Package ‘ber’

February 19, 2015

Type Package
Title Batch Effects Removal
Version 4.0
Date 2013-12-03
Author Marco Giordan
Maintainer Marco Giordan <marco.giordan@fmach.it>
Depends MASS
Description The functions in this package remove batch effects from microarray normalized data. The expression levels of the genes are represented in a matrix where rows correspond to independent samples and columns to genes (variables). The batches are represented by categorical variables (objects of class factor). When further covariates of interest are available they can be used to remove efficiently the batch effects and adjust the data.
License GPL-2
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2013-03-12 10:01:16

R topics documented:

ber ... 2
ber_bg .. 3
combat_np ... 4
combat_p ... 5
mean_centering ... 6
standardization ... 7

Index 8
Batch Effects Removal

Description

Batch effects are removed using a two-stage regression approach.

Usage

\[
ber(Y, b, covariates = \text{NULL})
\]

Arguments

- **Y**: A matrix with \(n\) rows and \(g\) columns, where \(n\) is the number of objects and \(g\) is the number of variables. In the case of gene expression data, columns correspond to genes (probe sets) and rows to samples.
- **b**: A vector of class factor with the element in position \(i\) (\(i = 1, \ldots, n\)) representing the batch from which observation \(i\) belongs to.
- **covariates**: An object of class data.frame where each column corresponds to a quantitative variable (of class numeric) or a qualitative variable (of class factor).

Details

In this implementation NA values are not allowed.

Value

A matrix of adjusted data with \(n\) rows and \(g\) columns.

Author(s)

Marco Giordan

References

See Also

`ber_bg`, `combat_np`, `combat_p`, `mean_centering`, `standardization`

Examples

\[
Y<-\text{matrix(rnorm(6000),nrow=12)}\\
\text{class}<\text{gl(2,6,labels=c("Control","Treat"))}\\
\text{class}<\text{data.frame(class)}\\
\text{batch}<\text{rep(gl(2,3,labels=c("Batch1","Batch2")),2)}\\
\text{YAdj}<\text{ber(Y,batch,}\text{class})
\]
ber_bg

Batch Effects Removal using Bagging

Description

Batch effects are removed using a two-stage regression approach and bagging.

Usage

```r
ber_bg(Y, b, covariates = NULL, partial = TRUE, nSim = 150)
```

Arguments

- **Y**
 A matrix with \(n \) rows and \(g \) columns, where \(n \) is the number of objects and \(g \) is the number of variables. In the case of gene expression data, columns correspond to genes (probe sets) and rows to samples.

- **b**
 A vector of class factor with the element in position \(i \) (\(i = 1, \ldots, n \)) representing the batch from which observation \(i \) belongs to.

- **covariates**
 An object of class data.frame where each column corresponds to a quantitative variable (of class numeric) or a qualitative variable (of class factor).

- **partial**
 A logical value indicating if partial bagging or full bagging have to be performed. See reference below.

- **nSim**
 Number of bootstrap samples.

Details

In this implementation NA values are not allowed.

Value

A matrix of adjusted data with \(n \) rows and \(g \) columns.

Author(s)

Marco Giordan

References

See Also

`ber, combat_np, combat_p, mean_centering, standardization`
Examples

Y<-matrix(rnorm(6000),nrow=12)
class<-gl(2,6,labels=c("Control","Treat"))
class<-data.frame(class)
batch<-rep(gl(2,3,labels=c("Batch1","Batch2"),2))
Yadj<-ber_bg(Y,batch,class)

combat_np non-parametric combat

Description

Batch effects are removed using a non-parametric empirical Bayes approach, as described in John-
son et al. 2007.

Usage

combat_np(Y, b, covariates = NULL)

Arguments

Y A matrix with \(n \) rows and \(g \) columns, where \(n \) is the number of objects and \(g \) is the number of variables. In the case of gene expression data, columns corre-
spond to genes (probe sets) and rows to samples.
b A vector of class factor with the element in position \(i \) (\(i = 1, \ldots, n \)) representing the batch from which observation \(i \) belongs to.
covariates An object of class data.frame where each column corresponds to a quantitative variable (of class numeric) or a qualitative variable (of class factor).

