Package ‘aspect’

July 24, 2015

Type Package

Title A General Framework for Multivariate Analysis with Optimal Scaling

Version 1.0-4

Date 2015-07-24

Description
Contains various functions for optimal scaling. One function performs optimal scaling by maximizing an aspect (i.e. a target function such as the sum of eigenvalues, sum of squared correlations, squared multiple correlations, etc.) of the corresponding correlation matrix. Another function performs implements the LINEALS approach for optimal scaling by minimization of an aspect based on pairwise correlations and correlation ratios. The resulting correlation matrix and category scores can be used for further multivariate methods such as structural equation models.

Depends R (>= 3.0.0)

Suggests sem, polycor

Imports stats, graphics, grDevices

License GPL-2

URL http://R-forge.R-project.org/projects/psychor/

LazyData yes

LazyLoad yes

ByteCompile yes

NeedsCompilation yes

Author Patrick Mair [cre, aut],
 Jan De Leeuw [aut]

Maintainer Patrick Mair <mair@fas.harvard.edu>

Repository CRAN

Date/Publication 2015-07-24 12:16:21
Description

This package consists of two main functions: The first function is corAspect() performs (optimal) scaling by maximizing an aspect (i.e. target function such as sum eigenvalues, sum of squared correlations, squared multiple correlations, etc.) of the corresponding correlation matrix. The second function is lineals() which performs scaling by mimimization a non-correlational aspect based on pairwise correlations and correlation ratios. The resulting correlation matrix and category scores can be used for further multivariate methods such as SEM.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>aspect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.0-2</td>
</tr>
<tr>
<td>Date</td>
<td>2013-11-30</td>
</tr>
<tr>
<td>License</td>
<td>GPL</td>
</tr>
<tr>
<td>LazyLoad</td>
<td>yes</td>
</tr>
</tbody>
</table>

The main functions are lineals and corAspect. Both produce an object of class "aspect". For this class, print, summary and plot methods are provided.

Author(s)

Jan de Leeuw, Patrick Mair Maintainer: Jan de Leeuw <deleeuw@stat.ucla.edu>

References

corAspect

Scaling by Maximizing Correlational Aspects

Description

This function performs optimal scaling by maximizing a certain aspect of the correlation matrix.

Usage

```r
corAspect(data, aspect = "aspectSum", level = "nominal", itmax = 100, eps = 1e-06, ...)
```

Arguments

- `data` Data frame or matrix
- `aspect` Function on the correlation matrix (see details)
- `level` Vector with scale level of the variables ("nominal" or "ordinal"). If all variables have the same scale level, only one value can be provided
- `itmax` Maximum number of iterations
- `eps` Convergence criterion
- `...` Additional parameters for aspect

Details

We provide various pre-specified aspects:

- "aspectAbs" takes the sum of the absolute values of the correlations to the power pow. The optional argument `pow = 1`.
- "aspectSum" the sum of the correlations to the power of pow. Again, as default `pow = 1`.
- "aspectDeterminant" computes the determinant of the correlation matrix; no additional arguments needed.
- "aspectEigen" the sum of the first p eigenvalues (principal component analysis). By default the argument `p = 1`.
- "aspectSMC" the squared multiple correlations (multiple regression) with respect to a target variable. By default `targvar = 1` which implies that the first variable of the dataset is taken as response.

Examples

```r
data(galo)
res.lin <- lineals(galo)
res.lin
summary(res.lin)
```
"aspectSumSMC" uses the sum of all squared multiple correlations (path analysis).
Alternatively, the user can write his own aspect, e.g. the function `myAspect(r, ...)` with `r` as the correlation matrix. This function must return a list with the function value as first list element and the first derivative with respect to `r` as the second. Then `aspect = myAspect` and additional arguments go into ... in `maxAspect()`.

Value

- **loss**: Final value of the loss function
- **catscores**: Resulting category scores (after optimal scaling)
- **cormat**: Correlation matrix based on the scores
- **eigencor**: Eigenvalues of the correlation matrix
- **indmat**: Indicator matrix (dummy coded)
- **scoremat**: Transformed data matrix (i.e. with category scores resulting from optimal scaling)
- **burtmat**: Burt matrix
- **niter**: Number of iterations

Author(s)

Jan de Leeuw, Patrick Mair

References

See Also

- `lineals`

Examples

```
# maximizes the first eigenvalue
data(galo)
res.eig1 <- corAspect(galo[,1:4], aspect = "aspectEigen")
res.eig1
summary(res.eig1)

# maximizes the first 2 eigenvalues
res.eig2 <- corAspect(galo[,1:4], aspect = "aspectEigen", p = 2)
res.eig2

# maximizes the absolute value of cubic correlations
```
duncan

`duncan <- corAspect(galo[,1:4], aspect = "aspectAbs", pow = 3)`

`res.abs3`

```r
## maximizes the sum of squared correlations
res.cor2 <- corAspect(galo[,1:4], aspect = "aspectSum", pow = 2)
res.cor2
```

```r
## maximizes the determinant
res.det <- corAspect(galo[,1:4], aspect = "aspectDeterminant")
res.det
```

```r
## maximizes SMC, IQ as target variable
res.smc <- corAspect(galo[,1:4], aspect = "aspectSMC", targvar = 2)
res.smc
```

```r
## maximizes the sum of SMC
res.sumsmc <- corAspect(galo[,1:4], aspect = "aspectSumSMC")
res.sumsmc
```

```r
## some user-defined non-sense aspect
## first list element corresponds to function value, second to first derivative
myAspect <- function(r, a = 1, b = 1) list(a*b*r, matrix(a*b, nrow = nrow(r), ncol = ncol(r)))
res.my <- corAspect(galo[,1:4], aspect = myAspect, a = 2, b = 4)
res.my
```

duncan

Duncan dataset

Description

At 4 points in time the objects (n = 1204 adolescents) were asked to rate cigarette, marijuana, and alcohol consumption on a 5-point scale.

