Package ‘autopls’

February 24, 2015

Version 1.3
Date 2015-02-24

Title Partial Least Squares Regression with Backward Selection of Predictors

Author Sebastian Schmidtlein, with contributions from C. Oldenburg and H. Feilhauer and with a code snippet borrowed from Bjorn-Helge Mevik

Maintainer Sebastian Schmidtlein <schmidtlein@kit.edu>

Description Some convenience functions for pls regression, including backward variable selection and validation procedures, image based predictions and plotting.

Depends pls
Suggests rgdal, raster
License GPL-2

R topics documented:

autopls ... 2
autoplsVAL .. 5
extract.autopls .. 7
murnau.X ... 8
plot.autopls ... 9
postprocessing ... 10
predict.autopls ... 12
predict.slim ... 13
prepro ... 14
reset ... 15
set.iter ... 16
set.lv ... 17
summary.autopls .. 18
Description

Partial least squares regression with backward selection of predictors

Usage

autopls (formula, data, testset = NULL, tselect = "none", prep = "none",
val = "LOO", scaling = TRUE, stingy = TRUE, verbose = TRUE,
backselect = "auto", jt.thresh = 0.1, vip.thresh = 0.2, jump = NA,
lower = NA, method = "oscorespls")

Arguments

formula model formula
data optional data frame with the data to fit the model
testset optional vector defining a test set (row indices)
tselect string specifying the role of the test set in model selection ("none", "passive",
or "active", see details)
prep character. optional preprocessing (only one choice implemented: "bn" (see de-
tails)
val character. Validation used ("CV" or "LOO", see details)
scaling logical. if TRUE, predictors are scaled by dividing each variable by its standard
deviation. This is repeated in all validation steps
stingy logical. If TRUE, the number of latent vectors is kept low during backward selec-
tion
verbose logical. If TRUE, details about the backward selection processes are reported
backselect one or more character strings defining the methods used in backwards selection
(see details). "no" means no backselection. Defaults to "auto"
jt.thresh threshold used in predictor selections that are based on jackknife testing (meth-
ods based on A1, see details)
vip.thresh threshold used in predictor selections that are based on VIP (methods based on
A2, see details). VIP is scaled to a maximum of 1.
jump numeric. If a number is given, backward selection starts with a forced reduction
of predictors to the given number (see A0 in details). This reduction is based
on significance in jackknifing. The argument can be useful in the case of large
predictor matrices.
lower numeric. Backward selection proceeds as long as R2 in validation reaches the
given value (experimental, backward selection continues further if models im-
prove in other respects such as decreasing numbers of latent vectors).
method character string indicating what pls method to use. autopls works with the or-
thogonal scores algorithm ("oscorespls") and with the kernel algorithm ("kernelpls").
Details

The autopls function is a wrapper for pls in package pls written by Bjørn-Helge Mevik, Ron Wehrens and Kristian Hovde Liland. As for now, the wrapper can be cited as Schmidtlein et al. (2012). autopls works only for single target variables.

If validation = “CV”, 10-fold cross-validation is performed. If validation = “LOO”, leave-one-out cross-validation is performed. Test set validation takes always place if a test set has been defined. tselect specifies how the test set is used in model selection. "none": just use it for external validation; "passive": use error in external validation for model selection but do not use it for the determination of the number of latent vectors; "active" use the error in external validation for model selection and for the determination of the number of latent vectors. With stingy = TRUE the errors that are used in the selection are measured at a number of latent vectors that depends on the number of observations (1/10 at maximum). Otherwise, the number of latent vectors is chosen where errors approach a first minimum. In order to avoid minor local minima the error values are first smoothed.

Large data matrices: Examine the arguments jump (forced reduction of predictors in the first iteration). Large model objects can be shrunked using the function slim but some functionality (like plotting or change of the number of latent vectors) is lost. Shrinkered models can still be used for predictions.

Preprocessing options: The only implemented option is currently "bn", which is a brightness normalization according to Feilhauer et al. (2010).

