Package ‘amen’

May 25, 2017

Title Additive and Multiplicative Effects Models for Networks and Relational Data

Version 1.3

Author Peter Hoff, Bailey Fosdick, Alex Volfovsky, Yanjun He

Description Analysis of dyadic network and relational data using additive and multiplicative effects (AME) models. The basic model includes regression terms, the covariance structure of the social relations model (Warner, Kenny and Stoto (1979) <DOI:10.1037/0022-3514.37.10.1742>, Wong (1982) <DOI:10.2307/2287296>), and multiplicative factor models (Hoff(2009) <DOI:10.1007/s10588-008-9040-4>). Four different link functions accommodate different relational data structures, including binary/network data (bin), normal relational data (nrm), ordinal relational data (ord) and data from fixed-rank nomination schemes (frn). Several of these link functions are discussed in Hoff, Fosdick, Volfovsky and Stovel (2013) <DOI:10.1017/nws.2013.17>. Development of this software was supported in part by NIH grant R01HD067509.

Maintainer Peter Hoff <peter.hoff@duke.edu>

License GPL-3

Date 2017-05-23

LazyData true

Depends R (>= 2.10)

Suggests coda, network, knitr

VignetteBuilder knitr

RoxygenNote 5.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2017-05-25 00:31:52 UTC
R topics documented:

amen-package .. 3
addhealthc3 ... 4
addhealthc9 ... 4
addlines .. 5
ame ... 6
ame_rep ... 8
circplot ... 10
coldwar .. 11
comtrade .. 11
design_array ... 12
dutchcollege .. 12
e12sm .. 13
gofstats ... 14
IR90s .. 15
lazegalaw ... 15
mhalf ... 16
netplot .. 17
plot.ame ... 17
raSab_bin_fc ... 18
raSab_cbin_fc ... 18
raSab_frn_fc ... 19
rbeta_ab_fc ... 21
rbeta_ab_rep_fc .. 22
rmvnorm ... 22
rrho_mh .. 23
rrho_mh_rep ... 24
rs2_fc ... 24
rs2_rep_fc .. 25
rUV_fc ... 26
rUV_rep_fc ... 26
rUV_sym_fc ... 27
rwish .. 28
rZ_bin_fc .. 29
rZ_cbin_fc .. 29
rZ_frn_fc .. 30
rZ_nrm_fc .. 31
rZ_ord_fc .. 32
rZ_rrl_fc .. 32
sampsonmonks ... 33
sheep .. 33
simY_bin ... 34
simY_frn ... 34
simY_nrm .. 35
simY_ord ... 35
simY_rrl .. 36
simZ ... 37
Additive and Multiplicative Effects Models for Networks and Relational Data

Analysis of network and relational data using additive and multiplicative effects (AME) models. The basic model includes regression terms, the covariance structure of the social relations model (Warner, Kenny and Stoto (1979), Wong (1982)), and multiplicative factor effects (Hoff (2009)). Four different link functions accommodate different relational data structures, including binary/network data (bin), normal relational data (nrm), ordinal relational data (ord) and data from fixed-rank nomination schemes (frn). Several of these link functions are discussed in Hoff, Fosdick, Volfovsky and Stovel (2013). Development of this software was supported in part by NICHD grant R01HD067509.

Details

Package: amen
Type: Package
Version: 1.3
Date: 2017-05-23
License: GPL-3

Author(s)

Peter Hoff, Bailey Fosdick, Alex Volfovsky, Yanjun He
Maintainer: Peter Hoff <peter.hoff@duke.edu>

Examples
addhealthc3
AddHealth community 3 data

Description

A valued sociomatrix (Y) and matrix of nodal attributes (X) for students in community 3 of the AddHealth study.

- **Y**: A sociomatrix in which the value of the edge corresponds to an ad-hoc measure of intensity of the relation. Note that students were only allowed to nominate up to 5 male friends and 5 female friends.
- **X**: Matrix of students attributes, including sex, race (1=white, 2=black, 3=hispanic, 4=asian, 5=mixed/other) and grade.

Usage

data(addhealthc3)

Format

list

addhealthc9
AddHealth community 9 data

Description

A valued sociomatrix (Y) and matrix of nodal attributes (X) for students in community 9 of the AddHealth study.

- **Y**: A sociomatrix in which the value of the edge corresponds to an ad-hoc measure of intensity of the relation. Note that students were only allowed to nominate up to 5 male friends and 5 female friends.
- **X**: Matrix of students attributes, including sex, race (1=white, 2=black, 3=hispanic, 4=asian, 5=mixed/other) and grade.
addlines

Usage

data(addhealthc9)

Format

list

addlines Add lines

Description

Add lines to a network plot

Usage

addlines(Y,X,col="lightblue",alength=0,...)

Arguments

\n Y a sociomatrix
 X coordinates of nodes
 col color of lines. Can be a vector of length equal to the number of edges to be drawn
 alength length of arrows to be drawn
 ... additional plotting parameters

Author(s)

Peter Hoff

Examples

data(addhealthc3)
Y<-addhealthc3$Y
X<-xnet(Y)
netplot(Y,X)
addlines(Y,X,col=Y[Y!==0])
AME model fitting routine

Description

An MCMC routine providing a fit to an additive and multiplicative effects (AME) regression model to relational data of various types.

