Dealing with quasi- models in R

Ben Bolker

April 17, 2017

Computing “quasi-AIC” (QAIC), in R is a minor pain, because the R Core team (or at least the ones who wrote glm, glmmPQL, etc.) are purists and don’t believe that quasi- models should report a likelihood. As far as I know, there are three R packages that compute/handle QAIC: bbmle|AICcmodavg and MuMIn.

The basic problem is that quasi- model fits with glm return an NA for the log-likelihood, while the dispersion parameter ($\hat{\phi}$) is only reported for quasi- models. Various ways to get around this are:

- fit the model twice, once with a regular likelihood model (family=binomial, poisson, etc.) and once with the quasi- variant — extract the log-likelihood from the former and the dispersion parameter from the latter

- only fit the regular model; extract the overdispersion parameter manually with

```r
dfun <- function(object) {
  with(object,sum((weights * residuals^2)[weights > 0])/df.residual)
}
```

- use the fact that quasi- fits still contain a deviance, even if they set the log-likelihood to NA. The deviance is twice the negative log-likelihood (it’s offset by some constant which I haven’t figured out yet, but it should still work fine for model comparisons)

The whole problem is worse for MASS::glmmPQL, where (1) the authors have gone to greater efforts to make sure that the (quasi-)deviance is no longer preserved anywhere in the fitted model, and (2) they may have done it for good reason — it is not clear whether the number that would get left in the ‘deviance’ slot at the end of glmmPQL’s alternating lme and glm fits is even meaningful to the extent that regular QAICs are. (For discussion of a similar situation, see the WARNING section of ?gamm in the mgcv package.)

Example: use the values from one of the examples in ?glm:
Dobson (1990) Page 93: Randomized Controlled Trial:

```r
counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12)
outcome <- gl(3, 1, 9)
treatment <- gl(3, 3)
```

Fit Poisson and quasi-Poisson models with all combinations of predictors:

```r
glmOT.D93 <- glm(counts ~ outcome + treatment, family=poisson)
glmO.D93 <- update(glmOT.D93, . ~ . - treatment)
glmT.D93 <- update(glmOT.D93, . ~ . - outcome)
glmX.D93 <- update(glmT.D93, . ~ . - treatment)
glmQOT.D93 <- update(glmOT.D93, family=quasipoisson)
glmQO.D93 <- update(glmO.D93, family=quasipoisson)
glmQT.D93 <- update(glmT.D93, family=quasipoisson)
glmQX.D93 <- update(glmX.D93, family=quasipoisson)
```

Extract log-likelihoods:

```r
(sum(dpois(counts, lambda=exp(predict(glmOT.D93)), log=TRUE)))
## by hand
## [1] -23.38066
(logLik(glmOT.D93))
## from Poisson fit
## 'log Lik.' -23.38066 (df=5)
```

The deviance (`deviance(glmOT.D93)` = 5.129) is not the same as $-2L$ ($-2\times\log\text{Lik}(\text{glmOT.D93}) = 46.761$), but the calculated differences in deviance are consistent, and are also extractable from the quasi-

```r
(-2*(logLik(glmT.D93)-logLik(glmOT.D93)))
## Poisson fit
## 'log Lik.' 5.452305 (df=3)
(deviance(glmT.D93)-deviance(glmOT.D93))
## Poisson fit
## [1] 5.452305
(deviance(glmQT.D93)-deviance(glmQOT.D93))
## quasi-fit
## [1] 5.452305
```

