Package ‘archetypes’

February 19, 2015

Type Package
Title Archetypal Analysis
Version 2.2-0
Date 2014-04-08
Depends methods, stats, modeltools, nnls (>= 1.1)
Suggests MASS, vcd, mlbench, ggplot2, TSP
Description The main function archetypes implements a framework for archetypal analysis supporting arbitrary problem solving mechanisms for the different conceptual parts of the algorithm.
License GPL (>= 2)
Collate 'archetypes-barplot.R' 'generics.R' 'archetypes-class.R'
 'archetypes-kit-blocks.R' 'archetypes-kit.R' 'archetypes-map.R'
 'archetypes-movie.R' 'archetypes-panorama.R' 'pcplot.R'
 'archetypes-pcplot.R' 'archetypes-robust.R'
 'archetypes-screeplot.R' 'archetypes-step.R'
 'archetypes-weighted.R' 'archetypes-xplot.R' 'memento.R'
 'simplex-pot.R' 'skeletonplot.R'
Author Manuel J. A. Eugster [aut, cre], Friedrich Leisch [aut], Sohan Seth [ctb]
Maintainer Manuel J. A. Eugster <manuel@mjae.net>
NeedsCompilation no
Repository CRAN
Date/Publication 2014-04-10 09:17:57

R topics documented:

archetypes .. 2
archetypesFamily .. 4
archmap .. 4
archetypes

Perform archetypal analysis on a data matrix.

Description

Perform archetypal analysis on a data matrix.
archetypes

Usage

archetypes(data, k, weights = NULL, maxIterations = 100,
minImprovement = sqrt(.Machine$double.eps), maxKappa = 1000,
verbose = FALSE, saveHistory = TRUE,
family = archetypesFamily("original"), ...)

Arguments

data A numeric $n \times m$ data matrix.
k The number of archetypes.
weights Data weights matrix or vector (used as elements of the diagonal weights matrix).
maxIterations The maximum number of iterations.
minImprovement The minimal value of improvement between two iterations.
maxKappa The limit of kappa to report an ill-ness warning.
verbose Print some details during execution.
saveHistory Save each execution step in an environment for further analyses.
family Blocks defining the underlying problem solving mechanisms; see archetypesFamily.
... Additional arguments for family blocks.

Value

An object of class archetypes, see as.archetypes.

References

See Also

Other archetypes: archetypesFamily; as.archetypes; robustArchetypes; weightedArchetypes

Examples

data(toy)
a <- archetypes(toy, 3)
archetypesFamily

Archetypes family constructor

Description

This function returns a problem solving block for each of the different conceptual parts of the algorithm.

Usage

archetypesFamily(which = c("original", "weighted", "robust"), ...)

Arguments

which

The kind of archetypes family.

... Exchange predefined family blocks with self-defined functions.

Value

A list containing a function for each of the different parts.

See Also

Other archetypes: archetypes; as.archetypes; robustArchetypes; weightedArchetypes

archmap

Archetypal maps

Description

Two-dimensional projection of the observations based on the alpha coefficients into a space spanned by the (projected) archetypes.

Usage

archmap(object, projection = simplex_projection, projection_args = list(), rotate = 0, cex = 1.5, col = 1, pch = 1, xlab = "", ylab = "", axes = FALSE, asp = TRUE, ...)
Arguments

object An archetypes object
projection Projection function; see archmap_projections
projection_args Arguments passed to the projection function; see archmap_projections
rotate Rotation angle to rotate the projection
cex Character expansion of archetypes
col Color of observations
pch Point character of observations
xlab A label for the x-axis
ylab A label for the y-axis
axes Logical value to draw axes or not
asp The y/x aspect ratio
... Arguments passed to the underlying plot function

Value

Invisible matrix with the projected archetypes

See Also

Other archmap: archmap_projections, atypes_projection, simplex_projection, tspsimplex_projection