Usage

```r
ame(Y, Xdyad=NULL, Xrow=NULL, Xcol=NULL, rvar = !(model=="rlr"),
cvar = TRUE, dcor = !is.symmetric, nvar=TRUE, R = 0, model="nrm",
intercept=!is.element(model,c("rlr","ord")),
symmetric=FALSE,
odmax=rep(max(apply(Y>0,1,sum,na.rm=TRUE)),nrow(Y)), seed = 1, nscan =
10000, burn = 500, odens = 25, plot=TRUE, print = TRUE, gof=TRUE)
```

Arguments

- `Y`: an n x n square relational matrix of relations. See model below for various data types.
- `Xdyad`: an n x n x pd array of covariates
- `Xrow`: an n x pr matrix of nodal row covariates
- `Xcol`: an n x pc matrix of nodal column covariates
- `rvar`: logical: fit row random effects (asymmetric case)?
- `cvar`: logical: fit column random effects (asymmetric case)?
- `dcor`: logical: fit a dyadic correlation (asymmetric case)?
- `nvar`: logical: fit nodal random effects (symmetric case)?
- `R`: integer: dimension of the multiplicative effects (can be zero)
- `model`: character: one of "nrm","bin","ord","cbin","frn","rrl" - see the details below
- `intercept`: logical: fit model with an intercept?
- `symmetric`: logical: Is the sociomatrix symmetric by design?
- `odmax`: a scalar integer or vector of length n giving the maximum number of nominations that each node may make - used for "frn" and "cbin" models
- `seed`: random seed
- `nscan`: number of iterations of the Markov chain (beyond burn-in)
- `burn`: burn in for the Markov chain
- `odens`: output density for the Markov chain
- `plot`: logical: plot results while running?
- `print`: logical: print results while running?
- `gof`: logical: calculate goodness of fit statistics?
Details

This command provides posterior inference for parameters in AME models of relational data, assuming one of six possible data types/models:

"nrm": A normal AME model.
"bin": A binary probit AME model.
"ord": An ordinal probit AME model. An intercept is not identifiable in this model.
"cbin": An AME model for censored binary data. The value of 'odmax' specifies the maximum number of links each row may have.
"frn": An AME model for fixed rank nomination networks. A higher value of the rank indicates a stronger relationship. The value of 'odmax' specifies the maximum number of links each row may have.
"rrl": An AME model based on the row ranks. This is appropriate if the relationships across rows are not directly comparable in terms of scale. An intercept, row random effects and row regression effects are not estimable for this model.

Value

BETA posterior samples of regression coefficients
VC posterior samples of the variance parameters
APM posterior mean of additive row effects a
BPM posterior mean of additive column effects b
U posterior mean of multiplicative row effects u
V posterior mean of multiplicative column effects v (asymmetric case)
UVPM posterior mean of UV (asymmetric case)
ULUPM posterior mean of ULU (symmetric case)
L posterior mean of L (symmetric case)
EZ estimate of expectation of Z matrix
YPM posterior mean of Y (for imputing missing values)
GOF observed (first row) and posterior predictive (remaining rows) values of four goodness-of-fit statistics

Author(s)

Peter Hoff

Examples

data(YX_frn)
fit<-ame(YX_frnY,YX_frnX,burn=5,nscan=5,odens=1,model="frn")
you should run the Markov chain much longer than this
ame_rep

AME model fitting routine for replicated relational data

Description

An MCMC routine providing a fit to an additive and multiplicative effects (AME) regression model to replicated relational data of various types.

Usage

```r
ame_rep(Y,Xdyad=NULL, Xrow=NULL, Xcol=NULL, rvar = !(model=="rrl"), 
  cvar = TRUE, dcor = !symmetric, nvar=TRUE, R = 0, model="nrm", 
  intercept=!is.element(model,c("rrl","ord")), 
  symmetric=FALSE, 
  odmax=rep(max(apply(Y>0,c(1,3),sum,na.rm=TRUE)),nrow(Y[,1])), seed = 1, 
  nscan = 10000, burn = 500, odens = 25, plot=TRUE, print = TRUE, gof=TRUE)
```

Arguments

- **Y**
 - an n x n x T array of relational matrix, where the third dimension corresponds to replicates (over time, for example). See model below for various data types.
- **Xdyad**
 - an n x n x pd x T array of covariates
- **Xrow**
 - an n x pr x T array of nodal row covariates
- **Xcol**
 - an n x pc x T array of nodal column covariates
- **rvar**
 - logical: fit row random effects (asymmetric case)?
- **cvar**
 - logical: fit column random effects (asymmetric case)?
- **dcor**
 - logical: fit a dyadic correlation (asymmetric case)?
- **nvar**
 - logical: fit nodal random effects (symmetric case)?
- **r**
 - integer: dimension of the multiplicative effects (can be zero)
- **model**
 - character: one of "nrm","bin","ord","cbin","frn","rrl" - see the details below
- **intercept**
 - logical: fit model with an intercept?
- **symmetric**
 - logical: Is the sociomatrix symmetric by design?
- **odmax**
 - a scalar integer or vector of length n giving the maximum number of nominations that each node may make - used for "frn" and "cbin" models
- **seed**
 - random seed
- **nscan**
 - number of iterations of the Markov chain (beyond burn-in)
- **burn**
 - burn in for the Markov chain
- **odens**
 - output density for the Markov chain
- **plot**
 - logical: plot results while running?
- **print**
 - logical: print results while running?
- **gof**
 - logical: calculate goodness of fit statistics?
Details

This command provides posterior inference for parameters in AME models of independent replicated relational data, assuming one of six possible data types/models:

"nrm": A normal AME model.

"bin": A binary probit AME model.

"ord": An ordinal probit AME model. An intercept is not identifiable in this model.

"cbin": An AME model for censored binary data. The value of 'odmax' specifies the maximum number of links each row may have.

"frn": An AME model for fixed rank nomination networks. A higher value of the rank indicates a stronger relationship. The value of 'odmax' specifies the maximum number of links each row may have.

"rrl": An AME model based on the row ranks. This is appropriate if the relationships across rows are not directly comparable in terms of scale. An intercept, row random effects and row regression effects are not estimable for this model.