Compare hand-computed dispersion (in two ways) with the dispersion computed by `summary.glm()` on a quasi-fit:
Examples

bbmle

```r
library(bbmle)
(qAIC(glmOT.D93, dispersion=dfun(glmOT.D93)))
## [1] 46.15658
(qAICc(glmOT.D93, dispersion=dfun(glmOT.D93), nobs=length(counts)))
## [1] 90.15658
ICtab(glmOT.D93, glmT.D93, glmO.D93, glmX.D93, 
      dispersion=dfun(glmOT.D93), type="qAIC")
## dqAIC df
## glmO.D93 0.0 3
## glmX.D93 0.2 1
## glmOT.D93 4.0 5
## glmT.D93 4.2 3
ICtab(glmOT.D93, glmT.D93, glmO.D93, glmX.D93, 
      dispersion=dfun(glmOT.D93), 
      nobs=length(counts), type="qAICc")
## dqAICc df
## glmX.D93 0.0 1
## glmO.D93 7.8 3
## glmT.D93 12.0 3
## glmOT.D93 43.8 5
detach("package:bbmle")
```
AICcmodavg

```r
library(AICcmodavg)
aictab(list(glmOT.D93,glmT.D93,glmO.D93,glmX.D93),
     modnames=c("OT","T","O","X"),
     c.hat=dfun(glmOT.D93))
```

```
## Model selection based on QAICc:
## (c-hat estimate = 1.2933)
##
## K QAICc Delta_QAICc QAICcWt Cum.Wt Quasi.LL
## X 2 46.37 0.00 0.98 0.98 -20.19
## O 4 54.16 7.78 0.02 1.00 -18.08
## T 4 58.37 12.00 0.00 1.00 -20.19
## OT 6 90.16 43.78 0.00 1.00 -18.08

detach("package:AICcmodavg")
```

MuMIn

```r
library(MuMIn); packageVersion("MuMIn")
```

```
## [1] '1.15.6'
## from ?QAIC
x.quasipoisson <- function(...) {
  res <- quasipoisson(...)
  res$aic <- poisson(...)$aic
  res
}

glmQOT2.D93 <- update(glmOT.D93,family="x.quasipoisson",
                        na.action=na.fail)

(gg <- dredge(glmQOT2.D93,rank="QAIC", chat=dfun(glmOT.D93)))
```

```
## Fixed term is "(Intercept)"
##
## Global model call: glm(formula = counts ~ outcome + treatment, family = "x.quasipoisson",
##                        na.action = na.fail)
##
## Model selection table
## (Intrc) outcm trtmn df logLik QAIC delta weight
## 2 3.045 + 3 -23.381 44.2 0.00 0.464
## 1 2.813 1 -26.107 44.4 0.22 0.417
```
Model selection table

<table>
<thead>
<tr>
<th></th>
<th>(Intrc)</th>
<th>outcm</th>
<th>trtmn</th>
<th>df</th>
<th>logLik</th>
<th>QAICc</th>
<th>delta</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.813</td>
<td></td>
<td></td>
<td>1</td>
<td>-26.107</td>
<td>46.4</td>
<td>0.00</td>
<td>0.978</td>
</tr>
<tr>
<td>2</td>
<td>3.045</td>
<td>+</td>
<td></td>
<td>3</td>
<td>-23.381</td>
<td>54.2</td>
<td>7.78</td>
<td>0.020</td>
</tr>
<tr>
<td>3</td>
<td>2.813</td>
<td>+</td>
<td></td>
<td>3</td>
<td>-26.107</td>
<td>58.4</td>
<td>12.00</td>
<td>0.002</td>
</tr>
<tr>
<td>4</td>
<td>3.045</td>
<td>+</td>
<td></td>
<td>5</td>
<td>-23.381</td>
<td>90.2</td>
<td>43.78</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Models ranked by QAICc(x, chat = 1.29330044006699)

```
(ggc <- dredge(glmQOT2.D93, rank="QAICc", chat= dfun(glmOT.D93)))
```

Fixed term is "(Intercept)"

Global model call: glm(formula = counts ~ outcome + treatment, family = "x.quasipoisson",
na.action = na.fail)

Notes: ICtab only gives delta-IC, limited decimal places (on purpose, but how do you change these defaults if you want to?). Need to add 1 to parameters to account for scale parameter. When doing corrected-IC you need to get the absolute number of parameters right, not just the relative number ... Not sure which classes of models each of these will handle (lm, glm, (n)lme, lme4, mle2 ...). Remember need to use overdispersion parameter from most complex model. glmPQL: needs to be hacked somewhat more severely (does not contain deviance element, logLik has been NA’d out).