Several methods for predictor selection are available. In default mode (backselect = "auto") the selection follows an optimization procedure using methods A1 and A3. However, apart from A0 any user-defined combination can be selected using the backselect argument. Note that VIP-based methods (A2, A3, B3 to B6) are meant to be used with the oscorespls method and methods B1 to B6 and C1 do only make sense with sequences of spectral bands or similar sequences of autocorrelated predictors. The methods are coded as follows:

A) Filtering based on thresholds

(A0 and A1) Based on significance, A0 with user-defined threshold (see argument jump); (A2) based on VIP; (A3) based on combined significance and VIP; (A4) removal of 10% predictors with the lowest significance; (A5) removal of 25% predictors with the lowest significance.

B) Filtering followed by reduction of autocorrelation

(B1) Filtering based on significance, thinning starting with local maxima in weighted regression coefficients; (B2) filtering based on significance, thinning starting with local maxima in significance; (B3) filtering based on significance, thinning starting with local maxima in VIP; (B4) filtering based on VIP, thinning starting with local maxima in weighted regression coefficients; (B5) filtering based on VIP, thinning starting with local maxima in significance; (B6) filtering based on VIP, thinning starting with local maxima in VIP.

C) Just reduction of autocorrelation

(C1): reduction starting with local maxima in regression coefficients.

Value

An object of class autopls is returned. This equals a pls object and some added objects:

- predictors logical. Vector of predictors that have been or have not been used in the current model
metapls outcomes of the backward selection process
iterations models selected during the backward selection process

The \$\text{metapls} item consists of the following:

- current.iter iteration of the backward selection procedure the current model is based upon
- autopls.iter iteration of the backward selection procedure originally selected by autopls
- current.lv number of latent vectors the current model is based upon
- autopls.lv number of latent vectors originally selected by autopls
- lv.history sequence of number of latent vectors values selected during iterations in backward selection
- rmse.history sequence of root mean squared errors obtained during iterations in backward selection. Errors are reported for calibration and validation. The validation errors are also reported for the number of latent vectors corresponding to ceiling (nrow (predI O 1PI).
- r2.history sequence of number of r2 values obtained during iterations in backward selection
- X original predictors
- Y original target variable
- X.testset test set: predictors
- Y.testset test set: target variable
- preprocessing method used for preprocessing
- scaling TRUE if scaling was requested
- val L00 or CV
- call the function call

Author(s)
Sebastian Schmidtlein with contributions from Carsten Oldenburg and Hannes Feilhauer. The code for computing VIP is borrowed from Bjørn-Helge Mevik.

References

See Also

`pls, set.iter, set.lv, predict.autopl, plot.autopl`
Examples

```r
## load predictor and response data to the current environment
data (murnau.X)
data (murnau.Y)

## call autopls with the standard options
model <- autopls (murnau.Y ~ murnau.X)

## S3 plot method
## Not run: plot (model)
## Not run: plot (model, type = "rc")

## Loading and score plots
## Not run: plot (model$loadings, main = "Loadings")
## Not run: plot (model$loadings [,c(1,3)], main = "Loadings")
## Not run: plot (model$scores, main = "Scores")
```

autoplsVAL
Validate a fitted autopls model

Description

Functions to extract R2 and RMSEP from autopls objects, for significance testing based on jackknife variance estimates for regression

Usage

```r
## S3 method for class 'autopls'
R2(object, estimate, nc = 'inherit', ic = FALSE, ...)
## S3 method for class 'autopls'
RMSEP(object, estimate, nc = 'inherit', ic = FALSE, ...)
jack.test.autopls (object, nc = 'inherit')
metaval (object, method, estimate, ic)
repeatedCV (object, k = 100, segments = 4)
clusterCV (object, valist)
```

Arguments

- **object**
 object of class autopls
- **method**
 character. Should be or 'R2' or 'RMSEP'
- **estimate**
 character vector. Which estimators to use. In metaval this can be “train” or “CV”. Additional options in R2 and RMSEP are “all” and “test”).
- **nc**
 'inherit' returns values corresponding to the number of latent vectors in the current model, 'all' returns values for all numbers of latent vectors. A specific number returns values corresponding to the respective number of latent vectors.
ic logical. Specifies whether estimates for a model with zero components should be returned

k number of cross-validations used in repeatedCV

segments number of cross-validation segments used in repeatedCV

valist list of segments. The elements are vectors of plots assigned to a cluster of samples

