observations in the treatment group, under the assumption that everything stays the same except that the treatment indicator is switched to \(t_i = 0 \).

Author(s)

Christopher Gandrud, Matt Owen, Olivia Lau and Kosuke Imai

simulations.plot

Plot Quantities of Interest in a Zelig-fashion

Description

Various graph generation for different common types of simulated results from Zelig

Usage

```r
simulations.plot(y, y1=NULL, xlab="", ylab="", main="", col=NULL, line.col=NULL, axisnames=TRUE)
```

Arguments

- `y`: A matrix or vector of simulated results generated by Zelig, to be graphed.
- `y1`: For comparison of two sets of simulated results at different choices of covariates, this should be an object of the same type and dimension as `y`. If no comparison is to be made, this should be `NULL`.
- `xlab`: Label for the x-axis.
- `ylab`: Label for the y-axis.
- `main`: Main plot title.
- `col`: A vector of colors. Colors will be used in turn as the graph is built for main plot objects. For nominal/categorical data, this colors renders as the bar color, while for numeric data it renders as the background color.
- `line.col`: A vector of colors. Colors will be used in turn as the graph is built for line color shading of plot objects.
- `axisnames`: A character-vector, specifying the names of the axes

Value

`nothing`

Author(s)

James Honaker
Simulated Example of Social Network Data

Description
This data set contains five sociomatrices of simulated data social network data.

Usage
data(sna.ex)

Format
Each variable in the dataset is a 25 by 25 matrix of simulated social network data. The matrices are labeled "Var1", "Var2", "Var3", "Var4", and "Var5".

Source
fictitious

summary,Zelig-method Summary method for Zelig objects

Description
Summary method for Zelig objects

Usage
S4 method for signature 'Zelig'
summary(object, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>An Object of Class Zelig</td>
</tr>
<tr>
<td>...</td>
<td>Additional parameters to be passed to summary</td>
</tr>
</tbody>
</table>
summary.Arima

Summary of an object of class Arima

Description

Summary of an object of class Arima

Usage

```r
# S3 method for class 'Arima'
summary(object, ...)
```

Arguments

- `object`: An object of class Arima
- `...`: Additional parameters

Value

The original object

SupremeCourt

U.S. Supreme Court Vote Matrix

Description

This dataframe contains a matrix votes cast by U.S. Supreme Court justices in all cases in the 2000 term.

Usage

```r
data(SupremeCourt)
```

Format

The dataframe has contains data for justices Rehnquist, Stevens, O'Connor, Scalia, Kennedy, Souter, Thomas, Ginsburg, and Breyer for the 2000 term of the U.S. Supreme Court. It contains data from 43 non-unanimous cases. The votes are coded liberal (1) and conservative (0) using the protocol of Spaeth (2003). The unit of analysis is the case citation (ANALU=0). We are concerned with formally decided cases issued with written opinions, after full oral argument and cases decided by an equally divided vote (DECTYPE=1,5,6,7).

Source

Description

Standardized fertility measure and socio-economic indicators for each of 47 French-speaking provinces of Switzerland at about 1888.

Usage

data(swiss)

Format

A data frame with 47 observations on 6 variables, each of which is in percent, i.e., in [0,100].

All variables but 'Fert' give proportions of the population.

Source

Project "16P5", pages 549-551 in

indicating their source as "Data used by permission of Franice van de Walle. Office of Population Research, Princeton University, 1976. Unpublished data assembled under NICHD contract number No 1-HD-O-2077."

References

table.levels

Create a table, but ensure that the correct columns exist. In particular, this allows for entries with zero as a value, which is not the default for standard tables.

Description

Create a table, but ensure that the correct columns exist. In particular, this allows for entries with zero as a value, which is not the default for standard tables.
Usage
data(tobin)

Format
A data frame with 20 observations on the following 3 variables.
durable: Durable goods purchase
age: Age in years
quant: Liquidity ratio (x 1000)

Source
to_zelig

Coerce a non-Zelig fitted model object to a Zelig class object

Description

Coerce a non-Zelig fitted model object to a Zelig class object

Usage

to_zelig(obj)

Arguments

obj a fitted model object fitted using lm and many using glm. Note: more intended in future Zelig releases.

Author(s)

Christopher Gandrud and Ista Zhan

Examples

library(dplyr)
lm.out <- lm(Fertility ~ Education, data = swiss)

z.out <- to_zelig(lm.out)

to_zelig called from within setx
setx(z.out) %>% sim() %>% plot()

to_zelig_mi

Bundle Multiply Imputed Data Sets into an Object for Zelig

Description

This object prepares multiply imputed data sets so they can be used by zelig.

Usage

to_zelig_mi(...)

Arguments

... a set of data.frame's or a single list of data.frame's
Value

an mi object composed of a list of data frames.

Note

This function creates a list of data.frame objects, which resembles the storage of imputed data sets in the amelia object.

Author(s)

Matt Owen, James Honaker, and Christopher Gandrud

Examples

```r
# create datasets
n <- 100
x1 <- runif(n)
x2 <- runif(n)
y <- rnorm(n)
data.1 <- data.frame(y = y, x = x1)
data.2 <- data.frame(y = y, x = x2)

# merge datasets into one object as if imputed datasets
mi.out <- to_zelig_mi(data.1, data.2)

# pass object in place of data argument
z.out <- zelig(y ~ x, model = "ls", data = mi.out)
```

turnout

Turnout Data Set from the National Election Survey

Description

This data set contains individual-level turnout data. It pools several American National Election Surveys conducted during the 1992 presidential election year. Only the first 2,000 observations (from a total of 15,837 observations) are included in the sample data.

Usage

data(turnout)

Format

A table containing 5 variables ("race", "age", "educate", "income", and "vote") and 2,000 observations.
vcov.Zelig-method

Source
National Election Survey

References

vcov.Zelig-method

Variance-covariance method for Zelig objects

Description
Variance-covariance method for Zelig objects

Usage
```
## S4 method for signature 'Zelig'
vcov(object)
```

Arguments
- **object** An Object of Class Zelig

vcov_gee

Find vcov for GEE models

Description
Find vcov for GEE models

Usage
```
vcov_gee(obj)
```

Arguments
- **obj** a geeglm class object.
vcov_rq

Find vcov for quantile regression models

Description
Find vcov for quantile regression models

Usage
vcov_rq(obj)

Arguments
- obj a rq class object.

voteincome

Sample Turnout and Demographic Data from the 2000 Current Population Survey

Description
This data set contains turnout and demographic data from a sample of respondents to the 2000 Current Population Survey (CPS). The states represented are South Carolina and Arkansas. The data represent only a sample and results from this example should not be used in publication.

Usage
data(voteincome)

Format
A data frame containing 7 variables ("state", "year", "vote", "income", "education", "age", "female") and 1500 observations.
- state a factor variable with levels equal to "AR" (Arkansas) and "SC" (South Carolina)
- year an integer vector
- vote an integer vector taking on values "1" (Voted) and "0" (Did Not Vote)
- income an integer vector ranging from "4" (Less than \$5000) to "17" (Greater than \$75000) denoting family income. See the CPS codebook for more information on variable coding
- education an integer vector ranging from "1" (Less than High School Education) to "4" (More than a College Education). See the CPS codebook for more information on variable coding
- age an integer vector ranging from "18" to "85"
- female an integer vector taking on values "1" (Female) and "0" (Male)
Weimar

Source
Census Bureau Current Population Survey

References
http://www.census.gov/cps

<table>
<thead>
<tr>
<th>Weimar</th>
<th>1932 Weimar election data</th>
</tr>
</thead>
</table>

Description
This data set contains election results for 10 kreise (equivalent to precincts) from the 1932 Weimar (German) election.

Usage
data(Weimar)

Format
A table containing 11 variables and 10 observations. The variables are:

- **Nazi** Number of votes for the Nazi party
- **Government** Number of votes for the Government
- **Communists** Number of votes for the Communist party
- **FarRight** Number of votes for far right parties
- **Other** Number of votes for other parties, and non-voters
- **shareunemployed** Proportion unemployed
- **shareblue** Proportion working class
- **sharewhite** Proportion white-collar workers
- **sharedomestic** Proportion domestic servants
- **shareprotestants** Proportion Protestant

Source
ICPSR
Description

The zelig function estimates a variety of statistical models. Use zelig output with setx and sim to compute quantities of interest, such as predicted probabilities, expected values, and first differences, along with the associated measures of uncertainty (standard errors and confidence intervals).

Usage

zelig(formula, model, data, ..., by = NULL, cite = TRUE)

Arguments

- **formula**: a symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the explanatory variables, and \(y, x_1, \) and \(x_2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The + symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x_1*x_2 \) without computing them in prior steps; I(\(x_1^2 \)) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1^2) \).
- **model**: the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.
- **data**: the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).
- **...**: additional arguments passed to zelig, relevant for the model to be estimated.
- **by**: a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. For example, to run the same model on all fifty states, you could use: z.out <- zelig(y ~ x1 + x2, data = mydata, model = 'ls', by = 'state'). You may also use by to run models using MatchIt subclasses.
- **cite**: If is set to ‘TRUE’ (default), the model citation will be printed to the console.

Details

This documentation describes the zelig Zelig 4 compatibility wrapper function.

Additional parameters available to many models include:

- **weights**: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.
• bootstrap: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstraps.html.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

Author(s)

Matt Owen, Kosuke Imai, Olivia Lau, and Gary King

See Also

http://docs.zeligproject.org/articles/

Zelig-ar-class Time-Series Model with Autoregressive Disturbance

Description

Warning: summary does not work with timeseries models after simulation.

Arguments

formula a symbolic representation of the model to be estimated, in the form y ~ x1 + x2, where y is the dependent variable and x1 and x2 are the explanatory variables, and y, x1, and x2 are contained in the same dataset. (You may include more than two explanatory variables, of course.) The + symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form x1*x2 without computing them in prior steps; I(x1*x2) to include only the interaction term and exclude the main effects; and quadratic terms in the form I(x1^2).

model the name of a statistical model to estimate. For a list of supported models and their documentation see: http://docs.zeligproject.org/articles/.

data the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

... additional arguments passed to zelig, relevant for the model to be estimated.
by

A factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. For example, to run the same model on all fifty states, you could use:

```r
z.out <- zelig(y ~ x1 + x2, data = mydata, model = 'ls', by = 'state')
```

You may also use by to run models using MatchIt subclasses.

cite

If is set to 'TRUE' (default), the model citation will be printed to the console.

ts

The name of the variable containing the time indicator. This should be passed in as a string. If this variable is not provided, Zelig will assume that the data is already ordered by time.

cs

Name of a variable that denotes the cross-sectional element of the data, for example, country name in a dataset with time-series across different countries. As a variable name, this should be in quotes. If this is not provided, Zelig will assume that all observations come from the same unit over time, and should be pooled, but if provided, individual models will be run in each cross-section. If cs is given as an argument, ts must also be provided. Additionally, by must be NULL.

order

A vector of length 3 passed in as c(p, d, q) where p represents the order of the autoregressive model, d represents the number of differences taken in the model, and q represents the order of the moving average model.

Details

Currently only the Reference class syntax for time series. This model does not accept Bootstraps or weights.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_ar.html

Examples

data(seatshare)
subset <- seatshare[seatshare$country == "UNITED KINGDOM",]

```r
ts.out <- zelig(formula = unemp ~ leftseat, model = "ar", ts = "year", data = subset)
summary(ts.out)
```
Zelig-arima-class

Autoregressive and Moving-Average Models with Integration for Time-Series Data

Description

Warning: summary does not work with timeseries models after simulation.