Value

BETA posterior samples of regression coefficients
VC posterior samples of the variance parameters
APM posterior mean of additive row effects a
BPM posterior mean of additive column effects b
U posterior mean of multiplicative row effects u
V posterior mean of multiplicative column effects v (asymmetric case)
UVPM posterior mean of UV
ULUPM posterior mean of ULU (symmetric case)
L posterior mean of L (symmetric case)
EZ estimate of expectation of Z matrix
YPM posterior mean of Y (for imputing missing values)
GOF observed (first row) and posterior predictive (remaining rows) values of four goodness-of-fit statistics

Author(s)

Peter Hoff, Yanjun He

Examples

data(YX_bin_long)
fit<-ame_rep(YX_bin_longY,YX_bin_longX,burn=5,nscan=5,odens=1,model="bin")
you should run the Markov chain much longer than this
Description

Produce a circular network plot.

Usage

```r
circplot(Y, U = NULL, V = NULL, row.names = rownames(Y),
        col.names = colnames(Y), plotnames = TRUE, vscale = 0.8,
        pscale = 1.75, lcol = "gray", rcol = "brown", ccol = "blue",
        pch = 16, lty = 3, jitter = 0.1 * (nrow(Y)/(1 + nrow(Y))), bty = "n",
        add = FALSE)
```

Arguments

- `Y` (matrix) m by n relational matrix.
- `U` (matrix) m by 2 matrix of row factors of `Y`.
- `V` (matrix) n by 2 matrix of column factors of `Y`.
- `row.names` (character vector) names of the row objects.
- `col.names` (character vector) names of the column objects.
- `plotnames` (logical) plot row and column names.
- `vscale` (scalar) scaling factor for V coordinates.
- `pscale` (scalar) scaling factor for plotting characters.
- `lcol` (scalar or vector) line color(s) for the nonzero elements of `Y`.
- `rcol` (scalar or vector) node color(s) for the rows.
- `ccol` (scalar or vector) node color(s) for the columns.
- `pch` (integer) plotting character.
- `lty` (integer) line type.
- `jitter` (scalar) a number to control jittering of nodes.
- `bty` (character) bounding box type.
- `add` (logical) add to existing plot

Details

This function creates a circle plot of a relational matrix or social network. If not supplied via `U` and `V`, two-dimensional row factors and column factors are computed from the SVD of `Y`, scaled versions of which are used to plot positions on the outside edge (`U`) and inside edge (`V`) of the circle plot. The magnitudes of the plotting characters are determined by the magnitudes of the rows of `U` and `V`. Segments are drawn between each row object `i` and column object `j` for which `Y[i,j]!="`.

Circular network plot

- Produce a circular network plot.
- If not supplied via `U` and `V`, two-dimensional row factors and column factors are computed from the SVD of `Y`, scaled versions of which are used to plot positions on the outside edge (`U`) and inside edge (`V`) of the circle plot. The magnitudes of the plotting characters are determined by the magnitudes of the rows of `U` and `V`. Segments are drawn between each row object `i` and column object `j` for which `Y[i,j]!="`.

```r
circplot(Y, U = NULL, V = NULL, row.names = rownames(Y),
        col.names = colnames(Y), plotnames = TRUE, vscale = 0.8,
        pscale = 1.75, lcol = "gray", rcol = "brown", ccol = "blue",
        pch = 16, lty = 3, jitter = 0.1 * (nrow(Y)/(1 + nrow(Y))), bty = "n",
        add = FALSE)
```
Author(s)

Peter Hoff

Examples

data(IR90s)
circplot(IR90s$dyadvars[,1])

coldwar

Cold War data

Description

Positive and negative relations between countries during the cold war

Format

A list including the following dyadic and nodal variables:

- cc: a socioarray of ordinal levels of military cooperation (positive) and conflict (negative), every 5 years;
- distance: between-country distance (in thousands of kilometers);
- gdp: country gdp in dollars every 5 years;
- polity: country polity every 5 years.

Source

Xun Cao: http://polisci.la.psu.edu/people/xuc11

comtrade

Comtrade data

Description

Eleven years of import and export data between 229 countries. The data use the SITC Rev. 1 commodity classification, aggregated at the first level (AG1).

Format

A list consisting of a socioarray Trade and a vector dollars2010 of inflation rates. The socioarray gives yearly trade volume (exports and imports) in dollars for 10 different commodity classes for eleven years between 229 countries. This gives a five-way array. The first index is the reporting country, so Trade[i,j,t,k,1] is what i reports for exports to j, but in general this is not the same as Trade[j,i,t,k,2], what j reports as importing from i.
Source

design_array

Computes the design socioarray of covariate values

Description

Computes the design socioarray of covariate values for an AME fit

Usage

design_array(Xrow=NULL,Xcol=NULL,Xdyad=NULL,intercept=TRUE,n)

Arguments

Xrow an n x pr matrix of row covariates
Xcol an n x pc matrix of column covariates
Xdyad an n x n x pd array of dyadic covariates
intercept logical
n number of rows/columns

Value

an n x n x (pr+pc+pd+intercept) 3-way array

Author(s)

Peter Hoff

Dutch college data

Description

Longitudinal relational measurements and nodal characteristics of Dutch college students, described in van de Bunt, van Duijn, and Snijders (1999). The time interval between the first four measurements was three weeks, whereas the interval between the last three was six weeks.
Format

A list consisting of a socioarray Y and a matrix X of static nodal attributes. The relational measurements range from -1 to 4, indicating the following:

- -1 a troubled or negative relationship
- 0 don’t know
- 1 neutral relationship
- 2 friendly
- 3 friendship
- 4 best friends