Arguments to be passed to methods

Details

Some of these functions are just convenience wrappers for mvrVal functions and for the jack.test function in package pls. More details are given here: mvrVal, jack.test. Other functions are specific autopls functions. metaval is used for a summary of validation results during backselection. repeatedCV is a meta cross-validation (repeated ten-fold cross-validation). clusterCV is a leave-one-site-out cross-validation to avoid effects of spatial or other autocorrelation. The elements of the list should be integer vectors specifying the indices of the segments.

Value

see mvrVal and jack.test. The main difference is a reduced selection of functions (see above) and the possibility to inherit a number of latent vectors from the autopls object.

The metaval function provides a matrix overview of model results for all iterations and numbers of latent vectors in an autopls object. repeatedCV provides results and basic statistics for repeated cross-validation runs.

Note

If you want to make full use of the mvrVal functions in the pls package assign class mvr to the model object.

Author(s)

Sebastian Schmidtlein, linking to code from package pls by Ron Wehrens and Bjørn-Helge Mevik.

See Also

mvrVal, jack.test, autopls, repCV, mvr_dcv

Examples

```r
## load predictor and response data to the current environment
data(murnau.X)
data(murnau.Y)

## call autopls with the standard options
model< autopls (murnau.Y ~ murnau.X)

## Validation
R2 (model)
```
extract.autopls

Extract information from a fitted autopls model

Description

Functions to extract information from autopls objects: crossvalidation, fitted values, regression coefficients, residuals, scores, loadings, latent vectors used, underlying run.

Usage

```
predicted (object)
get.lv (object)
get.iter (object)
slim (object)
  ## S3 method for class 'autopls'
scores(object, ...)
  ## S3 method for class 'autopls'
loadings(object, ...)
  ## S3 method for class 'autopls'
fitted(object, ...)
  ## S3 method for class 'autopls'
coef(object, intercept = FALSE, ...)
  ## S3 method for class 'slim'
coef(object, intercept = FALSE, ...)
  ## S3 method for class 'autopls'
residuals(object, ...)
```

Arguments

- `object`: object of class `autopls`
- `intercept`: logical. Should intercept be given?
- `...`: logical. Arguments to be passed to methods
Details

Provides convenience wrappers for extract functions in package \texttt{pls}. More details are given here: \texttt{coef.mvr}. Other functions extract information specific for \texttt{autopls} objects: \texttt{get.lv}, \texttt{get.iter} or condense the model information to a memory saving object of class \texttt{slim} that can be used for predictions with \texttt{predict.slim}. This makes sense if large predictor data sets result in huge \texttt{autopls} model objects that are difficult to handle.

Value

see \texttt{coef.mvr}. \texttt{get.iter} returns the run in the \texttt{autopls} backwards selection procedure that has been used for the current model. \texttt{get.lv} returns the number of latent vectors used for the present model. \texttt{predicted} returns the predictions in model validation while \texttt{fitted} returns the predictions in model calibration. \texttt{slim} returns an object of class \texttt{slim}.

Note

If you want to make full use of the extract functions in the \texttt{pls} package assign class \texttt{mvr} to the model object.

Reducing a model to an object of class \texttt{slim} means loosing plotting options.

Author(s)

Sebastian Schmidtlein, links to code from package \texttt{pls} by Ron Wehrens and Bjørn-Helge Mevik.