Examples

```r
## Not run:
data("skel", package = "archetypes")
skel2 <- subset(skel, select = ~Gender)

set.seed(1981)
a <- archetypes(skel2, k = 5)

## Simplex projection:
archmap(a, col = skel$Gender)

## Simplex projection with archetypes arranged according to their 
## distances:
archmap(a, col = skel$Gender, 
    projection = tspsimplex_projection)
archmap(a, col = skel$Gender,  
    projection = tspsimplex_projection, 
    projection_args = list(equidist = TRUE))

## MDS projection:
archmap(a, col = skel$Gender,  
    projection = atypes_projection)

## End(Not run)
```
as.archetypes

Archetypes object constructor

Description

Archetypes object constructor

Usage

```r
as.archetypes(object, k, alphas, rss, iters = NULL, call = NULL,
history = NULL, kappas = NULL, betas = NULL, zas = NULL,
family = NULL, familyArgs = NULL, residuals = NULL, weights = NULL,
reweights = NULL, scaling = NULL)
```

Arguments

- `object`
The archetypes; a \(p \times m \) matrix, see `parameters`.
- `k`
The number of archetypes;
- `alphas`
The coefficients; a \(n \times p \) matrix, see `coef`.
- `rss`
The residual sum of squares; see `rss.archetypes`.
- `iters`
The number of iterations to the convergence.
- `call`
The call of the `archetypes` function.
- `history`
If `saveHistory` set then an environment with the archetypes object for each execution step;
- `kappas`
The kappas for each system of linear equations.
- `betas`
The data coefficients; a \(p \times n \) matrix.
- `zas`
The temporary archetypes.
- `family`
The archetypes family.
- `familyArgs`
Additional arguments for family blocks.
- `residuals`
The residuals.
- `weights`
The data weights.
- `reweights`
The data reweights.
- `scaling`
The scaling parameters of the data.

Value

A list with an element for each parameter and class attribute `archetypes`.

See Also

Other archetypes: `archetypesFamily`; `archetypes`; `robustArchetypes`; `weightedArchetypes`
Description

Barplot of archetypes.

Usage

```r
## S3 method for class 'archetypes'
barplot(height, data, which = c("below", "beside"),
        which.beside = c("atypes", "variables"), which.below = c("compressed", "default"), percentiles = FALSE, below.compressed.height = 0.1,
        below.compressed.srt = 0, col.atypes = NULL, ...)
```

Arguments

- `height`: An `archetypes` object.
- `data`: The original data matrix.
- `which`: Below creates a barplot for each archetype, beside creates one barplot with bars side by side.
- `which.beside`: Barplot according to atypes or variables.
- `which.below`: compressed plots the labels only once.
- `percentiles`: Show real values or percentile profiles.
- `below.compressed.height`: Height of additional tail subplot.
- `below.compressed.srt`: Rotations of the x-labels.
- `col.atypes`: Color of archetypes; only used in below.compressed.
- `...`: Passed to the underlying `barplot` call.

Value

Undefined.
bestModel.stepArchetypes

Return best model

Description

Return best model

Usage

S3 method for class 'stepArchetypes'
bestModel(object, ...)

S3 method for class 'repArchetypes'
bestModel(object, ...)

Arguments

object An archetypes object.
... Ignored

body Exploring relationships in body dimensions

Description

Body girth measurements and skeletal diameter measurements, as well as age, weight, height and gender, are given for 507 physically active individuals - 247 men and 260 women.

Usage

body

Format

A data.frame containing 507 observations of 25 variables.

References

See Also

skel
coef.archetypes

Return coefficients

Description
Return coefficients

Usage
```
## S3 method for class 'archetypes'
coef(object, type = c("alphas", "betas"), ...)
```

Arguments
- **object**: An archetypes object.
- **type**: Return alpha or beta coefficients.
- **...**: Ignored.

Value
Coefficient matrix.

fitted.archetypes

Return fitted data

Description
Returns the approximated data.

Usage
```
## S3 method for class 'archetypes'
fitted(object, ...)
```

Arguments
- **object**: An archetypes object.
- **...**: Ignored.

Value
Matrix with approximated data.
kappa.archetypes

Return kappa

Description

Return kappa

Usage

S3 method for class 'archetypes'
kappa(z, ...)

Arguments

z An archetypes object.
...

Ignored.