Source

Linton Freeman

el2sm
Edgelist to sociomatrix

Description

Construction of a sociomatrix from an edgelist

Usage

```
el2sm(el, directed=TRUE, nadiag=all(el[,1]!=el[,2]))
```

Arguments

- `el`: a matrix in which each row contains the indices of an edge and possibly the weight for the edge
- `directed`: if FALSE, then a relation is placed in both entry ij and ji of the sociomatrix, for each edge ij (or ji)
- `nadiag`: put NAs on the diagonal

Value

a sociomatrix

Author(s)

Peter Hoff
Examples

Y <- matrix(rpois(10*10, .5), 10, 10); diag(Y) <- NA
E <- sm2el(Y)
el2sm(E) - Y

gofstats

Goodness of fit statistics

Description

Goodness of fit statistics evaluating second and third-order dependence patterns

Usage

gofstats(Y)

Arguments

Y a relational data matrix

Value

a vector of gof statistics

Author(s)

Peter Hoff

Examples

data(YX_nrm)
gofstats(YX_nrm$Y)
IR90s

Description

A relational dataset recording a variety of nodal and dyadic variables on countries in the 1990s, including information on conflicts, trade and other variables. Except for the conflict variable, the variables are averages across the decade.

Format

A list consisting of a socioarray dyadvars of dyadic variables and matrix nodevars of nodal variables. The dyadic variables include

- total number of conflicts;
- exports (in billions of dollars);
- distance (in thousands of kilometers);
- number of shared IGOs (averages across the years);
- polity interaction.

The nodal variables include

- population (in millions);
- gdp (in billions of dollars);
- polity

Source

Michael Ward.

lazegalaw

Lazega’s law firm data

Description

Several nodal and dyadic variables measured on 71 attorneys in a law firm.
Format

A list consisting of a socioarray Y and a nodal attribute matrix X.

The dyadic variables in Y include three binary networks: advice, friendship and co-worker status. The categorical nodal attributes in X are coded as follows:

- status (1=partner, 2=associate)
- office (1=Boston, 2=Hartford, 3=Providence)
- practice (1=litigation, 2=corporate)
- law school (1=Harvard or Yale, 2=UConn, 3=other)

Seniority and age are given in years, and female is a binary indicator.

Source

Linton Freeman

\[mhalf \]

Symmetric square root of a matrix

Description

Computes the symmetric square root of a positive definite matrix

Usage

\[mhalf(M) \]

Arguments

\[M \] a positive definite matrix

Value

A matrix H such that H^2 equals M

Author(s)

Peter Hoff
Description

Plot the graph of a sociomatrix

Usage

```r
netplot(Y,X=NULL,xaxt="n",yaxt="n",xlab="",ylab="",lcol="gray",ncol="black",lwd=1,lty=1,pch=16,bty="n",plotnames=FALSE,
seed=1,
plot.iso=TRUE,directed=NULL,add=FALSE,...)
```

Arguments

- `Y`: a sociomatrix
- `X`: coordinates for plotting the nodes
- `xaxt`: x-axis type
- `yaxt`: y-axis type
- `xlab`: x-axis label
- `ylab`: y-axis label
- `lcol`: edge color
- `ncol`: node color (can be node-specific)
- `lwd`: line width
- `lty`: line type
- `pch`: plotting character for nodes (can be node-specific)
- `bty`: bounding box type
- `plotnames`: plot rownames of Y as node labels
- `seed`: random seed
- `plot.iso`: include isolates in plot
- `directed`: draw arrows
- `add`: add to an existing plot region
- `...`: additional plotting parameters

Author(s)

Peter Hoff
Examples

data(addhealthc3)
Y<-addhealthc3$Y
X<-xnet(Y)
netplot(Y,X)

plot.ame
Plot results of an AME object

Description

A set of plots summarizing the MCMC routine for an AME fit, as well as some posterior predictive checks.

Usage

S3 method for class 'ame'
plot(x, ...)

Arguments

x
the result of fitting an AME model

...
additional parameters (not used)

Value

a series of plots

Author(s)

Peter Hoff

raSab_bin_fc
Simulate a and Sab from full conditional distributions under bin likelihood

Description

Simulate a and Sab from full conditional distributions under bin likelihood

Usage

raSab_bin_fc(Z, Y, a, b, Sab, SS = round(sqrt(nrow(Z))))
Arguments

- \(Z \) a square matrix, the current value of \(Z \)
- \(Y \) square binary relational matrix
- \(a \) current value of row effects
- \(b \) current value of column effects
- \(Sab \) current value of \(\text{Cov}(a,b) \)
- \(SS \) number of iterations

Value

- \(Z \) new value of \(Z \)
- \(Sab \) new value of \(Sab \)
- \(a \) new value of \(a \)

Author(s)

Peter Hoff

raSab_cbin_fc
Simulate \(a \) and \(Sab \) from full conditional distributions under the cbin likelihood

Description

Simulate \(a \) and \(Sab \) from full conditional distributions under the cbin likelihood

Usage

```r
raSab_cbin_fc(Z, Y, a, b, Sab, odmax, odobs, SS = round(sqrt(nrow(Z))))
```

Arguments

- \(Z \) a square matrix, the current value of \(Z \)
- \(Y \) square matrix of ranked nomination data
- \(a \) current value of row effects
- \(b \) current value of column effects
- \(Sab \) current value of \(\text{Cov}(a,b) \)
- \(odmax \) a scalar or vector giving the maximum number of nominations for each individual
- \(odobs \) observed outdegree
- \(SS \) number of iterations
raSab_frn_fc

Value

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>new value of Z</td>
</tr>
<tr>
<td>Sab</td>
<td>new value of Sab</td>
</tr>
<tr>
<td>a</td>
<td>new value of a</td>
</tr>
</tbody>
</table>

Author(s)

Peter Hoff

Description

Simulate a and Sab from full conditional distributions under frn likelihood

Usage

```r
raSab_frn_fc(Z, Y, YL, a, b, Sab, odmax, odobs, SS = round(sqrt(nrow(Z))))
```