See Also

\texttt{autopls, metaval, set.iter, set.lv, predict.slim}

Examples

```r
## load predictor and response data to the current environment
data (murnau.X)
data (murnau.Y)

## call autopls with the standard options
model <- autopls (murnau.Y ~ murnau.X)

## get fitted values
fitted(model)
```

\textit{murnau.X} \hspace{1cm} \textit{Hyperspectral reflectance and plant attributes}

Description

This data gives reflectance from raised bogs and fens (\texttt{murnau.X}), the corresponding wavelengths (\texttt{murnau.W}) and associated vegetation attributes (\texttt{murnau.Y: plant adaptation to stress}). More detail is given by Schmidtlein et al. (2012).
Usage

data(murnau.X)

Format

Matrix containing 40 observations and 105 spectral bands (murnau.X), a vector with 105 wavelengths corresponding to bands (murnau.w) and a vector with 40 observations of plant attributes (murnau.y).

Source

plot.autopls

Plotting function for autopls objects

Description

Produces plots illustrating the outcomes of autopls: predicted vs. observed values, errors vs. numbers of latent vectors, regression coefficients, influences of observations regarding X and Y, latent vectors and R2 in backward selection

Usage

```r
## S3 method for class 'autopls'
plot(x, type="all", wl=NULL, rcxlab = "Predictors", plab=FALSE, bw = FALSE, ...)
```

Arguments

- **x** object of class autopls
- **type** specifying the type of plot. ("all": all plot; "ovp": observed vs. predicted values; "ovp.test": test set: observed vs. predicted values; "rmse": internal validation errors vs. numbers of latent vectors; "rmse.test": test set errors vs. numbers of latent vectors; "rc": regression coefficients; "x.inf": influence plot (X-variance); "y.inf": influence plot (Y-variance); "meta": latent vectors and R2 in backward selection)
- **wl** denotes an optional vector of numerical values describing the position of predictors along the x axis in the rc plot. The values should refer to all bands (before backward selection) or to the bands that are actually used.
- **rcxlab** Label for x axis in rc plot.
- **plab** logical. Whether observations are labeled.
- **bw** logical. Whether plots are given in grey-scales (partly realized).
- **...** Arguments to be passed to methods
Details
Red dots in the influence plots indicate potentially dangerous outliers

Value
Apart from the plots the function returns the underlying values

Author(s)
Sebastian Schmidtlein, Carsten Oldenburg

The placement of observation labels if plab = TRUE is done using code borrowed from the pointLabel in maptools. The author of this function is Tom Short (EPRI).

See Also
autoplsls

Examples
```r
## load predictor and response data to the current environment
data (murnau.X)
data (murnau.Y)
data (murnau.W)

## call autoplsls with the standard options
model<-autoplsls (murnau.Y ~ murnau.X)

## plot results
## Not run: plot (model)

## use wavelengths in rc plot
## Not run: plot (model, type = "rc", wl = murnau.W, rcxlabel = "Wavelength (nm)"

## predicted vs. observed
## Not run: x <- plot (model, type = "ovp")
## Not run: x
```

Description
Departures of values predicted by autoplsls from the original data space and removal of exceedingly extrapolated predictions.

Test for model extrapolations or interpolations and removal of bold predictions in autoplsls
Usage

liability (object, prediction)
confine (object, prediction, tolerance)

Arguments

object object of class autopls
prediction predicted values as single vector or single layer raster image (RasterLayer from package raster).
tolerance maximum departure of preserved prediction values

Details

Takes its time with large images and many objects used in calibration.

Value

Vector or raster image depending on the type of prediction. Uncertainties (liability function) are given in original units. After confine, values exceeding tolerance are replaced by NA.

Author(s)

Sebastian Schmidtlein

See Also

autopls, predict.autopls

Examples

load predictor and response data to the current environment
data (murnau.X)
data (murnau.Y)

call autopls with the standard options
model <- autopls (murnau.Y ~ murnau.X)

new data
ew <- murnau.X + 500

prediction
pred <- predict (model, new)

check uncertainty
liability (model, pred)

remove predictions with uncertainty value > 5
confine (model, pred, 5)
predict.autoplss

Description

Applies a model from a autopls object to a vector, matrix or to a stack or brick from package raster.