Value

A vector of kappas.

lines.pcplot

Add lines to an existing parallel coordinates plot.

Description

Add lines to an existing parallel coordinates plot.

Usage

S3 method for class 'pcplot'
lines(x, data, col = 1, lty = 1, ...)

Arguments

x A matrix or data frame containing the additional data.
data The data of the existing parallel coordinates plot.
col Line colors.
lty Line types.
...

Passed to underlying matlines.

Value

Undefined.
movieplot

Archetypes movies.

Description

Archetypes movies.
Shows the intermediate steps of the algorithm;
Archetypes parallel coordinates plot movie.

Usage

movieplot(zs, data, show = c("atypes", "adata", "rwdata"), ssleep = 0,
 bsleep = 0, postfn = function(iter) { }, rwdata.col1 = gray(0.7),
 rwdata.col2 = 2, ...)

movieplot2(zs, data, show = "atypes", ssleep = 0, bsleep = 0,
 zas.col = 2, zas.pch = 13, old.col = rgb(1, 0.5, 0.5), ...)

moviepcplot(zs, data, show = c("atypes", "adata"), ssleep = 0, bsleep = 0,
 ...)

Arguments

zs An archetypes object.
data The data matrix.
show Show archetypes or approximated data.
ssleep Seconds to sleep before start.
bsleep Seconds to sleep between each plot.
postfn Post plot function; is called in each iteration after the plot call.
rwdata.col1 If show = 'rwdata': color of base data set.
rwdata.col2 If show = 'rwdata': color of weighted data set.
... Passed to underlying plot functions.
zas.col Color of the intermediate archetypes.
zas.pch Type of the intermediate archetypes points.
old.col Color of the archetypes on step further.

Value

Undefined.
Undefined.
Undefined.
Description

Return number of archetypes

Usage

S3 method for class 'archetypes'
nparameters(object, ...)

S3 method for class 'stepArchetypes'
nparameters(object, ...)

S3 method for class 'repArchetypes'
nparameters(object, ...)

Arguments

object An archetypes object.
... Ignored.

Value

Number of archetypes.

Description

Panorma plot for archetypes.

Usage

S3 method for class 'archetypes'
panorama(object, data, distfn = distEuclidean,
 xlab = "Index", ylab = "Distance", order = TRUE, col = 1, pch = 1,
 cex = 1, atypes.col = (seq(length = nparameters(object)) + 1),
 atypes.pch = rep(19, nparameters(object)), atypes.cex = rep(1,
 nparameters(object)), ylim = NULL, ...)
parameters,archetypes-method

Arguments

 object An archetypes-related object.
 data A matrix or data frame.
 distfn Distance function.
 xlab Label of xaxis.
 ylab Label of yaxis.
 order Order the distances.
 col Color of distances.
 pch Plot character of distances.
 cex Magnification of the distances.
 atypes.col Color of archetype distances.
 atypes.pch Plot character of archetype distances.
 atypes.cex Magnification of the archetype distances.
 ylim The y limits of the plot.
 ...

Examples

Not run:
 data(toy)
 a <- archetypes(toy, 3)
 panorama(a, toy)

 ## See demo(robust-ozone).

 ## End(Not run)

parameters,archetypes-method

Return fitted archetypes

Description

Return fitted archetypes

Usage

S4 method for signature 'archetypes'
parameters(object, ...)

S4 method for signature 'stepArchetypes'
parameters(object, ...)

S4 method for signature 'repArchetypes'
parameters(object, ...)

Arguments

object An archetypes object.
 ...
 Ignored.

Value

Matrix with k archetypes.

pcplot.archetypes

Parallel coordinates of data and archetypes.

Description

Parallel coordinates of data and archetypes.