Arguments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>a square matrix, the current value of Z</td>
</tr>
<tr>
<td>Y</td>
<td>square matrix of ranked nomination data</td>
</tr>
<tr>
<td>YL</td>
<td>list of ranked individuals, from least to most preferred in each row</td>
</tr>
<tr>
<td>a</td>
<td>current value of row effects</td>
</tr>
<tr>
<td>b</td>
<td>current value of column effects</td>
</tr>
<tr>
<td>Sab</td>
<td>current value of Cov(a,b)</td>
</tr>
<tr>
<td>odmax</td>
<td>a scalar or vector giving the maximum number of nominations for each individual</td>
</tr>
<tr>
<td>odobs</td>
<td>observed outdegree</td>
</tr>
<tr>
<td>SS</td>
<td>number of iterations</td>
</tr>
</tbody>
</table>

Value

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>new value of Z</td>
</tr>
<tr>
<td>Sab</td>
<td>new value of Sab</td>
</tr>
<tr>
<td>a</td>
<td>new value of a</td>
</tr>
</tbody>
</table>

Author(s)

Peter Hoff
rbeta_ab_fc

Gibbs sampling of additive row and column effects and regression coefficient

Description
Simulates from the joint full conditional distribution of (a,b,beta)

Usage
rbeta_ab_fc(\(Z\), \(Sab\), \(rho\), \(X\), \(mX\), \(mXt\), \(XX\), \(XXt\), \(Xr\), \(Xc\), \(s2 = 1\))

Arguments
- \(Z\) : n x n (latent) normal relational matrix, with multiplicative effects subtracted out
- \(Sab\) : row and column covariance
- \(rho\) : dyadic correlation
- \(X\) : n x n x p covariate array
- \(mX\) : design matrix (matricized version of X)
- \(mXt\) : dyad-transposed design matrix
- \(XX\) : regression sums of squares
- \(XXt\) : crossproduct sums of squares
- \(Xr\) : row sums for X
- \(Xc\) : column sums for X
- \(s2\) : dyadic variance

Value
- \(beta\) : regression coefficients
- \(a\) : additive row effects
- \(b\) : additive column effects

Author(s)
Peter Hoff
rbeta_ab_rep_fc Gibbs sampling of additive row and column effects and regression coefficient with independent replicate relational data

Description

Simulates from the joint full conditional distribution of (a,b,beta), assuming same additive row and column effects and regression coefficient across replicates.

Usage

rbeta_ab_rep_fc(Z.T,Sab,rho,X.T,s2=1)

Arguments

Z.T n x n x T array, with the third dimension for replicates. Each slice of the array is a (latent) normal relational matrix, with multiplicative effects subtracted out
Sab row and column covariance
rho dyadic correlation
X.T n x n x p x T covariate array
s2 dyadic variance

Value

beta regression coefficients
a additive row effects
b additive column effects

Author(s)

Peter Hoff, Yanjun He

rmvnorm Simulation from a multivariate normal distribution

Description

Simulates a matrix where the rows are i.i.d. samples from a multivariate normal distribution

Usage

rmvnorm(n, mu, Sigma, Sigma.chol = chol(Sigma))
rrho_mh

Arguments

- **n**: sample size
- **mu**: multivariate mean vector
- **Sigma**: covariance matrix
- **Sigma.chol**: Cholesky factorization of Sigma

Value

- a matrix with n rows

Author(s)

Peter Hoff

Description

Metropolis update for dyadic correlation

Usage

```r
rrho_mh(E, rho, s2 = 1)
```

Arguments

- **E**: square residual relational matrix
- **rho**: current value of rho
- **s2**: current value of s2

Value

- a new value of rho

Author(s)

Peter Hoff
rrho_mh_rep

Metropolis update for dyadic correlation with independent replicate data

Description

Metropolis update for dyadic correlation with independent replicate data.

Usage

`rrho_mh_rep(E.T, rho, s2 = 1)`

Arguments

- **E.T**
 Array of square residual relational matrix series. The third dimension of the array is for different replicates. Each slice of the array according to the third dimension is a square residual relational matrix.
- **rho**
 Current value of rho
- **s2**
 Current value of s2

Value

A new value of rho

Author(s)

Peter Hoff, Yanjun He

rs2_fc

Gibbs update for dyadic variance

Description

Gibbs update for dyadic variance

Usage

`rs2_fc(E, rho)`

Arguments

- **E**
 Square residual relational matrix
- **rho**
 Current value of rho
Value

a new value of s2

Author(s)

Peter Hoff

rs2_rep_fc

Gibbs update for dyadic variance with independent replicate relational data

Description

Gibbs update for dyadic variance with independent replicate relational data

Usage

`rs2_rep_fc(E.T, rho)`

Arguments

- **E.T**
 Array of square residual relational matrix series. The third dimension of the array is for different replicates. Each slice of the array according to the third dimension is a square residual relational matrix
- **rho**
 current value of rho

Value

a new value of s2

Author(s)

Peter Hoff, Yanjun He
rUV_fc

Gibbs sampling of U and V

Description
A Gibbs sampler for updating the multiplicative effect matrices U and V

Usage
rUV_fc(E, U, V, rho, s2 = 1, shrink=TRUE)

Arguments
- E: square residual relational matrix
- U: current value of U
- V: current value of V
- rho: dyadic correlation
- s2: dyadic variance
- shrink: adaptively shrink the factors with a hierarchical prior

Value
- U: a new value of U
- V: a new value of V

Author(s)
Peter Hoff

rUV_rep_fc

Gibbs sampling of U and V

Description
A Gibbs sampler for updating the multiplicative effect matrices U and V, assuming they are the same across replicates.