Arguments

- **formula**: a symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the explanatory variables, and \(y, x_1, \) and \(x_2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \(+ \) symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x_1 \times x_2 \) without computing them in prior steps; \(I(x_1 \times x_2) \) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1^2) \).

- **model**: the name of a statistical model to estimate. For a list of supported models and their documentation see: http://docs.zeligproject.org/articles/.

- **data**: the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

- **...**: additional arguments passed to zelig, relevant for the model to be estimated.

- **by**: a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. For example, to run the same model on all fifty states, you could use: `z.out <- zelig(y ~ x1 + x2, data = mydata, model = 'ls', by = 'state')`. You may also use by to run models using MatchIt subclasses.

- **cite**: If is set to 'TRUE' (default), the model citation will be printed to the console.

- **ts**: The name of the variable containing the time indicator. This should be passed in as a string. If this variable is not provided, Zelig will assume that the data is already ordered by time.

- **cs**: Name of a variable that denotes the cross-sectional element of the data, for example, country name in a dataset with time-series across different countries. As a variable name, this should be in quotes. If this is not provided, Zelig will assume that all observations come from the same unit over time, and should be pooled, but if provided, individual models will be run in each cross-section. If cs is given as an argument, ts must also be provided. Additionally, by must be NULL.

- **order**: A vector of length 3 passed in as `c(p, d, q)` where \(p \) represents the order of the autoregressive model, \(d \) represents the number of differences taken in the model, and \(q \) represents the order of the moving average model.
Details
Currently only the Reference class syntax for time series. This model does not accept Bootstraps or weights.

Value
Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

See Also
Vignette: http://docs.zeligproject.org/articles/zelig_arima.html

Examples
data(seatshare)
s subset <- seatshare[seatshare$country == "UNITED KINGDOM",]
ts.out <- zarima$new()
ts.out$zelig(unemp ~ leftseat, order = c(1, 0, 1), data = subset)

Set fitted values and simulate quantities of interest
ts.out$setx(leftseat = 0.75)
ts.out$setx1(leftseat = 0.25)
ts.out$sim()

Zelig-bayes-class
Bayes Model object for inheritance across models in Zelig

Description
Bayes Model object for inheritance across models in Zelig

Methods
get_coef(nonlist = FALSE) Get estimated model coefficients
zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE) The zelig function estimates a variety of statistical models

Zelig-binchoice-class
Binary Choice object for inheritance across models in Zelig

Description
Binary Choice object for inheritance across models in Zelig
Zelig-binchoice-gee-class

Object for Binary Choice outcomes in Generalized Estimating Equations for inheritance across models in Zelig

Description

Object for Binary Choice outcomes in Generalized Estimating Equations for inheritance across models in Zelig

Zelig-binchoice-survey-class

Object for Binary Choice outcomes with Survey Weights for inheritance across models in Zelig

Description

Object for Binary Choice outcomes with Survey Weights for inheritance across models in Zelig

Zelig-class

Zelig reference class

Description

Zelig website: http://zeligproject.org/

Fields

fn R function to call to wrap
formula Zelig formula
weights [forthcoming]
name name of the Zelig model
data data frame or matrix
by split the data by factors
mi work with imputed dataset
idx model index
zelig.call Zelig function call
model.call wrapped function call
zelig.out estimated zelig model(s)
setx.out set values
Methods

ATT(treatment, treated = 1, quietly = TRUE, num = NULL) Generic Method for Computing Simulated (Sample) Average Treatment Effects on the Treated

cite() Provide citation information about Zelig and Zelig model, and about wrapped package and wrapped model

feedback() Send feedback to the Zelig team
from_zelig_model() Extract the original fitted model object from a zelig call. Note only works for models using directly wrapped functions.

get_coef(nonlist = FALSE) Get estimated model coefficients

get_df_residual() Get residual degrees-of-freedom

get_fitted() Get estimated fitted values

get_model_data() Get data used to estimate the model

get_names() Return Zelig object field names

get_predict() Get predicted values

get_pvalue() Get Zelig object field names

get_qi(qi = "ev", xvalue = "x", subset = NULL) Get quantities of interest

get_residuals() Get estimated model residuals

get_se() Get estimated model standard errors

get_vcov() Get estimated model variance-covariance matrix

graph(...) Plot the quantities of interest

help() Open the model vignette from http://zeligproject.org/

packagename() Automatically retrieve wrapped package name

references(style = "sphinx") Construct a reference list specific to a Zelig model.

set(..., fn = list(numeric = mean, ordered = Median)) Setting Explanatory Variable Values

sim(num = NULL) Generic Method for Computing and Organizing Simulated Quantities of Interest

simATT(simparam, data, depvar, treatment, treated) Simulate an Average Treatment on the Treated

summarise(...) Display a Zelig object

summarize(...) Display a Zelig object

toJSON() Convert Zelig object to JSON format

zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE) The zelig function estimates a variety of statistical models

Zelig-exp-class *Exponential Regression for Duration Dependent Variables*

Description

Exponential Regression for Duration Dependent Variables
Arguments

formula a symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the explanatory variables, and \(y, x_1, \) and \(x_2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \(+ \) symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x_1 \times x_2 \) without computing them in prior steps; \(I(x_1 \times x_2) \) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1^2) \).

model the name of a statistical model to estimate. For a list of supported models and their documentation see: http://docs.zeligproject.org/articles/.

data the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

... additional arguments passed to zelig, relevant for the model to be estimated.

by a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. For example, to run the same model on all fifty states, you could use: \(\text{z.out} \leftarrow \text{zelig}(y \sim x_1 + x_2, \text{data} = \text{mydata}, \text{model} = \text{\"ls\"}, \text{by} = \text{\"state\")} \). You may also use by to run models using MatchIt subclasses.

cite If is set to ‘TRUE’ (default), the model citation will be printed to the console.

robust defaults to FALSE. If TRUE, zelig() computes robust standard errors based on sandwich estimators and the options selected in cluster.

if robust = TRUE, you may select a variable to define groups of correlated observations. Let \(x_3 \) be a variable that consists of either discrete numeric values, character strings, or factors that define strata. Then \(\text{z.out} \leftarrow \text{zelig}(y \sim x_1 + x_2, \text{robust} = \text{TRUE}, \text{cluster} = \text{\"x3\"}, \text{model} = \text{\"exp\"}, \text{data} = \text{mydata}) \) means that the observations can be correlated within the strata defined by the variable \(x_3 \), and that robust standard errors should be calculated according to those clusters. If robust = TRUE but cluster is not specified, zelig() assumes that each observation falls into its own cluster.

Details

Additional parameters available to this model include:

- weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.

- bootstrap: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstraps.html.
Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using `summary(z.out)` or individually extracted using, for example, `coef(z.out)`. See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using `from_zelig_model`.

Methods

```r
zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE) The zelig function estimates a variety of statistical models
```

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_exp.html

Examples

```r
library(Zelig)
data(coalition)
library(survival)
z.out <- zelig(Surv(duration, ciep) ~ fract + numst2, model = "exp",
data = coalition)
summary(z.out)
```

Bayesian Factor Analysis

Description

Bayesian Factor Analysis

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>a symbolic representation of the model to be estimated, in the form (Y_1 \ + Y_2 \ + Y_3), where (Y_1), (Y_2), and (Y_3) are variables of interest in factor analysis (manifest variables), assumed to be normally distributed. The model requires a minimum of three manifest variables contained in the same dataset. The + symbol means “inclusion” not “addition.”</td>
</tr>
<tr>
<td>factors</td>
<td>number of the factors to be fitted (defaults to 2).</td>
</tr>
<tr>
<td>model</td>
<td>the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.</td>
</tr>
<tr>
<td>data</td>
<td>the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or <code>to_zelig_mi</code>).</td>
</tr>
</tbody>
</table>
... additional arguments passed to zelig, relevant for the model to be estimated.

by a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

cite If is set to 'TRUE' (default), the model citation will be printed to the console.

Details

In addition, zelig() accepts the following additional arguments for model specification:

• lambda.constraints: list containing the equality or inequality constraints on the factor loadings. Choose from one of the following forms:
 • varname = list(): by default, no constraints are imposed.
 • varname = list(d, c): constrains the dth loading for the variable named varname to be equal to c.
 • varname = list(d, +): constrains the dth loading for the variable named varname to be positive;
 • varname = list(d, -): constrains the dth loading for the variable named varname to be negative.

• std.var: defaults to FALSE (manifest variables are rescaled to zero mean, but retain observed variance). If TRUE, the manifest variables are rescaled to be mean zero and unit variance.

In addition, zelig() accepts the following additional inputs for bayes.factor:

• burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000).
• mcmc: number of the MCMC iterations after burnin (defaults to 20,000).
• thin: thinning interval for the Markov chain. Only every thin-th draw from the Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1.
• verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10
• seed: seed for the random number generator. The default is NA which corresponds to a random seed 12345.

• Lambda.start: starting values of the factor loading matrix Λ, either a scalar (all unconstrained loadings are set to that value), or a matrix with compatible dimensions. The default is NA, where the start value are set to be 0 for unconstrained factor loadings, and 0.5 or -0.5 for constrained factor loadings (depending on the nature of the constraints).

• Psi.start: starting values for the uniquenesses, either a scalar (the starting values for all diagonal elements of Ψ are set to be this value), or a vector with length equal to the number of manifest variables. In the latter case, the starting values of the diagonal elements of Ψ take the values of Psi.start. The default value is NA where the starting values of the all the uniquenesses are set to be 0.5.

• store.lambda: defaults to TRUE, which stores the posterior draws of the factor loadings.
• store.scores: defaults to FALSE. If TRUE, stores the posterior draws of the factor scores. (Storing factor scores may take large amount of memory for a large number of draws or observations.)
The model also accepts the following additional arguments to specify prior parameters:

- \(\lambda \): mean of the Normal prior for the factor loadings, either a scalar or a matrix with the same dimensions as \(\Lambda \). If a scalar value, that value will be the prior mean for all the factor loadings. Defaults to 0.
- \(L\lambda \): precision parameter of the Normal prior for the factor loadings, either a scalar or a matrix with the same dimensions as \(\Lambda \). If \(L\lambda \) takes a scalar value, then the precision matrix will be a diagonal matrix with the diagonal elements set to that value. The default value is 0, which leads to an improper prior.
- \(a\theta \): the shape parameter of the Inverse Gamma prior for the uniquenesses is \(a\theta/2 \). It can take a scalar value or a vector. The default value is 0.001.
- \(b\theta \): the scale parameter of the Inverse Gamma prior for the uniquenesses is \(b\theta/2 \). It can take a scalar value or a vector. The default value is 0.001.

Additional parameters available to this model include:

- weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using `summary(z.out)` or individually extracted using, for example, `coef(z.out)`. See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using `from_zelig_model`.

Methods

`zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE)` The zelig function estimates a variety of statistical models.