Usage

```r
## S3 method for class 'archetypes'
pcplot(x, data, data.col = gray(0.7), data.lwd = 1,
    atypes.col = 2, atypes.lwd = 2, atypes.lty = 1, chull = NULL,
    chull.col = 1, chull.lwd = 2, chull.lty = 1, ...)
```

Arguments

- **x** An `archetypes` object.
- **data** A matrix or data frame.
- **data.col** Color of data lines.
- **data.lwd** Width of data lines.
- **atypes.col** Color of archetypes lines.
- **atypes.lwd** Width of archetypes lines.
- **atypes.lty** Type of archetypes lines.
- **chull** An integer vector giving the indices of the points from `data` lying on the convex hull.
- **chull.col** Color of convex hull lines.
- **chull.lwd** Width of convex hull lines.
- **chull.lty** Type of convex hull lines.
 ...
 Passed to `pcplot` and `lines.pcpplot`.

Value

Undefined.
pcplot.default

Description
Code copied from function `parcoord` of package MASS to simply play around with the visualization of archetypes. At a later date, when it is clear which visualisation is the best, the functionality is probably merged with the original function or it is possible with parallel coordinate plots which are available et al.

Usage
```r
## default S3 method:
pcplot(x, col = gray(0.7), lty = 1, var.label = TRUE, 
   rx = NULL, ...)
```

Arguments
- `x`: A n × m matrix or data frame who columns represent variables. Missing values are allowed.
- `col`: Line color.
- `lty`: Line type.
- `var.label`: Axes labels.
- `rx`: A 2 × m matrix with ranges for each dimension.
- `...`: Passed to the underlying `matplot` function.

Value
Undefined.

predict.archetypes

Predict method for archetypal analysis fits

Description
This method produces predicted alpha coefficients for new data.

Usage
```r
## S3 method for class 'archetypes'
predict(object, newdata, ...)
```
Arguments

object An archetypes object; currently only original-family objects.
newdata A data frame with data for which to predict the alpha coefficients.
... Ignored.

Value

The predict alpha coefficients.

residuals.archetypes Return residuals

Description

Return residuals

Usage

S3 method for class 'archetypes'
residuals(object, ...)

Arguments

object An archetypes object.
... Ignored.

Value

Matrix with residuals.

robustArchetypes Robust archetypes

Description

Robust archetypes

Usage

robustArchetypes(data, k, familyBlocks = list(), ...)
Arguments

- **familyBlocks**: Exchange predefined family blocks; see `archetypesFamily`.
- **data**: A numeric $n \times m$ data matrix.
- **k**: The number of archetypes.
- **...**: Additional arguments for family blocks.

Value

An object of class `robustArchetypes` and `as.archetypes`.

See Also

Other archetypes: `archetypesFamily`, `archetypes`, `as.archetypes`, `weightedArchetypes`
rss.archetypes

Return residual sum of squares

Description

Return residual sum of squares

Usage

```r
## S3 method for class 'archetypes'
rss(object, type = c("scaled", "single", "global"), ...)

## S3 method for class 'stepArchetypes'
rss(object, ...)

## S3 method for class 'repArchetypes'
rss(object, ...)
```

Arguments

- `object` An archetypes object.
- `type` Return scaled, single or global RSS.
- `...` Ignored.

Value

Residual sum of squares.

screeplot.stepArchetypes

Screeplot of stepArchetypes.

Description

Screeplot draws the residual sum of square curve based on the best model of each step.

Usage

```r
## S3 method for class 'stepArchetypes'
screeplot(x, type = c("lines", "barplot"), ...)
```

Arguments

- `x` A `stepArchetypes` object.
- `type` Draw lines or a barplot.
- `...` Passed to underlying plot functions.
simplexplot

Value

Undefined.

Description

The stochastic nature of the alpha coefficients implies that they exist on a standard \((K-1)\)-simplex with the \(K\) archetypes \(Z\) as the corners, and the coefficients as the coordinate with respect to these corners. A standard simplex can be projected to two dimensions via a skew orthogonal projection, where all the vertices of the simplex are shown on a circle connected by edges. The individual alpha coefficients can be then projected into this circle.