Usage

```r
## S3 method for class 'autopls'
predict(object, dat, ...)
```

Arguments

- `object`: object of class autopls
- `dat`: vector, matrix, data frame or imagery (the latter as stack or brick from package raster).
- `...`: logical. Arguments to be passed to method

Details

Elements, columns or layers must have the same number and order as the input predictors for autopls. The predictors resulting from autopls are selected silently. In case of large image files the function is based on tile processing.

Value

A new vector matrix or image depending on the type of newdata

Author(s)

Sebastian Schmidtlein

See Also

`autopls`

Examples

```r
## load predictor and response data to the current environment
data (murnau.X)
data (murnau.Y)

## call autopls with the standard options
model<- autopls (murnau.Y ~ murnau.X)

## new data
**predict.slim**

```r
new <- murnau.X + 500

prediction
predict(model, new)
```

---

**predict.slim**

*Prediction using a condensed autopls model*

### Description

Applies a model object of class `slim` originating from `autopls` to a vector, matrix or to a stack or brick from package `raster`.

### Usage

```r
S3 method for class 'slim'
predict(object, dat, ...)
```

### Arguments

- `object` object of class `slim`
- `dat` vector, matrix, dataframe or imagery (the latter as stack or brick from package `raster`).
- `...` logical. Arguments to be passed to method

### Details

Elements, columns or layers must have the same number and order as the input predictors for `autopls`. In case of large image files the function is based on tile processing.

### Value

A new vector matrix or image depending on the type of `newdata`

### Author(s)

Sebastian Schmidtlein

### See Also

`autopls, slim`
Examples

```r
load predictor and response data to the current environment
data (murnau.X)
data (murnau.Y)

call autopls with the standard options
model <- autopls (murnau.Y ~ murnau.X)

condensed model object
new.model <- slim (model)

new data
new <- murnau.X + 500

prediction
predict (new.model, new)
```

---

**prepro**  
*Preprocessing in autopls*

**Description**

Used for preprocessing predictor data in functions autopls and predict.autopl.<br>

**Usage**

`prepro(X, method = 'bn')`

**Arguments**

- `X` predictors as vector, matrix, raster brick or raster stack
- `method` type of preprocessing (currently only brightness normalization coded as “bn”)

**Details**

The function is called within autopls and predict.autopl. The only implemented option is currently “bn”, which is a brightness normalization according to Feilhauer et al. (2010). Raster brick and raster stack are objects of package raster.

**Value**

Returns the transformed matrix or raster object.

**Author(s)**

Hannes Feilhauer
References


See Also

autopls, predict.autopl

reset

Resets the number of latent vectors and the iteration used in autopls objects

Description

Resets the number of latent vectors and the iteration used in autopls objects to the values originally selected by the autopls procedure

Usage

reset(object, verbose = TRUE)

Arguments

object object of class autopls
verbose logical. If a summary of the resulting object should be printed on the screen

Value

Returns an object of class autopls

Author(s)

Sebastian Schmidtlein

See Also

autopls, set.iter, set.lv

Examples

## load predictor and response data to the current environment
data (murnau.X)
data (murnau.Y)

## call autopls with the standard options
model <- autopls (murnau.Y ~ murnau.X)
## set.iter

Sets the run of an autopls backwards selection to be used

### Description

Changes the run of an autopls backwards selection to be used

### Usage

```r
set.iter(object, iteration, verbose = TRUE)
```

### Arguments

- `object`: object of class `autopls`
- `iteration`: new value for the iteration used
- `verbose`: logical. If a summary of the resulting object should be printed on the screen

### Details

The number of latent vectors is set to the original number for this run.

### Value

Returns an object of class `autopls`

### Author(s)

Sebastian Schmidtlein

### See Also

- `autopls`
- `set.lv`
Examples

```r
load predictor and response data to the current environment
data (murnau.X)
data (murnau.Y)

call autopls with the standard options
model <- autopls (murnau.Y ~ murnau.X)

set another number of latent vectors
newmodel <- set.iter (model, 3)
```

---

**set.lv**

Sets the number of latent vectors in autopls objects

**Description**

Sets the number of latent vectors in a autopls object

**Usage**