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_factorbayes.html

Examples

```r
## Not run:
data(swiss)
names(swiss) <- c("Fert", "Agr", "Exam", "Educ", "Cath", "InfMort")
z.out <- zelig(~ Agr + Exam + Educ + Cath + InfMort, 
model = "factor.bayes", data = swiss, 
factors = 2, verbose = FALSE, 
a0 = 1, b0 = 0.15, burnin = 500, mcmc = 5000)
z.out$geweke.diag()
z.out <- zelig(~ Agr + Exam + Educ + Cath + InfMort, 
model = "factor.bayes", data = swiss, factors = 2,
```
Zelig-gamma-class

Gamma Regression for Continuous, Positive Dependent Variables

Description

Gamma Regression for Continuous, Positive Dependent Variables

Arguments

- **formula**: a symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the explanatory variables, and \(y, x_1, \) and \(x_2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The + symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x_1 \times x_2 \) without computing them in prior steps; \(I(x_1 \times x_2) \) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1^2) \).

- **model**: the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

- **data**: the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

- **...**: additional arguments passed to zelig, relevant for the model to be estimated.

- **by**: a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

- **cite**: If is set to ’TRUE’ (default), the model citation will be printed to the console.
Details

Additional parameters available to this model include:

- weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.
- bootstrap: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstraps.html.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_gamma.html

Examples

library(Zelig)
data(coalition)
z.out <- zelig(duration ~ fract + numst2, model = "gamma", data = coalition)
summary(z.out)
model the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

data the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

... additional arguments passed to zelig, relevant for the model to be estimated.

by a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

cite If is set to 'TRUE' (default), the model citation will be printed to the console.

corstr:character string specifying the correlation structure: "independence", "exchangeable", "ar1", "unstructured" and "userdefined"

See geeglm in package geepack for other function arguments.

id: where id is a variable which identifies the clusters. The data should be sorted by id and should be ordered within each cluster when appropriate

corstr: character string specifying the correlation structure: "independence", "exchangeable", "ar1", "unstructured" and "userdefined"

geeglm: See geeglm in package geepack for other function arguments

Details

Additional parameters available to this model include:

- weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.

- bootstrap: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstraps.html.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_gammagee.html
Examples

```r
library(Zelig)
data(coalition)
coalition$cluster <- c(rep(c(1:62), 5), rep(c(63), 4))
sorted.coalition <- coalition[order(coalition$cluster),]
z.out <- zelig(duration ~ fract + numst2, model = "gamma.gee", id = "cluster",
data = sorted.coalition, corstr = "exchangeable")
summary(z.out)
```

Description

Gamma Regression with Survey Weights

Arguments

- **formula**: A symbolic representation of the model to be estimated, in the form \(y \sim x1 \times x2 \), where \(y \) is the dependent variable and \(x1 \) and \(x2 \) are the explanatory variables, and \(y, x1, \) and \(x2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \(\times \) symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x1 \times x2 \) without computing them in prior steps; \(I(x1 \times x2) \) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x1^2) \).

- **model**: The name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

- **data**: The name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or `to_zelig_mi`).

- **...**: Additional arguments passed to `zelig`, relevant for the model to be estimated.

- **by**: A factor variable contained in `data`. If supplied, `zelig` will subset the data frame based on the levels in the `by` variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use `by` to run models using MatchIt subclasses.

- **cite**: If is set to `TRUE` (default), the model citation will be printed to the console.

Details

Additional parameters available to this model include:

- **weights**: Vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.
zelig-ggee-class

- bootstrap: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstraps.html.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_gammasurvey.html

Examples

library(Zelig)
data(api, package="survey")
z.out1 <- zelig(api00 ~ meals + yr.rnd, model = "gamma.survey",
weights = ~pw, data = apistrat)
summary(z.out1)

Zelig-ggee-class Generalized Estimating Equations Model object for inheritance across models in Zelig

Description

Generalized Estimating Equations Model object for inheritance across models in Zelig

Methods

zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE) The zelig function estimates a variety of statistical models
Description

Generalized Linear Model object for inheritance across models in Zelig

Methods

zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE) The zelig function estimates a variety of statistical models

Description

Instrumental-Variable Regression

Arguments

- **formula**: a symbolic representation of the model to be estimated, in the form $y \sim x_1 + x_2$, where y is the dependent variable and x_1 and x_2 are the explanatory variables, and y, x_1, and x_2 are contained in the same dataset. (You may include more than two explanatory variables, of course.) The `+` symbol means inclusion "not addition." You may also include interaction terms and main effects in the form $x_1 \times x_2$ without computing them in prior steps; $I(x_1 \times x_2)$ to include only the interaction term and exclude the main effects; and quadratic terms in the form $I(x_1^2)$.

- **model**: the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

- **data**: the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

- **...**: additional arguments passed to zelig, relevant for the model to be estimated.

- **by**: a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

- **cite**: If is set to 'TRUE' (default), the model citation will be printed to the console.

- **formula**: specification(s) of the regression relationship
instruments

the instruments. Either instruments is missing and formula has three parts as
in \(y \sim x_1 + x_2 \mid z_1 + z_2 + z_3 \) (recommended) or formula is \(y \sim x_1 + x_2 \)
and instruments is a one-sided formula \(y \sim z_1 + z_2 + z_3 \). Using instruments
is not recommended with zelig.

model, x, y

logicals. If TRUE the corresponding components of the fit (the model frame, the
model matrices, the response) are returned.

... further arguments passed to methods. See also zelig.

Details

Additional parameters available to many models include:

- weights: vector of weight values or a name of a variable in the dataset by which to weight the
 model. For more information see: http://docs.zeligproject.org/articles/weights.html.
- bootstrap: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty
 around model parameters due to sampling error. If an integer is supplied, the number of
 bootstraps to run. For more information see: http://docs.zeligproject.org/articles/
 bootstraps.html.

Regressors and instruments for ivreg are most easily specified in a formula with two parts on
the right-hand side, e.g., \(y \sim x_1 + x_2 \mid z_1 + z_2 + z_3 \), where \(x_1 \) and \(x_2 \) are the regressors and \(z_1, z_2, \) and \(z_3 \) are the instruments. Note that exogenous regressors have to be included as instruments
for themselves. For example, if there is one exogenous regressor \(ex \) and one endogenous regressor
\(en \) with instrument \(in \), the appropriate formula would be \(y \sim ex + en \mid ex + in \). Equivalently,
this can be specified as \(y \sim ex + en \mid . - en + in \), i.e., by providing an update formula with a .
in the second part of the formula. The latter is typically more convenient, if there is a large number
of exogenous regressors.

Value

Depending on the class of model selected, zelig will return an object with elements including
coefficients, residuals, and formula which may be summarized using summary(z.out) or
individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/
articles/getters.html for a list of functions to extract model components. You can also extract
whole fitted model objects using from_zelig_model.

Methods

zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE) The
zelig function estimates a variety of statistical models

Source

AER
See Also

Vignette: http://docs.zeligproject.org/articles/zelig_ivreg.html Fit instrumental-variable regression by two-stage least squares. This is equivalent to direct instrumental-variables estimation when the number of instruments is equal to the number of predictors.

Examples

```r
library(Zelig)
library(dplyr) # for the pipe operator %>%
# load and transform data
data("CigarettesSW")
CigarettesSW$rprice <- with(CigarettesSW, price/cpi)
CigarettesSW$rincome <- with(CigarettesSW, income/population/cpi)
CigarettesSW$tdiff <- with(CigarettesSW, (tax - tax)/cpi)
# log second stage independent variables, as logging internally for ivreg is
# not currently supported
CigarettesSW$log_rprice <- log(CigarettesSW$rprice)
CigarettesSW$log_rincome <- log(CigarettesSW$rincome)

z.out1 <- zelig(log(packs ~ log_rprice + log_rincome | log_rincome + tdiff + I(tax/cpi), data = CigarettesSW, subset = year == "1995", model = "ivreg")
summary(z.out1)
```

```
library(Zelig)
library(AER) # for sandwich vcov
library(dplyr) # for the pipe operator %>%

# load and transform data
data("CigarettesSW")
CigarettesSW$rprice <- with(CigarettesSW, price/cpi)
CigarettesSW$rincome <- with(CigarettesSW, income/population/cpi)
CigarettesSW$tdiff <- with(CigarettesSW, (tax - tax)/cpi)

# log second stage independent variables, as logging internally for ivreg is
# not currently supported
CigarettesSW$log_rprice <- log(CigarettesSW$rprice)
CigarettesSW$log_rincome <- log(CigarettesSW$rincome)

# estimate model
z.out1 <- zelig(log(packs) ~ log_rprice + log_rincome | log_rincome + tdiff + I(tax/cpi),
               data = CigarettesSW,
               model = "ivreg")

summary(z.out1)
```

Bayesian Logit Regression

Description

Bayesian Logit Regression

Arguments

formula a symbolic representation of the model to be estimated, in the form y ~ x1 + x2, where y is the dependent variable and x1 and x2 are the explanatory variables, and y, x1, and x2 are contained in the same dataset. (You may include more than two explanatory variables, of course.) The + symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form x1*x2 without computing them in prior steps; I(x1*x2) to include only the interaction term and exclude the main effects; and quadratic terms in the form I(x1^2).

model the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

data the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

... additional arguments passed to zelig, relevant for the model to be estimated.

by a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

cite If is set to 'TRUE' (default), the model citation will be printed to the console.

Details

Additional parameters available to this model include:

• weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.

• burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000).

• mcmc: number of the MCMC iterations after burnin (defaults to 10,000).

• thin: thinning interval for the Markov chain. Only every thin-th draw from the Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1.

• verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed to the screen.

• seed: seed for the random number generator. The default is NA which corresponds to a random seed of 12345.

• beta.start: starting values for the Markov chain, either a scalar or vector with length equal to the number of estimated coefficients. The default is NA, such that the maximum likelihood estimates are used as the starting values.

Use the following parameters to specify the model’s priors:
• \(b\theta \): prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value, that value will be the prior mean for all the coefficients. The default is 0.

• \(B\theta \): prior precision parameter for the coefficients, either a square matrix (with the dimensions equal to the number of the coefficients) or a scalar. If a scalar value, that value times an identity matrix will be the prior precision parameter. The default is 0, which leads to an improper prior.

Use the following arguments to specify optional output for the model:

• \textbf{bayes.resid}: defaults to FALSE. If TRUE, the latent Bayesian residuals for all observations are returned. Alternatively, users can specify a vector of observations for which the latent residuals should be returned.

Value

Depending on the class of model selected, \texttt{zelig} will return an object with elements including \texttt{coefficients}, \texttt{residuals}, and \texttt{formula} which may be summarized using \texttt{summary(z.out)} or individually extracted using, for example, \texttt{coef(z.out)}. See \url{http://docs.zeligproject.org/articles/getters.html} for a list of functions to extract model components. You can also extract whole fitted model objects using \texttt{from_zelig_model}.

See Also

Vignette: \url{http://docs.zeligproject.org/articles/zelig_logitbayes.html}

Examples

```
data(turnout)
z.out <- zelig(vote ~ race + educate, model = "logit.bayes", data = turnout, verbose = FALSE)
```

Zelig-logit-class

Logistic Regression for Dichotomous Dependent Variables

Description

Logistic Regression for Dichotomous Dependent Variables

Arguments

\texttt{formula} a symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the explanatory variables, and \(y, x_1, \) and \(x_2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The + symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x_1 \times x_2 \) without computing them in prior steps; \(I(x_1 \times x_2) \) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1 \times x_2) \).
model the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.
data the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).
... additional arguments passed to zelig, relevant for the model to be estimated.
by a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.
cite If is set to 'TRUE' (default), the model citation will be printed to the console.
below (defaults to 0) The point at which the dependent variable is censored from below. If any values in the dependent variable are observed to be less than the censoring point, it is assumed that that particular observation is censored from below at the observed value. (See for a Bayesian implementation that supports both left and right censoring.)
robust defaults to FALSE. If TRUE, zelig() computes robust standard errors based on sandwich estimators (see and) and the options selected in cluster.
if robust = TRUE, you may select a variable to define groups of correlated observations. Let x3 be a variable that consists of either discrete numeric values, character strings, or factors that define strata. Then z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3", model = "tobit", data = mydata) means that the observations can be correlated within the strata defined by the variable x3, and that robust standard errors should be calculated according to those clusters. If robust = TRUE but cluster is not specified, zelig() assumes that each observation falls into its own cluster.