Usage

```r
simplexplot(object, radius = 10, order = NULL, labels_cex = 1,
    labels = NULL, show_labels = TRUE, points_col = "#00000044",
    points_pch = 19, points_cex = 1, projection = simplex_projection,
    show_points = TRUE, show_circle = TRUE, circle_col = "lightgray",
    show_edges = TRUE, edges_col = "lightgray", show_direction = FALSE,
    direction_length = 1, directions_col = points_col, ...)
```

Arguments

- `object`: An `archetypes` object
- `radius`: Radius of the projection
- `order`: Order of the archetypes
- `labels_cex`: Label expansion
- `labels`: Labels
- `show_labels`: Show labels
- `points_col`: Color of the points
- `points_pch`: Plot character of the points
- `points_cex`: Character expansion of the points
- `projection`: Projection function; see `archmap_projections`
- `show_points`: Show the points
- `show_circle`: Show the circle
- `circle_col`: Color of the circle
- `show_edges`: Show the edges
- `edges_col`: Color of the edges
- `direction_length`: Expansion of the direction pointers
- `directions_col`: Color of the direction pointers
- `show_direction`: Show direction pointers
- `...`: Additional arguments; currently ignored
simplex_projection

Value

Invisible list of all computed components needed for the simplex visualization.

References

Examples

```r
### This example reproduces parts of the Figure 7 shown in
### "Probabilistic Archetypal Analysis" by Seth and Eugster (2014)

data("toy", package = "archetypes")

set.seed(1234); a3 <- archetypes(toy, k = 3)
set.seed(1237); a4 <- archetypes(toy, k = 4)
set.seed(1238); a5 <- archetypes(toy, k = 5)

simplexplot(a3)
simplexplot(a3, show_direction = TRUE, show_points = FALSE)
simplexplot(a4, projection = tspsimplex_projection)
simplexplot(a5, show_direction = TRUE, show_points = FALSE,
           direction_length = 2, directions_col = "black")
```

simplex_projection
Archetypal map projections

Description

Archetypal map projections

Usage

```
simplex_projection(x, r = 10)
tspsimplex_projection(x, r = 10, equidist = FALSE, ...)
atypes_projection(x)
```

Arguments

- `x`
 Archetypes matrix
- `r`
 Radius of the simplex projection
- `equidist`
 Arrange archetypes equidistantly or in relation to their distance
- `...`
 Parameters for the `solve_TSP` function
Value

Matrix with the projected archetypes

See Also

Other archmap: archmap

Description

Skeletal diameter measurements, as well as height and gender, are given for 507 physically active individuals - 247 men and 260 women.
This is a subset of the body data set.

Usage

skel

Format

A data.frame containing 507 observations of 11 variables.

References

See Also

body

Description

Displays a schematic representation of skeleton data as available in dataset skel.
Displays a generic skeleton with annotations explaining the measurements available in data set skel.
Usage

skeletonplot(x, skel.width = 100, skel.height = 200, ylab = "Height (cm)",
 base.radius = 2, xlab = "", xlim = (nrow(x) * c(0, skel.width)),
 ylim = c(0, skel.height), col = NULL, mtext = TRUE, skel.lwd = 1, ...)

jd()

Arguments

x Matrix or data.frame of skeleton data.
skel.width Reference width for instance calculation.
skel.height Reference height for instance calculation.
base.radius Base radius for points.
xlab The x label of the plot.
ylab The y label of the plot.
xlim Numeric of length 2 giving the x limits for the plot.
ylim Numeric of length 2 giving the y limits for the plot.
col Color of the different parts of the skeleton.
mtext Label archetypes.
skel.lwd Line width of skeleton.
... Passed to underlying canvas plot function.

Value

List of skeleton instances.
Generic skeleton instance.

See Also

skel

stepArchetypes Run archetypes algorithm repeatedly

Description

Run archetypes algorithm repeatedly

Usage

stepArchetypes(..., k, nrep = 3, method = archetypes, verbose = TRUE)
Arguments

- ...: Passed to the specific archetype function.
- k: A vector of integers passed in turn to the k argument of `archetypes`.
- nrep: For each value of k run `archetypes` nrep times.
- method: Archetypes function to use, typically `archetypes`, `weightedArchetypes` or `robustArchetypes`.
- verbose: Show progress during execution.

Value

A list with k elements and class attribute `stepArchetypes`. Each element is a list of class `repArchetypes` with nrep elements; only for internal usage.