Usage
rUV_rep_fc(E.T,U,V,rho,s2=1,shrink=TRUE)
Arguments

- **E.T** Array of square residual relational matrix series with additive effects and covariates subtracted out. The third dimension of the array is for different replicates. Each slice of the array according to the third dimension is a square residual relational matrix.
- **U** current value of U
- **V** current value of V
- **rho** dyadic correlation
- **s2** dyadic variance
- **shrink** adaptively shrink the factors with a hierarchical prior

Value

- **U** a new value of U
- **V** a new value of V

Author(s)

Peter Hoff, Yanjun He

Description

A Gibbs sampler for updating the multiplicative effect matrices U and V in the symmetric case. In this case \(U*V\) is symmetric, so this is parameterized as \(V=U*L\) where \(L\) is the diagonal matrix of eigenvalues of \(U*V\).

Usage

```r
ruv_sym_fc(E, U, V, s2 = 1, shrink=TRUE)
```

Arguments

- **E** square residual relational matrix
- **U** current value of U
- **V** current value of V
- **s2** dyadic variance
- **shrink** adaptively shrink the factors with a hierarchical prior

Value

- **U** a new value of U
- **V** a new value of V
rwish

Author(s)
Peter Hoff

Examples

```
U0<-matrix(rnorm(30,2),30,2); V0<-U0%*%diag(c(3,-2))
E<- U0%*%t(V0) + matrix(rnorm(30^2),30,30)
rUV_sym_fc
```

rwish

Simulation from a Wishart distribution

Description
Simulates a random Wishart-distributed matrix

Usage
```
rwish(S0, nu = dim(S0)[1] + 1)
```

Arguments
- `S0`: a positive definite matrix
- `nu`: a positive integer

Value
a positive definite matrix

Author(s)
Peter Hoff

Examples

```
## The expectation is S0*nu
S0<-rwish(diag(3))
S5<-matrix(0,3,3)
for(s in 1:1000) { S5<-S5+rwish(S0,5) }
S5/s
S0*5
```
rz_bin_fc

Simulate Z based on a probit model

Description

Simulates a random latent matrix Z given its expectation, dyadic correlation and a binary relational matrix Y

Usage

rz_bin_fc(Z, EZ, rho, Y)

Arguments

Z a square matrix, the current value of Z
EZ expected value of Z
rho dyadic correlation
Y square binary relational matrix

Value

a square matrix, the new value of Z

Author(s)

Peter Hoff

rz_cbin_fc

Simulate Z given fixed rank nomination data

Description

Simulates a random latent matrix Z given its expectation, dyadic correlation and censored binary nomination data

Usage

rz_cbin_fc(Z, EZ, rho, Y, odmax, odobs)
Arguments

- **z**: a square matrix, the current value of Z
- **ez**: expected value of Z
- **rho**: dyadic correlation
- **Y**: square matrix of ranked nomination data
- **odmax**: a scalar or vector giving the maximum number of nominations for each individual
- **odobs**: observed outdegree

Details

Simulates Z under the constraints (1) \(Y[i,j]=1, Y[i,k]=0 \Rightarrow Z[i,j]>Z[i,k] \), (2) \(Y[i,j]=1 \Rightarrow Z[i,j]>0 \), (3) \(Y[i,j]=0 \) & \(\text{odobs}[i]<\text{odmax}[i] \Rightarrow Z[i,j]<0 \)

Value

- a square matrix, the new value of Z

Author(s)

Peter Hoff

rZ_frn_fc

Simulate Z given fixed rank nomination data

Description

Simulates a random latent matrix Z given its expectation, dyadic correlation and fixed rank nomination data

Usage

```
rZ_frn_fc(z, EZ, rho, Y, yL, odmax, odobs)
```

Arguments

- **Z**: a square matrix, the current value of Z
- **EZ**: expected value of Z
- **rho**: dyadic correlation
- **Y**: square matrix of ranked nomination data
- **yL**: list of ranked individuals, from least to most preferred in each row
- **odmax**: a scalar or vector giving the maximum number of nominations for each individual
- **odobs**: observed outdegree
Details

simulates Z under the constraints (1) \(Y[i,j] > Y[i,k] \Rightarrow Z[i,j] > Z[i,k]\) , (2) \(Y[i,j] > 0 \Rightarrow Z[i,j] > 0\) , (3) \(Y[i,j] = 0 \& odobs[i] < odmax[i] \Rightarrow Z[i,j] < 0\)

Value

a square matrix, the new value of Z

Author(s)

Peter Hoff

rz_nrm_fc

Simulate missing values in a normal AME model

Description

Simulates missing values of a sociomatrix under a normal AME model

Usage

```
rZ_nrm_fc(Z, EZ, rho, s2, Y)
```

Arguments

- **Z**: a square matrix, the current value of Z
- **EZ**: expected value of Z
- **rho**: dyadic correlation
- **s2**: dyadic variance
- **Y**: square relational matrix

Value

a square matrix, equal to Y at non-missing values

Author(s)

Peter Hoff
rZ_ord_fc
Simulate Z given the partial ranks

Description
Simulates a random latent matrix Z given its expectation, dyadic correlation and partial rank information provided by W

Usage
```r
rZ_ord_fc(Z, EZ, rho, Y)
```

Arguments
- `Z`: a square matrix, the current value of Z
- `EZ`: expected value of Z
- `rho`: dyadic correlation
- `Y`: matrix of ordinal data

Value
a square matrix, the new value of Z

Author(s)
Peter Hoff

rZ_rrl_fc
Simulate Z given relative rank nomination data

Description
Simulates a random latent matrix Z given its expectation, dyadic correlation and relative rank nomination data

Usage
```r
rZ_rrl_fc(Z, EZ, rho, Y, YL)
```

Arguments
- `Z`: a square matrix, the current value of Z
- `EZ`: expected value of Z
- `rho`: dyadic correlation
- `Y`: square matrix of ranked nomination data
- `YL`: list of ranked individuals, from least to most preferred in each row
sampsonmonsks

Details

simulates Z under the constraints (1) $Y_{i,j}>Y_{i,k} \Rightarrow Z_{i,j}>Z_{i,k}$

Value

a square matrix, the new value of Z

Author(s)

Peter Hoff

Samplemonks *Sampson’s monastery data*

Description

Several dyadic variables measured on 18 members of a monastery.