Details

Additional parameters available to this model include:

- weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.
- bootstrap: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstraps.html.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.
Methods

show(signif.stars = FALSE, subset = NULL, bagging = FALSE) Display a Zelig object

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_logit.html

Examples

library(Zelig)
data(turnout)
z.out1 <- zelig(vote ~ age + race, model = "logit", data = turnout, cite = FALSE)
summary(z.out1)
summary(z.out1, odds_ratios = TRUE)
x.out1 <- setx(z.out1, age = 36, race = "white")
s.out1 <- sim(z.out1, x = x.out1)
summary(s.out1)
plot(s.out1)

Zelig-logit-gee-class Generalized Estimating Equation for Logit Regression

Description

Generalized Estimating Equation for Logit Regression

Arguments

formula a symbolic representation of the model to be estimated, in the form y ~ x1 + x2, where y is the dependent variable and x1 and x2 are the explanatory variables, and y, x1, and x2 are contained in the same dataset. (You may include more than two explanatory variables, of course.) The + symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form x1*x2 without computing them in prior steps; I(x1*x2) to include only the interaction term and exclude the main effects; and quadratic terms in the form I(x1^2).

model the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

data the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

... additional arguments passed to zelig, relevant for the model to be estimated.
by

by a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

cite

cite If is set to 'TRUE' (default), the model citation will be printed to the console.

id:

id: where id is a variable which identifies the clusters. The data should be sorted by id and should be ordered within each cluster when appropriate

corstr:

corstr: character string specifying the correlation structure: "independence", "exchangeable", "ar1", "unstructured" and "userdefined"

geeglm:

geeglm: See geeglm in package geepack for other function arguments

Details

Additional parameters available to this model include:

- weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.

- bootstrap: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstraps.html.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_logitgee.html

Examples

data(turnout)
sorted.turnout <- turnout[order(turnout$cluster),]
z.out1 <- zelig(vote ~ race + educate, model = "logit.gee", id = "cluster", data = sorted.turnout)

summary(z.out1)
x.out1 <- setx(z.out1)
s.out1 <- sim(z.out1, x = x.out1)
summary(s.out1)
Zelig-logit-survey-class

Logit Regression with Survey Weights

Description

Logit Regression with Survey Weights

Arguments

- **formula**
 A symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the explanatory variables, and \(y \), \(x_1 \), and \(x_2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The + symbol means "inclusion" not "addition." You may also include interaction terms and main effects in the form \(x_1 \times x_2 \) without computing them in prior steps; \(I(x_1 \times x_2) \) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1 \times x_2) \).

- **model**
 The name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

- **data**
 The name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

- **...**
 Additional arguments passed to zelig, relevant for the model to be estimated.

- **by**
 A factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

- **cite**
 If set to TRUE (default), the model citation will be printed to the console.

- **below**
 (defaults to 0) The point at which the dependent variable is censored from below. If any values in the dependent variable are observed to be less than the censoring point, it is assumed that that particular observation is censored from below at the observed value. (See for a Bayesian implementation that supports both left and right censoring.)

- **robust**
 Defaults to FALSE. If TRUE, zelig() computes robust standard errors based on sandwich estimators (see and) and the options selected in cluster.

- **if**
 If robust = TRUE, you may select a variable to define groups of correlated observations. Let x3 be a variable that consists of either discrete numeric values, character strings, or factors that define strata. Then z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3", model = "tobit", data = mydata) means that the observations can be correlated within the strata defined by the variable x3, and that robust standard errors should be calculated according to those clusters. If robust = TRUE but cluster is not specified, zelig() assumes that each observation falls into its own cluster.
Details

Additional parameters available to this model include:

- weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.
- bootstrap: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstraps.html.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_logitsurvey.html

Examples

data(api, package = "survey")
apistrat$yr.rnd.numeric <- as.numeric(apistrat$yr.rnd == "Yes")
z.out! <- zelig(yr.rnd.numeric ~ meals + mobility, model = "logit.survey", weights = apistrat$pw, data = apistrat)
summary(z.out!)
x.low <- setx(z.out!, meals = quantile(apistrat$meals, 0.2))
x.high <- setx(z.out!, meals = quantile(apistrat$meals, 0.8))
s.out! <- sim(z.out!, x = x.low, x1 = x.high)
summary(s.out!)
plot(s.out!)

Zelig-lognorm-class Log-Normal Regression for Duration Dependent Variables

Description

Log-Normal Regression for Duration Dependent Variables
Arguments

- **formula**: a symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the explanatory variables, and \(y \), \(x_1 \), and \(x_2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The + symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x_1 \times x_2 \) without computing them in prior steps; \(I(x_1 \times x_2) \) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1^2) \).

- **model**: the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

- **data**: the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

- **...**: additional arguments passed to zelig, relevant for the model to be estimated.

- **by**: a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

- **cite**: If is set to 'TRUE' (default), the model citation will be printed to the console.

- **robust**: defaults to FALSE. If TRUE, zelig() computes robust standard errors based on sandwich estimators (see and) based on the options in cluster.

- **cluster**: if robust = TRUE, you may select a variable to define groups of correlated observations. Let \(x_3 \) be a variable that consists of either discrete numeric values, character strings, or factors that define strata. Then means that the observations can be correlated within the strata defined by the variable \(x_3 \), and that robust standard errors should be calculated according to those clusters. If robust = TRUE but cluster is not specified, zelig() assumes that each observation falls into its own cluster.

Details

Additional parameters available to many models include:

- **weights**: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.

- **bootstrap**: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstrap.html.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or
individually extracted using, for example, `coef(z.out)`. See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using `from_zelig_model`.

Methods

`zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE)` The `zelig` function estimates a variety of statistical models

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_lognorm.html

Examples

```r
library(Zelig)
data(coalition)
z.out <- zelig(Surv(duration, ciep12) ~ fract + numst2, model = "lognorm", data = coalition)
summary(z.out)
```

Zelig-ls-class

Least Squares Regression for Continuous Dependent Variables

Description

Least Squares Regression for Continuous Dependent Variables

Arguments

- `formula` a symbolic representation of the model to be estimated, in the form `y ~ x1 + x2`, where `y` is the dependent variable and `x1` and `x2` are the explanatory variables, and `y`, `x1`, and `x2` are contained in the same dataset. (You may include more than two explanatory variables, of course.) The `+` symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form `I(x1*x2)` without computing them in prior steps; `I(x1^2)` to include only the interaction term and exclude the main effects; and quadratic terms in the form `I(x1^2)`.
- `model` the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/
- `data` the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or `to_zelig_mi`).
- `...` additional arguments passed to `zelig`, relevant for the model to be estimated.
- `by` a factor variable contained in `data`. If supplied, `zelig` will subset the data frame based on the levels in the `by` variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use `by` to run models using MatchIt subclasses.
cite

If is set to ‘TRUE’ (default), the model citation will be printed to the console.

Details

Additional parameters available to this model include:

- weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.
- bootstrap: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstraps.html.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

Methods

zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE) The zelig function estimates a variety of statistical models

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_ls.html

Examples

library(Zelig)
data(macro)
z.out1 <- zelig(unem ~ gdp + capmob + trade, model = "ls", data = macro, cite = FALSE)
summary(z.out1)

Zelig-ma-class

Time-Series Model with Moving Average

Description

Warning: summary does not work with timeseries models after simulation.
Arguments

formula

A symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the explanatory variables, and \(y, x_1, \) and \(x_2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \(+ \) symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x_1 \times x_2 \) without computing them in prior steps; \(I(x_1 \times x_2) \) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1^2) \).

model

The name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

data

The name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

by

A factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

cite

If is set to ‘TRUE’ (default), the model citation will be printed to the console.

ts

The name of the variable containing the time indicator. This should be passed in as a string. If this variable is not provided, Zelig will assume that the data is already ordered by time.

cs

Name of a variable that denotes the cross-sectional element of the data, for example, country name in a dataset with time-series across different countries. As a variable name, this should be in quotes. If this is not provided, Zelig will assume that all observations come from the same unit over time, and should be pooled, but if provided, individual models will be run in each cross-section. If cs is given as an argument, ts must also be provided. Additionally, by must be NULL.

order

A vector of length 3 passed in as c(p, d, q) where p represents the order of the autoregressive model, d represents the number of differences taken in the model, and q represents the order of the moving average model.

Details

Currently only the Reference class syntax for time series. This model does not accept Bootstraps or weights.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using `summary(z.out)` or individually extracted using, for example, `coef(z.out)`. See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using `from_zelig_model`.

Zelig-ma-class
Bayesian Multinomial Logistic Regression

Arguments

- **formula**: a symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the explanatory variables, and \(y, x_1, \) and \(x_2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The + symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x_1 \times x_2 \) without computing them in prior steps; \(I(x_1 \times x_2) \) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1^2) \).

- **model**: the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

- **data**: the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

- **by**: a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

- **cite**: If set to 'TRUE' (default), the model citation will be printed to the console.
Details

zelig() accepts the following arguments for mlogit.bayes:

- **baseline**: either a character string or numeric value (equal to one of the observed values in the dependent variable) specifying a baseline category. The default value is NA which sets the baseline to the first alphabetical or numerical unique value of the dependent variable.

Additional parameters available to this model include:

- **weights**: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.
- **burnin**: number of the initial MCMC iterations to be discarded (defaults to 1,000).
- **mcmc**: number of the MCMC iterations after burnin (defaults to 10,000).
- **mcmc.method**: either "MH" or "slice", specifying whether to use Metropolis Algorithm or slice sampler. The default value is MH.
- **thin**: thinning interval for the Markov chain. Only every thin-th draw from the Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1.
- **tune**: tuning parameter for the Metropolis-Hasting step, either a scalar or a numeric vector (for kk coefficients, enter a kk vector). The tuning parameter should be set such that the acceptance rate is satisfactory (between 0.2 and 0.5). The default value is 1.1.
- **verbose**: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed to the screen.
- **seed**: seed for the random number generator. The default is NA which corresponds to a random seed of 12345.
- **beta.start**: starting values for the Markov chain, either a scalar or vector with length equal to the number of estimated coefficients. The default is NA, such that the maximum likelihood estimates are used as the starting values.

Use the following parameters to specify the model’s priors:

- **b0**: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value, that value will be the prior mean for all the coefficients. The default is 0.
- **B0**: prior precision parameter for the coefficients, either a square matrix (with the dimensions equal to the number of the coefficients) or a scalar. If a scalar value, that value times an identity matrix will be the prior precision parameter. The default is 0, which leads to an improper prior.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_mlogitbayes.html
Examples

```r
data(mexico)
z.out <- zelig(vote88 ~ pristr + othcok + othsocok, model = "mlogit.bayes",
data = mexico, verbose = FALSE)
```

Description

Negative Binomial Regression for Event Count Dependent Variables

Arguments

- **formula**: a symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the explanatory variables, and \(y, x_1, \) and \(x_2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \(+ \) symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x_1 \times x_2 \) without computing them in prior steps; \(I(x_1 \times x_2) \) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1^2) \).