```r
set.lv(object, lv, verbose = TRUE)
```

**Arguments**

- `object` object of class autopls
- `lv` new value for the number of latent vectors used
- `verbose` logical. If a summary of the resulting object should be printed on the screen

**Value**

Returns an object of class autopls

**Author(s)**

Sebastian Schmidtlein

**See Also**

- autopls, set.iter
Examples

```r
load predictor and response data to the current environment
data (murnau.X)
data (murnau.Y)

call autopls with the standard options
model <- autopls (murnau.Y ~ murnau.X)

set another number of latent vectors
newmodel <- set.lv (model, 2)
```

### summary.autoplS

**Summary and print functions for autopls objects**

**Description**

Summary and print methods for autopls and slim objects.

**Usage**

```r
S3 method for class 'autopls'
summary(object, ...)
S3 method for class 'slim'
summary(object, ...)
S3 method for class 'autopls'
print(x, ...)
S3 method for class 'slim'
print(x, ...)
```

**Arguments**

- `object` : object of class `autopls` or `slim` respectively
- `x` : object of class `autopls` or `slim`
- `...` : Arguments to be passed to methods

**Value**

- `predictors` : number of predictors used in the final model
- `lv` : number of latent vectors used in the final model
- `rmse.cal` : root mean squared errors in calibration
- `rmse.val` : root mean squared errors in validation
- `r2.cal` : R2 in calibration
- `r2.val` : R2 in validation

Print returns a screen output and an unvisible object with the same content
**summary.autoplsl**

**Author(s)**

Sebastian Schmidtlein

**See Also**

`autopls`, `slim`

**Examples**

```r
load predictor and response data to the current environment
data (murnau.X)
data (murnau.Y)

call autopls with the standard options
model <- autopls(murnau.Y ~ murnau.X)

print and plot results
print (model)
```
Index

*Topic datasets
  murnau.X, 8
*Topic hplot
  plot.autopls, 9
*Topic multivariate
  autopls, 2
  autoplsval, 5
  plot.autopls, 9
  postprocessing, 10
  predict.autopls, 12
  predict.slim, 13
  reset, 15
  set.iter, 16
  set.lv, 17
  summary.autopls, 18
*Topic regression
  autopls, 2
  autoplsval, 5
  plot.autopls, 9
  postprocessing, 10
  predict.autopls, 12
  predict.slim, 13
  reset, 15
  set.iter, 16
  set.lv, 17
  summary.autopls, 18
  autopls, 2, 6, 8–13, 15–17, 19
  autoplsval, 5

  clusterCV (autoplsVAL), 5
  coef.autopls (extract.autopls), 7
  coef.mvr, 8
  coef.slim (extract.autopls), 7
  confine (postprocessing), 10

  extract.autopls, 7
  fitted.autopls (extract.autopls), 7
  get.iter (extract.autopls), 7
  get.lv (extract.autopls), 7
  jack.test, 6
  jack.test.autopls (autoplsVAL), 5
  liability (postprocessing), 10
  loadings.autopls (extract.autopls), 7
  metaval, 8
  metaval (autoplsVAL), 5
  murnau.W (murnau.X), 8
  murnau.X, 8
  murnau.Y (murnau.X), 8
  mvr_dcvc, 6
  mvrVal, 6
  plot.autopls, 4, 9
  pls, 3, 4
  postprocessing, 10
  predict.autopls, 4, 11, 12, 15
  predict.slim, 8, 13
  predicted (extract.autopls), 7
  prepro, 14
  print.autopls (summary.autopls), 18
  print.slim (summary.autopls), 18
  R2.autopls (autoplsVAL), 5
  repCV, 6
  repeatedCV (autoplsVAL), 5
  reset, 15
  residuals.autopls (extract.autopls), 7
  RMSEP.autopls (autoplsVAL), 5
  scores.autopls (extract.autopls), 7
  set.iter, 4, 8, 15, 16, 17
  set.lv, 4, 8, 15, 16, 17
  slim, 3, 13, 19
  slim (extract.autopls), 7
  summary.autopls, 18
  summary.slim (summary.autopls), 18