Format

A socioarray whose dimensions represent nominators, nominees and relations. Each monk was asked to rank up to three other monks on a variety of positive and negative relations. A rank of three indicates the "highest" ranking for a particular relational variable. The relations $like_mR$ and $like_m1$ are evaluations of likeing at one and two timepoints previous to when the other relations were measured.

Source

Linton Freeman

Sheep *Sheep dominance data*

Description

Number of dominance encounters between 28 female bighorn sheep. Cell (i,j) records the number of times sheep i dominated sheep j. From Hass (1991).

Format

A list consisting of the following:

- `dom`: a directed socioarray recording the number of dominance encounters.
- `age`: the age of each sheep in years.

Source

Linton Freeman
simY_bin

Simulate a network, i.e. a binary relational matrix

Description

Simulates a network, i.e. a binary relational matrix

Usage

```r
simY_bin(EZ, rho)
```

Arguments

- **EZ**: square matrix giving the expected value of the latent Z matrix
- **rho**: dyadic correlation

Value

a square binary matrix

Author(s)

Peter Hoff

simY_frn

Simulate an relational matrix based on a fixed rank nomination scheme

Description

Simulate an relational matrix based on a fixed rank nomination scheme

Usage

```r
simY_frn(EZ, rho, odmax, yo)
```

Arguments

- **EZ**: a square matrix giving the expected value of the latent Z matrix
- **rho**: dyadic correlation
- **odmax**: a scalar or vector giving the maximum number of nominations for each node
- **yo**: a square matrix identifying where missing values should be maintained

Value

a square matrix, where higher values represent stronger relationships
simY_nrm

Author(s)
Peter Hoff

Simulate a normal relational matrix

Description
Simulates a normal relational matrix

Usage
simY_nrm(EY, rho, s2)

Arguments
- EY: square matrix giving the expected value of the relational matrix
- rho: dyadic correlation
- s2: dyadic variance

Value
a square matrix

Author(s)
Peter Hoff

simY_ord

Simulate an ordinal relational matrix

Description
Simulates an ordinal relational matrix having a particular marginal distribution

Usage
simY_ord(EZ, rho, Y)

Arguments
- EZ: square matrix giving the expected value of the latent Z matrix
- rho: scalar giving the within-dyad correlation
- Y: ordinal relational data matrix
Value

a square matrix

Author(s)

Peter Hoff

simY_rrl
Simulate an relational matrix based on a relative rank nomination scheme

Description

Simulate an relational matrix based on a relative rank nomination scheme

Usage

`simY_rrl(EZ, rho, odobs, YO)`

Arguments

- **EZ**: a square matrix giving the expected value of the latent Z matrix
- **rho**: dyadic correlation
- **odobs**: a scalar or vector giving the observed number of nominations for each node
- **YO**: a square matrix identifying where missing values should be maintained

Value

a square matrix, where higher values represent stronger relationships

Author(s)

Peter Hoff
simZ

Simulate Z given its expectation and covariance

Description

Simulate Z given its expectation and covariance

Usage

```r
simZ(EZ, rho, s2 = 1)
```

Arguments

- `EZ`: expected value of Z
- `rho`: dyadic correlation
- `s2`: dyadic variance

Value

A simulated value of Z

Author(s)

Peter Hoff

sm2el

Sociomatrix to edgelist

Description

Construction of an edgelist from a sociomatrix

Usage

```r
sm2el(sm, directed=TRUE)
```

Arguments

- `sm`: a sociomatrix with possibly valued relations
- `directed`: if TRUE, only use the upper triangular part of the matrix to enumerate edges

Value

An edglist
Author(s)

Peter Hoff

Examples

```r
Y <- matrix(rpois(10*10, 5), 10, 10); diag(Y) <- NA
E <- sm2el(Y)
e2sm(E) - Y
```

summary.ame

Summary of an AME object

Description

Summary method for an AME object

Usage

```r
## S3 method for class 'ame'
summary(object, ...)
```

Arguments

- `object`
 the result of fitting an AME model
- `...`
 additional parameters (not used)

Value

a summary of parameter estimates and confidence intervals for an AME fit

Author(s)

Peter Hoff
Xbeta

Linear combinations of submatrices of an array

Description

Computes a matrix of expected values based on an array X of predictors and a vector beta of regression coefficients.

Usage

\[
xbeta(X, \beta)
\]

Arguments

- **X**: an n by n by p array
- **beta**: a p by 1 vector

Value

An n by n matrix

Author(s)

Peter Hoff

xnet

Network embedding

Description

Compute an embedding of a sociomatrix into a two-dimensional space.

Usage

\[
xnet(Y, fm = suppressWarnings(require("network"), seed = 1))
\]

Arguments

- **Y**: (square matrix) The sociomatrix.
- **fm**: (logical scalar) If TRUE, the Fruchterman-Reingold layout will be used (requires the network package).
- **seed**: (integer) The random seed (the FR layout is random).
Details

Coordinates are obtained using the Fruchterman-Reingold layout if the package network is installed, and otherwise uses the first two eigenvectors the sociomatrix.

Value

(matrix) A matrix of two-dimensional coordinates.