- **model**: the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

- **data**: the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or `to_zelig_mi`).

- **...**: additional arguments passed to `zelig`, relevant for the model to be estimated.

- **by**: a factor variable contained in data. If supplied, `zelig` will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

- **cite**: If is set to ’TRUE’ (default), the model citation will be printed to the console.

Details

Additional parameters available to this model include:

- **weights**: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.

- **bootstrap**: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstraps.html.
Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

Methods

zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE) The zelig function estimates a variety of statistical models

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_negbin.html

Examples

library(Zelig)
data(sanction)
z.out <- zelig(num ~ target + coop, model = "negbin", data = sanction)
summary(z.out)

Zelig-normal-bayes-class

Bayesian Normal Linear Regression

Description

Bayesian Normal Linear Regression

Arguments

formula a symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the explanatory variables, and \(y, x_1, \) and \(x_2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The + symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x_1\times x_2 \) without computing them in prior steps; \(I(x_1\times x_2) \) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1^2) \).

model the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

data the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).
additional arguments passed to zelig, relevant for the model to be estimated.
by a factor variable contained in data. If supplied, zelig will subset the data frame
based on the levels in the by variable, and estimate a model for each subset. This
can save a considerable amount of effort. You may also use by to run models
using MatchIt subclasses.
cite If is set to ’TRUE’ (default), the model citation will be printed to the console.

Details

Additional parameters available to many models include:

• weights: vector of weight values or a name of a variable in the dataset by which to weight the
 model. For more information see: http://docs.zeligproject.org/articles/weights.html.
• burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000).
• mcmc: number of the MCMC iterations after burnin (defaults to 10,000).
• thin: thinning interval for the Markov chain. Only every thin-th draw from the Markov chain
is kept. The value of mcmc must be divisible by this value. The default value is 1.
• verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed to
 the screen.
• seed: seed for the random number generator. The default is NA which corresponds to a random
 seed of 12345.
• beta.start: starting values for the Markov chain, either a scalar or vector with length equal
to the number of estimated coefficients. The default is NA, such that the maximum likelihood
estimates are used as the starting values.

Use the following parameters to specify the model’s priors:

• b0: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value, that
 value will be the prior mean for all the coefficients. The default is 0.
• B0: prior precision parameter for the coefficients, either a square matrix (with the dimensions
equal to the number of the coefficients) or a scalar. If a scalar value, that value times an identity
 matrix will be the prior precision parameter. The default is 0, which leads to an improper prior.
• c0: c0/2 is the shape parameter for the Inverse Gamma prior on the variance of the disturbance
terms.
• d0: d0/2 is the scale parameter for the Inverse Gamma prior on the variance of the disturbance
terms.

Value

Depending on the class of model selected, zelig will return an object with elements including
coefficients, residuals, and formula which may be summarized using summary(z.out) or
individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/
articles/getters.html for a list of functions to extract model components. You can also extract
whole fitted model objects using from_zelig_model.
See Also

Vignette: http://docs.zeligproject.org/articles/zelig_normalbayes.html

Examples

```r
data(macro)
z.out <- zelig(unem ~ gdp + capmob + trade, model = "normal.bayes", data = macro, verbose = FALSE)

data(macro)
z.out <- zelig(unem ~ gdp + capmob + trade, model = "normal.bayes",
data = macro, verbose = FALSE)
z.out$geweke.diag()
z.out$heidel.diag()
z.out$raftery.diag()
summary(z.out)

x.out <- setx(z.out)
s.out! <- sim(z.out, x = x.out)
summary(s.out!)

x.high <- setx(z.out, trade = quantile(macro$trade, prob = 0.8))
x.low <- setx(z.out, trade = quantile(macro$trade, prob = 0.2))

s.out2 <- sim(z.out, x = x.high, x1 = x.low)
summary(s.out2)
```

Zelig-normal-class

Normal Regression for Continuous Dependent Variables

Description

Normal Regression for Continuous Dependent Variables

Arguments

- **formula**: a symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the explanatory variables, and \(y, x_1, \) and \(x_2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \(\sim \) symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x_1 \times x_2 \) without computing them in prior steps; \(I(x_1 \times x_2) \) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1^2) \).

- **model**: the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.
data the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

... additional arguments passed to zelig, relevant for the model to be estimated.

by a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

cite If is set to 'TRUE' (default), the model citation will be printed to the console.

below (defaults to 0) The point at which the dependent variable is censored from below. If any values in the dependent variable are observed to be less than the censoring point, it is assumed that that particular observation is censored from below at the observed value. (See for a Bayesian implementation that supports both left and right censoring.)

robust defaults to FALSE. If TRUE, zelig() computes robust standard errors based on sandwich estimators (see and) and the options selected in cluster.

if robust = TRUE, you may select a variable to define groups of correlated observations. Let x3 be a variable that consists of either discrete numeric values, character strings, or factors that define strata. Then z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3", model = "tobit", data = mydata) means that the observations can be correlated within the strata defined by the variable x3, and that robust standard errors should be calculated according to those clusters. If robust = TRUE but cluster is not specified, zelig() assumes that each observation falls into its own cluster.

formula a model fitting formula

Details

Additional parameters available to this model include:

- weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.

- bootstrap: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstraps.html.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.
See Also

Vignette: http://docs.zeligproject.org/articles/zelig_normal.html

Examples

data(macro)
$z.out1$ <- zelig(unem ~ gdp + capmob + trade, model = "normal",
data = macro)
summary(z.out1)
x.high <- setx(z.out1, trade = quantile(macro$trade, 0.8))
x.low <- setx(z.out1, trade = quantile(macro$trade, 0.2))
s.out1 <- sim(z.out1, x = x.high, x1 = x.low)
summary(s.out1)
plot(s.out1)

Zelig-normal-gee-class

Generalized Estimating Equation for Normal Regression

Description

Generalized Estimating Equation for Normal Regression

Arguments

formula a symbolic representation of the model to be estimated, in the form $y \sim x1 + x2$, where y is the dependent variable and $x1$ and $x2$ are the explanatory variables, and y, $x1$, and $x2$ are contained in the same dataset. (You may include more than two explanatory variables, of course.) The $+$ symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form $x1*x2$ without computing them in prior steps; $I(x1*x2)$ to include only the interaction term and exclude the main effects; and quadratic terms in the form $I(x1^2)$.

model the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.
data the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

... additional arguments passed to zelig, relevant for the model to be estimated.

by a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

cite If is set to ’TRUE’ (default), the model citation will be printed to the console.
robust defaults to TRUE. If TRUE, consistent standard errors are estimated using a "sandwich" estimator.

corstr defaults to "independence". It can take on the following arguments:

- **Independence** (corstr = independence): cor(yit,yit')=0, for all t,t' with t not equal to t'. It assumes that there is no correlation within the clusters and the model becomes equivalent to standard normal regression. The "working" correlation matrix is the identity matrix.

- **Fixed** (corstr = fixed): If selected, the user must define the "working" correlation matrix with the R argument rather than estimating it from the model.

id: where id is a variable which identifies the clusters. The data should be sorted by id and should be ordered within each cluster when appropriate

corstr: character string specifying the correlation structure: "independence", "exchangeable", "ar1", "unstructured" and "userdefined"

geeglm: See geeglm in package geepack for other function arguments

Mv: defaults to 1. It specifies the number of periods of correlation and only needs to be specified when corstr is stat_M_dep, non_stat_M_dep, or AR-M.

R: defaults to NULL. It specifies a user-defined correlation matrix rather than estimating it from the data. The argument is used only when corstr is "fixed". The input is a TxT matrix of correlations, where T is the size of the largest cluster.

Details

Additional parameters available to this model include:

- **weights**: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_normalgee.html

Examples

```r
library(Zelig)
data(macro)
z.out <- zelig(unem ~ gdp + capmob + trade, model = "normal.gee", id = "country",
               data = macro, corstr = "AR-M")
summary(z.out)
```
Zelig-normal-survey-class

Normal Regression for Continuous Dependent Variables with Survey Weights

Description

Normal Regression for Continuous Dependent Variables with Survey Weights

Arguments

- `formula`: a symbolic representation of the model to be estimated, in the form `y ~ x1 + x2`, where `y` is the dependent variable and `x1` and `x2` are the explanatory variables, and `y`, `x1`, and `x2` are contained in the same dataset. (You may include more than two explanatory variables, of course.) The `+` symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form `x1*x2` without computing them in prior steps; `I(x1*x2)` to include only the interaction term and exclude the main effects; and quadratic terms in the form `I(x1^2)`.

- `model`: the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

- `data`: the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

- `...`: additional arguments passed to zelig, relevant for the model to be estimated.

- `by`: a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

- `cite`: If is set to ‘TRUE’ (default), the model citation will be printed to the console.

Details

Additional parameters available to this model include:

- `weights`: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.

- `bootstrap`: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstraps.html.
Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_normalsurvey.html

Examples

library(Zelig)
data(api, package = "survey")
z.out! <- zelig(api00 ~ meals + yr.rnd, model = "normal.survey", eights = ~pw, data = apistrat)
summary(z.out1)

Zelig-oprobit-bayes-class

Bayesian Ordered Probit Regression

Description

Bayesian Ordered Probit Regression

Arguments

formula a symbolic representation of the model to be estimated, in the form $y \sim x_1 + x_2$, where y is the dependent variable and x_1 and x_2 are the explanatory variables, and y, x_1, and x_2 are contained in the same dataset. (You may include more than two explanatory variables, of course.) The $+$ symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form $x_1 \times x_2$ without computing them in prior steps; $I(x_1 \times x_2)$ to include only the interaction term and exclude the main effects; and quadratic terms in the form $I(x_1^2)$.

model the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

data the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

... additional arguments passed to zelig, relevant for the model to be estimated.

by a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

cite If is set to 'TRUE' (default), the model citation will be printed to the console.
Details

Additional parameters available to many models include:

- **weights**: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.
- **burnin**: number of the initial MCMC iterations to be discarded (defaults to 1,000).
- **mcmc**: number of the MCMC iterations after burnin (defaults to 10,000).
- **thin**: thinning interval for the Markov chain. Only every thin-th draw from the Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1.
- **verbose**: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed to the screen.
- **seed**: seed for the random number generator. The default is `NA` which corresponds to a random seed of 12345.
- **beta.start**: starting values for the Markov chain, either a scalar or vector with length equal to the number of estimated coefficients. The default is `NA`, such that the maximum likelihood estimates are used as the starting values.

Use the following parameters to specify the model’s priors:

- **b0**: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value, that value will be the prior mean for all the coefficients. The default is 0.
- **B0**: prior precision parameter for the coefficients, either a square matrix (with the dimensions equal to the number of the coefficients) or a scalar. If a scalar value, that value times an identity matrix will be the prior precision parameter. The default is 0, which leads to an improper prior.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using `summary(z.out)` or individually extracted using, for example, `coef(z.out)`. See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using `from_zelig_model`.