Details

In this implementation pre-processing of the data is obtained through Moore-Penrose pseudo in-
verse. The final matrix of adjusted data can be different from that obtained through the original ComBat algorithm (see sva package) due to small differences in the optimization peocedure. NA values are not allowed.

Value

A matrix of adjusted data with \(n \) rows and \(g \) columns.

Author(s)

Marco Giordan

References

See Also

ber, ber_bg, combat_p, mean_centering, standardization

Examples

```r
Y <- matrix(rnorm(1200), nrow=12)
class <- gl(2,6, labels=c("Control","Treat"))
class <- data.frame(class)
batch <- rep(gl(2,3, labels=c("Batch1","Batch2"), 2)
YEadj <- combat_np(Y, batch, class)
```

Description

Batch effects are removed using a parametric empirical Bayes approach, as described in Johnson et al. 2007.

Usage

```r
combat_p(Y, b, covariates = NULL, prior.plots=T)
```

Arguments

- **Y**: A matrix with \(n \) rows and \(g \) columns, where \(n \) is the number of objects and \(g \) is the number of variables. In the case of gene expression data, columns correspond to genes (probe sets) and rows to samples.
- **b**: A vector of class factor with the element in position \(i \) (\(i = 1, \ldots, n \)) representing the batch from which observation \(i \) belongs to.
- **covariates**: An object of class data.frame where each column corresponds to a quantitative variable (of class numeric) or a qualitative variable (of class factor).
- **prior.plots**: A logical value; if true prior plots to compare kernel density estimate and parametric estimate are produced.

Details

In this implementation pre-processing of the data is obtained through Moore-Penrose pseudo inverse. The final matrix of adjusted data can be different from that obtained through the original ComBat algorithm (see sva package) due to small differences in the optimization procedure. NA values are not allowed.

Value

A matrix of adjusted data with \(n \) rows and \(g \) columns.
Author(s)
Marco Giordan

References

See Also
ber, ber_bg, combat_np, mean_centering, standardization

Examples
Y<-matrix(rnorm(1200),nrow=12)
class<-gl(2,6,labels=c("Control","Treat"))
class<-data.frame(class)
batch<-rep(gl(2,3,labels=c("Batch1","Batch2"),2)
Yadj<-combat_p(Y,batch,class)

Description
Batch effects are removed using the means of the batches.

Usage
mean_centering(Y, b)

Arguments
Y A matrix with \(n \) rows and \(g \) columns, where \(n \) is the number of objects and \(g \) is the number of variables. In the case of gene expression data, columns correspond to genes (probe sets) and rows to samples.
b A vector of class factor with the element in position \(i \) (\(i = 1, \ldots, n \)) representing the batch from which observation \(i \) belongs to.

Value
A matrix of adjusted data with \(n \) rows and \(g \) columns.

Author(s)
Marco Giordan
standardization

See Also
ber, ber_bg, combat_np, combat_p, standardization

Examples
Y <- matrix(rnorm(6000), nrow = 12)
batch <- rep(gl(2, 3, labels = c("Batch1", "Batch2")), 2)
Yeadj <- mean_centering(Y, batch)

standardization standardization

Description
Batch effects are removed using the means and the standard deviations of the batches.

Usage
standardization(Y, b)

Arguments
Y A matrix with \(n \) rows and \(g \) columns, where \(n \) is the number of objects and \(g \) is the number of variables. In the case of gene expression data, columns correspond to genes (probe sets) and rows to samples.
b A vector of class factor with the element in position \(i \) (\(i = 1, \ldots, n \)) representing the batch from which observation \(i \) belongs to.

Value
A matrix of adjusted data with \(n \) rows and \(g \) columns.

Author(s)
Marco Giordan

See Also
ber, ber_bg, combat_np, combat_p, mean_centering

Examples
Y <- matrix(rnorm(6000), nrow = 12)
batch <- rep(gl(2, 3, labels = c("Batch1", "Batch2")), 2)
Yeadj <- standardization(Y, batch)
Index

ber, 2, 3, 5–7
ber_bg, 2, 3, 5–7

combat_np, 2, 3, 4, 6, 7
combat_p, 2, 3, 5, 5, 7

mean_centering, 2, 3, 5, 6, 6, 7

standardization, 2, 3, 5–7, 7