Author(s)

Peter Hoff

Examples

data(addhealthc3)
Y<-addhealthc3$Y
X<-xnet(Y)
netplot(Y,X)

data(YX_bin)
gofstats(YX_bin$Y)
YX_bin_long

binary relational data and covariates

Description

a synthetic dataset that includes longitudinal binary relational data as well as information on covariates

Usage

data(YX_bin_long)

Format

a list

Examples

data(YX_bin_long)
gofstats(YX_bin_long$Y[,1])

YX_cbin

Censored binary nomination data and covariates

Description

a synthetic dataset that includes relational data where the number of nominations per row is censored at 10, along with information on eight covariates

Usage

data(YX_cbin)

Format

The format is: List of 2 $ Y: num [1:100, 1:100] NA 0 0 0 1 0 0 0 0 3 ... $ X: num [1:100, 1:100, 1:8] 1 1 1 1 1 1 1 1 ... - attr(*, "dimnames")=List of 3 ..$: NULL ..$: NULL ..$: chr [1:8] "intercept" "rgpa" "rsmoke" "cgpa" ...

Examples

data(YX_cbin)
gofstats(Y_cbin$Y)
Fixed rank nomination data and covariates

Description

A synthetic dataset that includes fixed rank nomination data as well as information on eight covariates.

Usage

data(YX_frn)

Format

The format is: List of 2 $ Y: num [1:100, 1:100] NA 0 0 0 1 0 0 0 3 ... $ X: num [1:100, 1:100, 1:8] 1 1 1 1 1 1 1 1 ... attr(*, "dimnames")=List of 3 ..$: NULL ..$: NULL ..$: chr [1:8] "intercept" "rgpa" "rsmoke" "cgpa" ...

Examples

data(YX_frn)
gofstats(YX_frn$Y)

normal relational data and covariates

Description

A synthetic dataset that includes continuous (normal) relational data as well as information on eight covariates.

Usage

data(YX_nrm)

Format

The format is: List of 2 $ Y: num [1:100, 1:100] NA -4.05 -0.181 -3.053 -1.579 ... $ X: num [1:100, 1:100, 1:8] 1 1 1 1 1 1 1 1 ... attr(*, "dimnames")=List of 3 ..$: NULL ..$: NULL ..$: chr [1:8] "intercept" "rgpa" "rsmoke" "cgpa" ...

Examples

data(YX_nrm)
gofstats(YX_nrm$Y)
YX_ord

Examples

```r
data(YX_nrm)
gofstats(YX_nrm$Y)
```

Description

A synthetic dataset that includes ordinal relational data as well as information on seven covariates

Usage

```r
data(YX_ord)
```

Format

The format is: List of 2 $ Y: num [1:100, 1:100] NA 0 3 0 3 1 0 1 1 0 ... $ X: num [1:100, 1:100, 1:7] 1 1 1 1 1 1 1 1 1 attr(*, "dimnames")=List of 3 ..$: NULL ..$: NULL ..$: chr [1:7] "rgpa" "rsmoke" "cgpa" "csmoke" ...

Examples

```r
data(YX_ord)
gofstats(YX_ord$Y)
```

YX_rrl

row-specific ordinal relational data and covariates

Description

A synthetic dataset that includes row-specific ordinal relational data as well as information on five covariates

Usage

```r
data(YX_rrl)
```
Format

The format is: List of 2 $ Y: num [1:100, 1:100] NA 0 3 0 3 1 0 1 1 0 ... $ X: num [1:100, 1:100, 1:5] 1 1 1 1 1 1 1 1 1 1 ... attr(*, "dimnames")=List of 3 ..$: NULL ..$: NULL ..$: chr [1:5] "cgpa" "csmoke" "igrade" "ismoke" ...

Examples

data(YX_rrl)
gofstats(YX_rrl$Y)

zscores rank-based z-scores

Description

Computes the normal scores corresponding to the ranks of a data vector

Usage

zscores(y)

Arguments

y a numeric vector

Value

a numeric vector

Author(s)

Peter Hoff
Index

*Topic datasets
 addhealthc3, 4
 addhealthc9, 4
 YX_bin, 40
 YX_bin_long, 41
 YX_cbin, 41
 YX_frn, 42
 YX_nrm, 42
 YX_ord, 43
 YX_rrl, 43
*Topic package
 amen-package, 3
 addhealthc3, 4
 addhealthc9, 4
 addlines, 5
 ame, 6
 ame_rep, 8
 amen (amen-package), 3
 amen-package, 3
 circplot, 10
 coldwar, 11
 comtrade, 11
 design_array, 12
 dutchcollege, 12
 el2sm, 13
 gofstats, 14
 IR90s, 15
 lazegalaw, 15
 mhalf, 16
 netplot, 17
 plot.ame, 18
 raSab_bin_fc, 18
 raSab_cbin_fc, 19
 raSab_frn_fc, 20
 rbeta_ab_fc, 21
 rbeta_ab_rep_fc, 22
 rmvnorm, 22
 rrho_mh, 23
 rrho_mh_rep, 24
 rs2_fc, 24
 rs2_rep_fc, 25
 rUV_fc, 26
 rUV_rep_fc, 26
 rUV_sym_fc, 27
 rwish, 28
 rZ_bin_fc, 29
 rZ_cbin_fc, 29
 rZ_frn_fc, 30
 rZ_nrm_fc, 31
 rZ_ord_fc, 32
 rZ_rrl_fc, 32
 sampsonmonks, 33
 sheep, 33
 simY_bin, 34
 simY_frn, 34
 simY_nrm, 35
 simY_ord, 35
 simY_rrl, 36
 simZ, 37
 sm2el, 37
 summary.ame, 38
 Xbeta, 39
 xnet, 39
 YX_bin, 40
 YX_bin_long, 41
 YX_cbin, 41
 YX_frn, 42
 YX_nrm, 42
YX_ord, 43
YX_rr1, 43

zscores, 44