Vignette: http://docs.zeligproject.org/articles/zelig_oprobitbayes.html

Zelig-poisson-bayes-class

Bayesian Poisson Regression

Description

Bayesian Poisson Regression
Arguments

formula a symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the explanatory variables, and \(y \), \(x_1 \), and \(x_2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The + symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x_1 \times x_2 \) without computing them in prior steps; \(I(x_1 \times x_2) \) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1^2) \).

model the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

data the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

... additional arguments passed to zelig, relevant for the model to be estimated.

by a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

cite If is set to ‘TRUE’ (default), the model citation will be printed to the console.

Details

Additional parameters available to this model include:

- weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.
- burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000).
- mcmc: number of the MCMC iterations after burnin (defaults to 10,000).
- tune: Metropolis tuning parameter, either a positive scalar or a vector of length \(k \), where \(k \) is the number of coefficients. The tuning parameter should be set such that the acceptance rate of the Metropolis algorithm is satisfactory (typically between 0.20 and 0.5). The default value is 1.1.
- thin: thinning interval for the Markov chain. Only every thin-th draw from the Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1.
- verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed to the screen.
- seed: seed for the random number generator. The default is NA which corresponds to a random seed of 12345.
- beta.start: starting values for the Markov chain, either a scalar or vector with length equal to the number of estimated coefficients. The default is NA, such that the maximum likelihood estimates are used as the starting values.

Use the following parameters to specify the model’s priors:
Zelig-poisson-class

Poisson Regression for Event Count Dependent Variables

Arguments

formula a symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2\), where \(y\) is the dependent variable and \(x_1\) and \(x_2\) are the explanatory variables, and \(y\), \(x_1\), and \(x_2\) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The + symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x_1 \times x_2\) without computing them in prior steps; \(I(x_1 \times x_2)\) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1^2)\).

model the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

data the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

Additional arguments passed to zelig, relevant for the model to be estimated.

• \(b_0\): prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value, that value will be the prior mean for all the coefficients. The default is 0.

• \(B_0\): prior precision parameter for the coefficients, either a square matrix (with the dimensions equal to the number of the coefficients) or a scalar. If a scalar value, that value times an identity matrix will be the prior precision parameter. The default is 0, which leads to an improper prior.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_poissonbayes.html

Examples

data(sanction)
z.out <- zelig(num ~ target + coop, model = "poisson.bayes", data = sanction, verbose = FALSE)
Zelig-poisson-class

by: a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

cite: If is set to ‘TRUE’ (default), the model citation will be printed to the console.

id: where id is a variable which identifies the clusters. The data should be sorted by id and should be ordered within each cluster when appropriate

corstr: character string specifying the correlation structure: "independence", "exchangeable", "ar1", "unstructured" and "userdefined"

geeglm: See geeglm in package geepack for other function arguments

Details

Additional parameters available to this model include:

• weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.

• bootstrap: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstrap.html.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_poisson.html

Examples

library(Zelig)
data(sanction)
z.out <- zelig(num ~ target + coop, model = "poisson", data = sanction)summary(z.out)
Zelig-poisson-gee-class

Generalized Estimating Equation for Poisson Regression

Description

Generalized Estimating Equation for Poisson Regression

Arguments

- **formula**: a symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the explanatory variables, and \(y, x_1, \) and \(x_2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \(+ \) symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x_1 \times x_2 \) without computing them in prior steps; \(I(x_1 \times x_2) \) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1^2) \).

- **model**: the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

- **data**: the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

- **by**: a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

- **cite**: If is set to ‘TRUE’ (default), the model citation will be printed to the console.

- **id**: where id is a variable which identifies the clusters. The data should be sorted by id and should be ordered within each cluster when appropriate

- **corstr**: character string specifying the correlation structure: "independence", "exchangeable", "ar1", "unstructured" and "userdefined"

- **gee glm**: See geeglm in package geepack for other function arguments

Details

Additional parameters available to this model include:

- **weights**: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.

- **bootstrap**: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootsraps.html.
Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_poissongee.html

Examples

library(Zelig)
library(Zelig)
data(sanction)
sanction$cluster <- c(rep(c(1:15), 5), rep(c(16), 3))
sorted.sanction <- sanction[order(sanction$cluster),]
z.out <- zelig(num ~ target + coop, model = "poisson.gee", id = "cluster", data = sorted.sanction)
summary(z.out)

Zelig-poisson-survey-class

Poisson Regression with Survey Weights

Description

Poisson Regression with Survey Weights

Arguments

formula a symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the explanatory variables, and \(y, x_1, \) and \(x_2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The + symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x_1 \times x_2 \) without computing them in prior steps; \(I(x_1 \times x_2) \) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1^2) \).

model the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

data the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

... additional arguments passed to zelig, relevant for the model to be estimated.
by a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

cite If is set to ’TRUE’ (default), the model citation will be printed to the console.

Details

Additional parameters available to this model include:

- weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.
- bootstrap: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstraps.html.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_poissonsurvey.html

Examples

library(Zelig)
data(api, package="survey")
z.out <- zelig(enroll ~ api99 + yr.rnd, model = "poissonsurvey", data = apistrat)
summary(z.out)
Arguments

- **formula**: a symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the explanatory variables, and \(y, x_1, \) and \(x_2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The + symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x_1 \times x_2 \) without computing them in prior steps; \(I(x_1 \times x_2) \) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1^2) \).

- **model**: the name of a statistical model to estimate. For a list of supported models and their documentation see: http://docs.zeligproject.org/articles/.

- **data**: the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

- **by**: a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. For example, to run the same model on all fifty states, you could use: `z.out <- zelig(y ~ x_1 + x_2, data = mydata, model = 'ls', by = 'state')`. You may also use by to run models using MatchIt subclasses.

- **cite**: If set to ‘TRUE’ (default), the model citation will be printed to the console.

Details

Additional parameters available to this model include:

- **weights**: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.

- **burnin**: number of the initial MCMC iterations to be discarded (defaults to 1,000).

- **mcmc**: number of the MCMC iterations after burnin (defaults to 10,000).

- **thin**: thinning interval for the Markov chain. Only every thin-th draw from the Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1.

- **verbose**: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed to the screen.

- **seed**: seed for the random number generator. The default is NA which corresponds to a random seed of 12345.

- **beta.start**: starting values for the Markov chain, either a scalar or vector with length equal to the number of estimated coefficients. The default is NA, such that the maximum likelihood estimates are used as the starting values.

Use the following parameters to specify the model’s priors:

- **b0**: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value, that value will be the prior mean for all the coefficients. The default is 0.
Zelig-probit-class

- B_0: prior precision parameter for the coefficients, either a square matrix (with the dimensions equal to the number of the coefficients) or a scalar. If a scalar value, that value times an identity matrix will be the prior precision parameter. The default is 0, which leads to an improper prior.

Use the following arguments to specify optional output for the model:

- `bayes.resid`: defaults to FALSE. If TRUE, the latent Bayesian residuals for all observations are returned. Alternatively, users can specify a vector of observations for which the latent residuals should be returned.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using `summary(z.out)` or individually extracted using, for example, `coef(z.out)`. See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using `from_zelig_model`.

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_probitbayes.html

Examples

```r
data(turnout)
z.out <- zelig(vote ~ race + educate, model = "probit.bayes", data = turnout, verbose = FALSE)
summary(z.out)
```

Zelig-probit-class

Probit Regression for Dichotomous Dependent Variables

Description

Probit Regression for Dichotomous Dependent Variables

Arguments

- `formula`: a symbolic representation of the model to be estimated, in the form $y \sim x_1 + x_2$, where y is the dependent variable and x_1 and x_2 are the explanatory variables, and y, x_1, and x_2 are contained in the same dataset. (You may include more than two explanatory variables, of course.) The $+$ symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form $x_1 x_2$ without computing them in prior steps; $I(x_1 x_2)$ to include only the interaction term and exclude the main effects; and quadratic terms in the form $I(x_1^2)$.

- `model`: the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.
the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

... additional arguments passed to zelig, relevant for the model to be estimated.

by a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

cite If is set to ‘TRUE’ (default), the model citation will be printed to the console.

Details

Additional parameters available to this model include:

- weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.
- bootstrap: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstrap.html.

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_probit.html

Examples

data(turnout)
z.out <- zelig(vote ~ race + educate, model = "probit", data = turnout)summary(z.out)x.out <- setx(z.out)s.out <- sim(z.out, x = x.out)summary(s.out)plot(s.out)
Arguments

formula
a symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the explanatory variables, and \(y \), \(x_1 \), and \(x_2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The + symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x_1 \times x_2 \) without computing them in prior steps; \(I(x_1 \times x_2) \) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1^2) \).

model
the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

data
the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or `to_zelig_mi`).

...
additional arguments passed to `zelig`, relevant for the model to be estimated.

by
a factor variable contained in `data`. If supplied, `zelig` will subset the data frame based on the levels in the `by` variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use `by` to run models using MatchIt subclasses.

cite
If is set to `TRUE` (default), the model citation will be printed to the console.

corstr
character string specifying the correlation structure: "independence", "exchangeable", "ar1", "unstructured" and "userdefined"

See `geeglm` in package `geepack` for other function arguments.

id
where `id` is a variable which identifies the clusters. The data should be sorted by `id` and should be ordered within each cluster when appropriate

corstr
character string specifying the correlation structure: "independence", "exchangeable", "ar1", "unstructured" and "userdefined"

geeglm
See `geeglm` in package `geepack` for other function arguments

Details

Additional parameters available to this model include:

- **weights**: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.

- **bootstrap**: logical or numeric. If `FALSE` don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstraps.html.
Zelig-probit-survey-class

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_probitgee.html

Examples

data(turnout)
turnout$cluster <- rep(c(1:200), 10)
sorted.turnout <- turnout[order(turnout$cluster),]
z.out1 <- zelig(vote ~ race + educate, model = "probit.gee", id = "cluster", data = sorted.turnout)
summary(z.out1)

Zelig-probit-survey-class

Probit Regression with Survey Weights

Description

@param formula a symbolic representation of the model to be estimated, in the form y ~ x1 + x2, where y is the dependent variable and x1 and x2 are the explanatory variables, and y, x1, and x2 are contained in the same dataset. (You may include more than two explanatory variables, of course.)
The + symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form x1*x2 without computing them in prior steps: I(x1*x2) to include only the interaction term and exclude the main effects; and quadratic terms in the form I(x1^2).

Arguments

model the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.
data the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).
... additional arguments passed to zelig, relevant for the model to be estimated.
by a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.
cite: If is set to 'TRUE' (default), the model citation will be printed to the console.

below: point at which the dependent variable is censored from below. If the dependent variable is only censored from above, set below = -Inf. The default value is 0.

above: point at which the dependent variable is censored from above. If the dependent variable is only censored from below, set above = Inf. The default value is Inf.

Details

Additional parameters available to this model include:

- weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.
- burnin: number of the initial MCMC iterations to be discarded (defaults to 1,000).
- mcmc: number of the MCMC iterations after burnin (defaults to 10,000).
- thin: thinning interval for the Markov chain. Only every thin-th draw from the Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1.
- verbose: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed to the screen.
- seed: seed for the random number generator. The default is NA which corresponds to a random seed of 12345.
- beta.start: starting values for the Markov chain, either a scalar or vector with length equal to the number of estimated coefficients. The default is NA, such that the maximum likelihood estimates are used as the starting values.