See Also

- `archetypes`

Examples

```r
## Not run:
data(skel)
skel2 <- subset(skel, select=-Gender)
as <- stepArchetypes(skel2, k=1:5, verbose=FALSE)

## Residual sum of squares curve:
screepplot(as)

## Select three archetypes and from that the best
## recurrence:
a3 <- bestModel(as[[3]])

## End(Not run)
```

summary.stepArchetypes

Summary method for stepArchetypes object

Description

Summary method for stepArchetypes object

Usage

```r
## S3 method for class 'stepArchetypes'
summary(object, ...)
```
weightedArchetypes

Arguments

object A stepArchetypes object.
... Ignored.

Value

Undefined.

toy

Toy data set

Description

A simple artificial two-dimensional data set.

Usage

toy

Format

A data.frame containing 250 observations of 2 variables.

weightedArchetypes

Weighted archetypes

Description

Weighted archetypes

Usage

weightedArchetypes(data, k, weights = NULL, familyBlocks = list(), ...)

Arguments

weights Data weights matrix.
familyBlocks Exchange predefined family blocks; see archetypesFamily.
data A numeric \(n \times m \) data matrix.
k The number of archetypes.
... Additional arguments for family blocks.

Value

An object of class weightedArchetypes and as.archetypes.
See Also

Other archetypes: `archetypesFamily`; `archetypes`; `as.archetypes`; `robustArchetypes`

weights.archetypes

Return weights

Description

Return weights

Usage

```r
## S3 method for class 'archetypes'
weights(object, type = c("weights","reweights"), ...)
```

Arguments

- `object`: An archetypes object.
- `type`: Return global weights (weighted archetypes) or weights calculated during the iterations (robust archetypes).
- `...`: Ignored.

Value

Vector of weights.

xyplot

Two-dimensional plot.

Description

Two-dimensional plot.

Usage

```r
xyplot(x, ...)
```

Arguments

- `x`: An object.
- `...`: Further arguments.

Value

Undefined.
plot.archetypes

Description

Plot of two-dimensional data and archetypes.

Usage

S3 method for class 'archetypes'
xyplot(x, y, data.col = 1, data.pch = 19,
data.bg = NULL, atypes.col = 2, atypes.pch = 19, ahull.show = TRUE,
ahull.col = atypes.col, chull = NULL, chull.col = gray(0.7),
chull.pch = 19, adata.show = FALSE, adata.col = 3, adata.pch = 13,
link.col = data.col, link.lty = 1, ...)

Arguments

x An archetypes object.
y A matrix or data frame.
data.col Color of data points.
data.pch Type of data points.
data.bg Background of data points.
atypes.col Color of archetypes points.
atypes.pch Type of archetypes points.
ahull.show Show approximated convex hull.
ahull.col Color of approximated convex hull line.
chull An integer vector giving the indices of the points from data lying on the convex hull.
chull.col Color of convex hull points.
chull.pch Type of convex hull points.
adata.show Show approximated data with link to the original data.
adata.col Color of approximated data points.
adata.pch Type of approximated data points.
link.col Color of link between approximated and original data points.
link.lty Line type of link between approximated and original data points.
... Passed to the underlying plot functions.

Value

Undefined.
Note

The link between approximated and original data is based on an idea and Matlab source code of Bernard Pailthorpe.

xyplot.robustArchetypes

Plot of two-dimensional data and robust archetypes.

Description

Plot of two-dimensional data and robust archetypes.

Usage

S3 method for class 'robustArchetypes'
xyplot(x, y, ...)

Arguments

x An archetypes object.
y A matrix or data frame.
... Arguments of xyplot.weightedArchetypes and xyplot.robustArchetypes

xyplot.stepArchetypes Plot of two-dimensional data and stepArchetypes.

Description

Plot of two-dimensional data and stepArchetypes.

Usage

S3 method for class 'stepArchetypes'
xyplot(x, y, data.col = gray(0.7), data.pch = 19,
 atypes.col = (seq_len(length(x) * length(x[[1]])) + 1), atypes.pch = 19,
 ahull.show = TRUE, ahull.col = atypes.col, ...)
Arguments

x An \texttt{stepArchetypes} object.
y A matrix or data frame.
data.col Color of data points.
data.pch Type of data points.
atypes.col Color of archetypes points.
atypes.pch Type of archetypes points.
ahull.show Show approximated convex hull.
ahull.col Color of approximated convex hull line.
... Passed to the underlying plot functions.