Usage

`galo`

Format

Data frame with marijuana (POT), cigarette (CIG), and alcohol (ALC) consumption.
Category labels:

1 ... never consumed
2 ... previous but no use over the last 6 months
3 ... current use of less than 4 times a month
4 ... current use of between 4 and 29 times a month
5 ... current use of 30 or more times a month
References

Examples
data(duncan)
duncan

galo GALO dataset

Description
The objects (individuals) are 1290 school children in the sixth grade of elementary school in the city of Groningen (Netherlands) in 1959.

Usage
galo

Format
Data frame with the five variables Gender, IQ, Advice, SES (fathers occupation) and School. IQ (original range 60 to 144) has been categorized into 9 ordered categories and the schools are enumerated from 1 to 37.

SES:
LoWC = Lower white collar; MidWC = Middle white collar; Prof = Professional, Managers; Shop = Shopkeepers; Skil = Schooled labor; Unsk = Unskilled labor.

Advice:
Agr = Agricultural; Ext = Extended primary education; Gen = General; Grls = Secondary school for girls; Man = Manual, including housekeeping; None = No further education; Uni = Pre-University.

References

Examples
data(galo)
galo
This function performs optimal scaling in order to achieve linearizing transformations for each bivariate regression.

Usage

```r
lineals(data, level = "nominal", itmax = 100, eps = 1e-06)
```

Arguments

data: Data frame or matrix
level: Vector with scale level of the variables ("nominal" or "ordinal"). If all variables have the same scale level, only one value can be provided
itmax: Maximum number of iterations
eps: Convergence criterion

Details

This function can be used as a preprocessing tool for categorical and ordinal data for subsequent factor analytical techniques such as structural equation models (SEM) using the resulting correlation matrix based on the transformed data. The estimates of the corresponding structural parameters are consistent if all bivariate regressions can be linearized.

Value

loss: Final value of the loss function
catscores: Resulting category scores (after optimal scaling)
cormat: Correlation matrix based on the scores
cor.rat: Matrix with correlation ratios
indmat: Indicator matrix (dummy coded)
scoremat: Transformed data matrix (i.e with category scores resulting from optimal scaling)
burtmat: Burt matrix
niter: Number of iterations

Author(s)

Jan de Leeuw, Patrick Mair
plot.aspect

Plot method for aspect solutions

Description

This method provides regression plots and transformation plots for objects of class "aspect", i.e. solutions of corAspect and lineals

Usage

```r
## S3 method for class 'aspect'
plot(x, plot.type, plot.var = c(1,2), xlab, ylab, main, type, ...)
```

Arguments

- `x`: Object of class "aspect".
- `plot.type`: Type of plot to be produced (details see below): "regplot", "transplot".
- `plot.var`: For `plot.type = "regplot"` only. Vector of length 2 with variables to be plotted. Either variable names of column number.
- `xlab`: Label x-axis.
- `ylab`: Label y-axis.
- `main`: Plot title.
- `type`: Whether points, lines or both should be plotted.
- `...`: Additional graphical parameters.

References

See Also

corAspect

Examples

```r
data(galo)
res.lin <- lineals(galo)
summary(res.lin)
```
Details

The regression plot ("regplot") provides two plots. First, the unscaled solution is plotted. A frequency grid for the categories of the first variable (var1; x-axis) and the categories of the second variable (var2; y-axis) is produced. The regression line is based on the category weighted means of the relative frequencies: the blue line on the var1 means on the x-axis and the var2 categories on the y-axis, the red line is based on the var1 categories on the x-axis and the var2 means on the y-axis. In a second device the scaled solution is plotted. The frequency grid is determined by the var1 scores (x-axis) and the var2 scores(y-axis). Now, instead of the var1/var2 categories, the var1 scores (blue line y-axis) and the row scores (red line x-axis) are used.

The transformation plot ("transplot") plots the raw categories against the computed scores.

Author(s)

Jan de Leeuw, Patrick Mair

References

See Also

lineals, corAspect

Examples

```r
##Regression plots using galo data
data(galo)
res <- lineals(galo[,1:4])
#plot(res, plot.type = "regplot", plot.var = c("advice","SES"))
#plot(res, plot.type = "transplot")
```

wurzer

\textit{Internet terminals}

Description

The dataset is about the use of public Internet terminals. For this package we extracted a subset of 8 items.

Usage

wurzer
Format

A data frame (n = 215) with the following items:
Do you know at least one place where you can find such a terminal? (yes/no)
Have you already used such a terminal? (yes/no)
How often do you use the Internet on each of the following locations: home, work, cafe, terminal, cellphone? (5-point scales; see below)
Which of the following descriptions fits you best? (I’m here on vacation/I am from here/I’m here on business travel)
The 5-point items we have the following categories: daily (1), almost daily (2), several times a week (3), several times a month (3), once a month (4), less frequently (5).

References

Examples

data(wurzer)
wurzer
Index

*Topic **datasets**
 duncan, 5
 galo, 6
 wurzer, 9
*Topic **hplot**
 plot.aspect, 8
*Topic **models**
 corAspect, 3
 lineals, 7
*Topic **package**
 aspect-package, 2

aspect (aspect-package), 2
aspect-package, 2

corAspect, 3, 3, 8, 9
duncan, 5
galo, 6
lineals, 3, 4, 7, 9
plot.aspect, 8
print.aspect (corAspect), 3
summary.aspect (corAspect), 3
wurzer, 9