Use the following parameters to specify the model’s priors:

- b0: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value, that value will be the prior mean for all the coefficients. The default is 0.
- B0: prior precision parameter for the coefficients, either a square matrix (with the dimensions equal to the number of the coefficients) or a scalar. If a scalar value, that value times an identity matrix will be the prior precision parameter. The default is 0, which leads to an improper prior.
- c0: c0/2 is the shape parameter for the Inverse Gamma prior on the variance of the disturbance terms.
- d0: d0/2 is the scale parameter for the Inverse Gamma prior on the variance of the disturbance terms.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.
Zelig-quantile-class

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_probitsurvey.html

Examples

data(api, package="survey")
z.out1 <- zelig(enroll ~ api99 + yr.rnd ,
model = "poisson.survey", data = apistrat)
summary(z.out1)
x.low <- setx(z.out1, api99= quantile(apistrat$api99, 0.2))
x.high <- setx(z.out1, api99= quantile(apistrat$api99, 0.8))
s.out1 <- sim(z.out1, x=x.low, x1=x.high)
summary(s.out1)
plot(s.out1)

Zelig-quantile-class Quantile Regression for Continuous Dependent Variables

Description

Quantile Regression for Continuous Dependent Variables

Arguments

formula a symbolic representation of the model to be estimated, in the form y ~ x1 + x2, where y is the dependent variable and x1 and x2 are the explanatory variables, and y, x1, and x2 are contained in the same dataset. (You may include more than two explanatory variables, of course.) The + symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form x1*x2 without computing them in prior steps; I(x1*x2) to include only the interaction term and exclude the main effects; and quadratic terms in the form I(x1^2).

model the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

data the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

... additional arguments passed to zelig, relevant for the model to be estimated.

by a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

cite If is set to ’TRUE’ (default), the model citation will be printed to the console.
Details

In addition to the standard inputs, zelig takes the following additional options for quantile regression:

- **tau**: defaults to 0.5. Specifies the conditional quantile(s) that will be estimated. 0.5 corresponds to estimating the conditional median, 0.25 and 0.75 correspond to the conditional quartiles, etc. tau vectors with length greater than 1 are not currently supported. If tau is set outside of the interval [0,1], zelig returns the solution for all possible conditional quantiles given the data, but does not support inference on this fit (setx and sim will fail).

- **se**: a string value that defaults to "nid". Specifies the method by which the covariance matrix of coefficients is estimated during the sim stage of analysis. se can take the following values, which are passed to the summary.rq function from the quantreg package. These descriptions are copied from the summary.rq documentation.
 - "iid" which presumes that the errors are iid and computes an estimate of the asymptotic covariance matrix as in KB(1978).
 - "nid" which presumes local (in tau) linearity (in x) of the the conditional quantile functions and computes a Huber sandwich estimate using a local estimate of the sparsity.
 - "ker" which uses a kernel estimate of the sandwich as proposed by Powell(1990).

- **...**: additional options passed to rq when fitting the model. See documentation for rq in the quantreg package for more information.

Additional parameters available to this model include:

- **weights**: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.

- **bootstrap**: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstrap.html.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

Methods

zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE) The zelig function estimates a variety of statistical models

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_quantile.html
Examples

```r
library(Zelig)
data(stackloss)
z.out1 <- zelig(stack.loss ~ Air.Flow + Water.Temp + Acid.Conc.,
model = "rq", data = stackloss, tau = 0.5)
summary(z.out1)
```

Zelig-relogit-class Rare Events Logistic Regression for Dichotomous Dependent Variables

Description

Rare Events Logistic Regression for Dichotomous Dependent Variables

Arguments

- **formula**: a symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the explanatory variables, and \(y, x_1, \) and \(x_2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The `+` symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x_1 \times x_2 \) without computing them in prior steps; \(I(x_1 \times x_2) \) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1^2) \).

- **model**: the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

- **data**: the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

- **...**: additional arguments passed to zelig, relevant for the model to be estimated.

- **by**: a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

- **cite**: If is set to ‘TRUE’ (default), the model citation will be printed to the console.

Details

The relogit procedure supports four optional arguments in addition to the standard arguments for zelig(). You may additionally use:

- **tau**: a vector containing either one or two values for tau, the true population fraction of ones. Use, for example, `tau = c(0.05, 0.1)` to specify that the lower bound on tau is 0.05 and the upper bound is 0.1. If left unspecified, only finite-sample bias correction is performed, not case-control correction.
• case.control: if tau is specified, choose a method to correct for case-control sampling design: "prior" (default) or "weighting".

• bias.correct: a logical value of TRUE (default) or FALSE indicating whether the intercept should be corrected for finite sample (rare events) bias.

Additional parameters available to many models include:

• weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.

• bootstrap: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstraps.html.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

Methods

modcall_formula_transformer() Transform model call formula.
show(signif.stars = FALSE, subset = NULL, bagging = FALSE) Display a Zelig object
zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE) The zelig function estimates a variety of statistical models

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_relogit.html

Examples

library(Zelig)
data(mid)
z.out1 <- zelig(conflict ~ major + contig + power + maxdem + mindem + years,
 data = mid, model = "relogit", tau = 1042/303772)
summary(z.out1)
Zelig-survey-class

Survey models in Zelig for weights for complex sampling designs

Description

Survey models in Zelig for weights for complex sampling designs

Methods

```
zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE)
```
The `zelig` function estimates a variety of statistical models

Zelig-timeseries-class

Time-series models in Zelig

Description

Time-series models in Zelig

Methods

```
packagename()
```
Automatically retrieve wrapped package name

```
sim(num = NULL)
```
Generic Method for Computing and Organizing Simulated Quantities of Interest

```
zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE)
```
The `zelig` function estimates a variety of statistical models

Zelig-tobit-bayes-class

Bayesian Tobit Regression

Description

Bayesian Tobit Regression
Arguments

formula
A symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the explanatory variables, and \(y, x_1, \) and \(x_2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The \(+ \) symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x_1 \times x_2 \) without computing them in prior steps; \(I(x_1 \times x_2) \) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1^2) \).

model
The name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

data
The name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or `to_zelig_mi`).

... additional arguments passed to `zelig`, relevant for the model to be estimated.

by
A factor variable contained in `data`. If supplied, `zelig` will subset the data frame based on the levels in the `by` variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use `by` to run models using MatchIt subclasses.

cite
If set to `TRUE` (default), the model citation will be printed to the console.

below:
Point at which the dependent variable is censored from below. If the dependent variable is only censored from above, set `below = -Inf`. The default value is 0.

above:
Point at which the dependent variable is censored from above. If the dependent variable is only censored from below, set `above = Inf`. The default value is `Inf`.

below:
Point at which the dependent variable is censored from below. If the dependent variable is only censored from above, set `below = -Inf`. The default value is 0.

above:
Point at which the dependent variable is censored from above. If the dependent variable is only censored from below, set `above = Inf`. The default value is `Inf`.

Details

Additional parameters available to this model include:

- **weights**: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.
- **burnin**: number of the initial MCMC iterations to be discarded (defaults to 1,000).
- **mcmc**: number of the MCMC iterations after burnin (defaults to 10,000).
- **thin**: thinning interval for the Markov chain. Only every thin-th draw from the Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1.
- **verbose**: defaults to FALSE. If TRUE, the progress of the sampler (every 10%) is printed to the screen.
- **seed**: seed for the random number generator. The default is NA which corresponds to a random seed of 12345.
- `beta.start`: starting values for the Markov chain, either a scalar or vector with length equal to the number of estimated coefficients. The default is `NA`, such that the maximum likelihood estimates are used as the starting values.

Use the following parameters to specify the model's priors:

- `b0`: prior mean for the coefficients, either a numeric vector or a scalar. If a scalar value, that value will be the prior mean for all the coefficients. The default is 0.
- `B0`: prior precision parameter for the coefficients, either a square matrix (with the dimensions equal to the number of the coefficients) or a scalar. If a scalar value, that value times an identity matrix will be the prior precision parameter. The default is 0, which leads to an improper prior.
- `c0`: `c0/2` is the shape parameter for the Inverse Gamma prior on the variance of the disturbance terms.
- `d0`: `d0/2` is the scale parameter for the Inverse Gamma prior on the variance of the disturbance terms.

Value

Depending on the class of model selected, `zelig` will return an object with elements including `coefficients`, `residuals`, and `formula` which may be summarized using `summary(z.out)` or individually extracted using, for example, `coef(z.out)`. See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using `from_zelig_model`.

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_tobitbayes.html

Examples

```r
data(turnout)
z.out <- zelig(vote ~ race + educate, model = "tobit.bayes", data = turnout, verbose = FALSE)
```

Zelig-tobit-class
Linear Regression for a Left-Censored Dependent Variable

Description

Linear Regression for a Left-Censored Dependent Variable
Arguments

formula
A symbolic representation of the model to be estimated, in the form \(y \sim x_1 + x_2 \), where \(y \) is the dependent variable and \(x_1 \) and \(x_2 \) are the explanatory variables, and \(y, x_1, \) and \(x_2 \) are contained in the same dataset. (You may include more than two explanatory variables, of course.) The + symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form \(x_1 \times x_2 \) without computing them in prior steps; \(I(x_1 \times x_2) \) to include only the interaction term and exclude the main effects; and quadratic terms in the form \(I(x_1^2) \).

model
The name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

data
The name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

by
A factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

cite
If is set to ‘TRUE’ (default), the model citation will be printed to the console.

below
(defaults to 0) The point at which the dependent variable is censored from below. If any values in the dependent variable are observed to be less than the censoring point, it is assumed that that particular observation is censored from below at the observed value.

above
(defaults to 0) The point at which the dependent variable is censored from above
If any values in the dependent variable are observed to be more than the censoring point, it is assumed that that particular observation is censored from above at the observed value.

robust
Defaults to FALSE. If TRUE, zelig() computes robust standard errors based on sandwich estimators and the options selected in cluster.

cluster
If robust = TRUE, you may select a variable to define groups of correlated observations. Let \(x_3 \) be a variable that consists of either discrete numeric values, character strings, or factors that define strata. Then \(\text{z.out <- zelig}(y \sim x_1 + x_2, \text{robust} = \text{TRUE}, \text{cluster} = "x3", \text{model} = \text{"tobit"}, \text{data} = \text{mydata}) \) means that the observations can be correlated within the strata defined by the variable \(x_3 \), and that robust standard errors should be calculated according to those clusters. If robust = TRUE but cluster is not specified, zelig() assumes that each observation falls into its own cluster.

Details

Additional parameters avalialable to this model include:

- weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.
• bootstrap: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstraps.html.

Value

Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

Methods

zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE) The zelig function estimates a variety of statistical models

See Also

Vignette: http://docs.zeligproject.org/articles/zelig_tobit.html

Examples

library(Zelig)
data(tobin)
z.out <- zelig(durable ~ age + quant, model = "tobit", data = tobin)
summary(z.out)

Zelig-weibull-class Weibull Regression for Duration Dependent Variables

Description

Weibull Regression for Duration Dependent Variables

Arguments

formula a symbolic representation of the model to be estimated, in the form y ~ x1 + x2, where y is the dependent variable and x1 and x2 are the explanatory variables, and y, x1, and x2 are contained in the same dataset. (You may include more than two explanatory variables, of course.) The + symbol means “inclusion” not “addition.” You may also include interaction terms and main effects in the form x1*x2 without computing them in prior steps; I(x1^2) to include only the interaction term and exclude the main effects; and quadratic terms in the form I(x1^2).
model: the name of a statistical model to estimate. For a list of other supported models and their documentation see: http://docs.zeligproject.org/articles/.

data: the name of a data frame containing the variables referenced in the formula or a list of multiply imputed data frames each having the same variable names and row numbers (created by Amelia or to_zelig_mi).