Value

Undefined.

\texttt{xyplot.weightedArchetypes}

\textit{Plot of two-dimensional data and weighted archetypes.}

Description

Plot of two-dimensional data and weighted archetypes.

Usage

\begin{verbatim}
S3 method for class 'weightedArchetypes'
xyplot(x, y, data.col = 1, data.pch = 21,
data.bg = gray, link.col = NULL, link.lty = NULL,
weights.type = "weights", ...)
\end{verbatim}

Arguments

x An \texttt{archetypes} object.
y A matrix or data frame.
data.col Color of data points.
data.pch Type of data points.
data.bg Background of data points.
link.col Color of link between approximated and original data points.
link.lty Line type of link between approximated and original data points.
weights.type Weights to display; see \texttt{weights.archetypes}.
... Arguments of \texttt{xyplot.archetypes}.\end{verbatim}
Description

An extraction on a stepArchetypes object returns again a stepArchetypes object.

Usage

```r
## S3 method for class 'stepArchetypes'
x[i]
```

Arguments

- `x`: A stepArchetypes object.
- `i`: The indices to extract.

Value

A stepArchetypes object containing only the parts defined in `i`.
Index

*Topic datasets
 body, 8
 skel, 21
 toy, 24
 [.stepArchetypes, 29
archetypes, 2, 4–7, 11, 13, 14, 17, 19, 23,
 25–28
archetypesFamily, 3, 4, 6, 17, 24, 25
archmap, 4, 21
archmap_projections, 5, 19
archmap_projections
 (simplex_projection), 20
as.archetypes, 3, 4, 6, 17, 24, 25
atypes_projection, 5
atypes_projection (simplex_projection),
 20
barplot, 7
barplot.archetypes, 7
bestModel(rss), 17
bestModel.repArchetypes
 (bestModel.stepArchetypes), 8
bestModel.stepArchetypes, 8
body, 8, 21
coef, 6
coef.archetypes, 9
fitted.archetypes, 9
jd(skeletonplot), 21
kappa.archetypes, 10
lines.pcpplot, 10, 14
matlines, 10
matplot, 15
moviepcplot(movieplot), 11
movieplot, 11
movieplot2(movieplot), 11
nparameters (rss), 17
nparameters.archetypes, 12
nparameters.repArchetypes
 (nparameters.archetypes), 12
nparameters.stepArchetypes
 (nparameters.archetypes), 12
original, 16
panorama(rss), 17
panorama.archetypes, 12
parameters, 6
parameters, archetypes-method, 13
parameters, repArchetypes-method
 (parameters, archetypes-method),
 13
parameters, stepArchetypes-method
 (parameters, archetypes-method),
 13
parameters-methods
 (parameters, archetypes-method),
 13
parcoord, 15
pcplot, 14
pcplot(rss), 17
pcplot.archetypes, 14
pcplot.default, 15
predict.archetypes, 15
residuals.archetypes, 16
robustArchetypes, 3, 4, 6, 16, 23, 25
rss, 17
rss.archetypes, 6, 18
rss.repArchetypes (rss.archetypes), 18
rss.stepArchetypes (rss.archetypes), 18
screeplot.stepArchetypes, 18
simplex_projection, 5, 20
simplexplot, 19
INDEX

skel, 21, 21, 22
skeletonplot, 21
solve_TSP, 20
stepArchetypes, 18, 22, 28
summary.stepArchetypes, 23

toy, 24
tsp simplex_projection, 5
tsp simplex_projection
 (simplex_projection), 20

weightedArchetypes, 3, 4, 6, 17, 23, 24
weights.archetypes, 25, 28

xyplot, 25
xyplot.archetypes, 26, 28
xyplot.robustArchetypes, 27, 27
xyplot.stepArchetypes, 27
xyplot.weightedArchetypes, 27, 28