...additional arguments passed to zelig, relevant for the model to be estimated.

by: a factor variable contained in data. If supplied, zelig will subset the data frame based on the levels in the by variable, and estimate a model for each subset. This can save a considerable amount of effort. You may also use by to run models using MatchIt subclasses.

cite: If is set to 'TRUE' (default), the model citation will be printed to the console.

Details
In addition to the standard inputs, zelig() takes the following additional options for weibull regression:

- robust: defaults to FALSE. If TRUE, zelig() computes robust standard errors based on sandwich estimators based on the options in cluster.
- cluster: if robust = TRUE, you may select a variable to define groups of correlated observations. Let x3 be a variable that consists of either discrete numeric values, character strings, or factors that define strata. Then z.out <- zelig(y ~ x1 + x2, robust = TRUE, cluster = "x3", means that the observations can be correlated within the strata defined by the variable x3, and that robust standard errors should be calculated according to those clusters. If robust=TRUE but cluster is not specified, zelig() assumes that each observation falls into its own cluster.

Additional parameters available to this model include:

- weights: vector of weight values or a name of a variable in the dataset by which to weight the model. For more information see: http://docs.zeligproject.org/articles/weights.html.
- bootstrap: logical or numeric. If FALSE don’t use bootstraps to robustly estimate uncertainty around model parameters due to sampling error. If an integer is supplied, the number of bootstraps to run. For more information see: http://docs.zeligproject.org/articles/bootstraps.html.

Value
Depending on the class of model selected, zelig will return an object with elements including coefficients, residuals, and formula which may be summarized using summary(z.out) or individually extracted using, for example, coef(z.out). See http://docs.zeligproject.org/articles/getters.html for a list of functions to extract model components. You can also extract whole fitted model objects using from_zelig_model.

Methods
zelig(formula, data, model = NULL, ..., weights = NULL, by, bootstrap = FALSE) The zelig function estimates a variety of statistical models.
See Also

Vignette: http://docs.zeligproject.org/articles/zelig_weibull.html

Examples

data(coalition)
z.out <- zelig(Surv(duration, ciep12) ~ fract + numst2, model = "weibull", data = coalition)

Description

Table of links for `help.zelig` for the core Zelig package.

zelig_qi_to_df

Extract simulated quantities of interest from a zelig object

Description

Extract simulated quantities of interest from a zelig object

Usage

`zelig_qi_to_df(obj)`

Arguments

obj a zelig object with simulated quantities of interest

Details

A simulated quantities of interest in a tidy data formatted data.frame. This can be useful for creating custom plots.

Each row contains a simulated value and each column contains:

- `setx_value` whether the simulations are from the base x setx or the contrasting x1 for finding first differences.
- The fitted values specified in setx including a by column if by was used in the `zelig` call.
- `expected_value`
- `predicted_value`

For multinomial response models, a separate column is given for the expected probability of each outcome in the form `expected_*`. Additionally, there a is column of the predicted outcomes (`predicted_value`).
Author(s)

Christopher Gandrud

Source

For a discussion of tidy data see https://www.jstatsoft.org/article/view/v059i10.

See Also

qi_slimmer

Examples

```r
### QIs without first difference or range, from covariates fitted at
### central tendencies
z.1 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris,
model = "ls")
z.1 <- setx(z.1)
z.1 <- sim(z.1)
head(zelig_qi_to_df(z.1))

### QIs for first differences
z.2 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris,
model = "ls")
z.2a <- setx(z.2, Petal.Length = 2)
z.2b <- setx(z.2, Petal.Length = 4.4)
z.2 <- sim(z.2, x = z.2a, x1 = z.2a)
head(zelig_qi_to_df(z.2))

### QIs for first differences, estimated by Species
z.3 <- zelig(Petal.Width ~ Petal.Length, by = "Species", data = iris,
model = "ls")
z.3a <- setx(z.3, Petal.Length = 2)
z.3b <- setx(z.3, Petal.Length = 4.4)
z.3 <- sim(z.3, x = z.3a, x1 = z.3a)
head(zelig_qi_to_df(z.3))

### QIs for a range of fitted values
z.4 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris,
model = "ls")
z.4 <- setx(z.4, Petal.Length = 2:4)
z.4 <- sim(z.4)
head(zelig_qi_to_df(z.4))

### QIs for a range of fitted values, estimated by Species
z.5 <- zelig(Petal.Width ~ Petal.Length, by = "Species", data = iris,
model = "ls")
z.5 <- setx(z.5, Petal.Length = 2:4)
z.5 <- sim(z.5)
head(zelig_qi_to_df(z.5))

### QIs for two ranges of fitted values
```
zelig_setx_to_df

Extracted fitted values from a Zelig object with setx values

Description

Extracted fitted values from a Zelig object with setx values

Usage

zelig_setx_to_df(obj)

Arguments

obj

a zelig object with simulated quantities of interest

Details

Fitted (setx) values in a tidy data formatted data.frame. This was designed to enable the WhatIf package's whatif function to extract "counterfactuals".

Author(s)

Christopher Gandrud

Examples

QIs without first difference or range, from covariates fitted at central tendencies
z.1 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "ls")
z.1 <- setx(z.1)
zelig_setx_to_df(z.1)

QIs for first differences
z.2 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "ls")
z.2 <- setx(z.2, Petal.Length = 2)
z.2 <- setx1(z.2, Petal.Length = 4.4)
zelig_setx_to_df(z.2)

QIs for first differences, estimated by Species

z.4 <- zelig_setx_to_df(z.6)
z.3 <- zelig(Petal.Width ~ Petal.Length, by = "Species", data = iris, model = "1s")

z.3 <- setx(z.3, Petal.Length = 2)
z.3 <- setx!(z.3, Petal.Length = 4.4)
zelig_setx_to_df(z.3)

QIs for a range of fitted values
z.4 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "1s")
z.4 <- setx(z.4, Petal.Length = 2:4)
zelig_setx_to_df(z.4)

QIs for a range of fitted values, estimated by Species
z.5 <- zelig(Petal.Width ~ Petal.Length, by = "Species", data = iris, model = "1s")
z.5 <- setx(z.5, Petal.Length = 2:4)
zelig_setx_to_df(z.5)

QIs for two ranges of fitted values
z.6 <- zelig(Petal.Width ~ Petal.Length + Species, data = iris, model = "1s")
z.6 <- setx(z.6, Petal.Length = 2:4, Species = "setosa")
z.6 <- setx!(z.6, Petal.Length = 2:4, Species = "virginica")
zelig_setx_to_df(z.6)
Index

*Topic datasets
approval, 5
bivariate, 7
CigarettesSW, 8
coalition, 9
coalition2, 10
eidat, 14
free1, 15
free2, 17
friendship, 18
grunfeld, 21
hoff, 22
homerun, 22
immigration, 23
klein, 29
kmenta, 29
macro, 30
MatchIt.url, 30
mexico, 31
mid, 32
model_lookup.df, 33
newpainters, 34
PERisk, 35
sanction, 40
seatshare, 41
sna.ex, 47
SupremeCourt, 48
swiss, 49
tobin, 50
turnout, 52
voteincome, 54
Weimar, 55
Zelig.url, 121

*Topic file
setx, 41
setx1, 43

approval, 5
ATT, 6
avg, 6

bivariate, 7
ci.plot, 7
CigarettesSW, 8
cluster.formula, 9
coalition, 9
coalition2, 10
coef,Zelig-method, 11
coefficients,Zelig-method, 11
combine_coef_se, 12
createJSON, 13
df.residual,Zelig-method, 14
eidat, 14
fitted,Zelig-method, 15
free1, 15
free2, 17
friendship, 18
from_zelig_model, 19, 57, 58, 60, 65, 67, 69, 70, 72, 74, 77, 78, 80, 82, 84–86, 88, 90, 91, 93, 95, 97, 98, 100, 101, 103, 104, 106, 109, 110, 112, 114, 117, 119, 120
get_pvalue, 20
get_qi, 20
get_se, 21
grunfeld, 21
hoff, 22
homerun, 22

imm1(immigration), 23
imm2(immigration), 23
imm3(immigration), 23
imm4(immigration), 23
imm5(immigration), 23
immigration, 23
is_length_not_1, 24
Zelig-lognorm-class, 82
Zelig-1s-class, 84
Zelig-ma-class, 85
Zelig-mlogit-bayes-class, 87
Zelig-negbin-class, 89
Zelig-normal-bayes-class, 90
Zelig-normal-class, 92
Zelig-normal-gee-class, 94
Zelig-normal-survey-class, 96
Zelig-oiprobit-bayes-class, 97
Zelig-poisson-bayes-class, 98
Zelig-poisson-class, 100
Zelig-poisson-gee-class, 102
Zelig-poisson-survey-class, 103
Zelig-probit-bayes-class, 104
Zelig-probit-class, 106
Zelig-probit-gee-class, 107
Zelig-probit-survey-class, 109
Zelig-quantile-class, 111
Zelig-relogit-class, 113
Zelig-survey-class, 115
Zelig-timeseries-class, 115
Zelig-tobit-bayes-class, 115
Zelig-tobit-class, 117
Zelig-weibull-class, 119
Zelig-url, 121
zelig_qi_to_df, 38, 121
zelig_setx_to_df, 123
zexp (Zelig-exp-class), 63
zfactorbayes
 (Zelig-factor-bayes-class), 65
zgamma (Zelig-gamma-class), 68
zgammagee (Zelig-gamma-gee-class), 69
zgamma survey
 (Zelig-gamma-survey-class), 71
zgee (Zelig-gee-class), 72
zglm (Zelig-glm-class), 73
zivreg (Zelig-ivreg-class), 73
zlogit (Zelig-logit-class), 77
zlogitbayes (Zelig-logit-bayes-class), 75
zlogitgee (Zelig-logit-gee-class), 79
zlogitsurvey
 (Zelig-logit-survey-class), 81
zlognorm (Zelig-lognorm-class), 82
zls (Zelig-1s-class), 84
zma (Zelig-ma-class), 85
zmlogitbayes
 (Zelig-mlogit-bayes-class), 87
znegbin (Zelig-negbin-class), 89
znormal (Zelig-normal-class), 92
znormalbayes
 (Zelig-normal-bayes-class), 90
znormalgee (Zelig-normal-gee-class), 94
znormalsurvey
 (Zelig-normal-survey-class), 96
zprobitbayes
 (Zelig-oiprobit-bayes-class), 97
zpoisson (Zelig-poisson-class), 100
zpoissonbayes
 (Zelig-poisson-bayes-class), 98
zpoisongee (Zelig-poisson-gee-class), 102
zpoisson survey
 (Zelig-poisson-survey-class), 103
zprobit (Zelig-probit-class), 106
zprobitbayes
 (Zelig-probit-bayes-class), 104
zprobitgee (Zelig-probit-gee-class), 107
zprobitsurvey
 (Zelig-probit-survey-class), 109
zquantile (Zelig-quantile-class), 111
zrelogit (Zelig-relogit-class), 113
zsurvey (Zelig-survey-class), 115
ztimeseries (Zelig-timeseries-class), 115
ztobit (Zelig-tobit-class), 117
ztobitbayes (Zelig-tobit-bayes-class), 115
zweibull (Zelig-weibull-class), 119