Package ‘binomialcftp’

February 19, 2015

Type Package
Title Generates binomial random numbers via the coupling from the past algorithm
Version 1.0
Date 2012-09-14
Author Francisco Juretig
Maintainer Francisco Juretig <fjuretig@yahoo.com>
Description Binomial random numbers are generated via the perfect sampling algorithm. At each iteration dual markov chains are generated and coalescence is checked. In case coalescence occurs, the resulting number is outputted. In case not, then the algorithm is restarted from \(T(t)=2^*T(t) \) until coalescence occurs.
License GPL-2
LazyLoad yes
Repository CRAN
Date/Publication 2012-09-20 06:42:30
NeedsCompilation no

R topics documented:

- binomialcftp-package 2
- bin_ps 3
- draw_i 4

Index

1
binomialcftp-package Generates Random Numbers according to the coupling from the past algorithm.

Description

Dual Markov Chains are generated, one starting at n and the other one at 0 (in this fashion, every possible state is trapped between these two chains) and are updated according to a Metropolis-Hastings step. The transition kernel is defined as a ratio between the density evaluated at the current iteration vs the previous iteration. In this way the chains evolve (in general) in the direction where the density is higher. Coalescence is checked at every step (meaning that both chains coalesce), and in case this happens the resulting random number is outputted at t=0. In case coalescence does not occur, the algorithm is restarted starting from a distant past twice as large as the current starting past time. Every iteration that goes through some t that has previously been traversed, uses the exact same random number used at that point.

Details

Package: binomialcftp
Type: Package
Version: 1.0
Date: 2012-09-14
License: GPL-2
LazyLoad: yes

Author(s)

Fracisco Juretig <fjuretig@yahoo.com>

References

See Also

Perfectly Random Sampling with Markov Chains http://dimacs.rutgers.edu/~dbwilson/exact/

Examples

bin_ps(1000,20,0.5)
bin_ps

CFTP Binomial Random Numbers

Description
Main function, return 0-n binomial distributed random numbers according to the coupling from the past algorithm

Usage

```
bin_ps(x, n, p)
```

Arguments

- **x** sample_size: number of random numbers desired
- **n** n= binomial parameter
- **p** p= binomial parameter

Details
As usual, p should be between 0 and 1 and n should be any positive integer

Value

- **values** Random numbers
- **iteration_needed** Number of iterations needed until coalescence
- **rand_used** Number of random numbers used

Note
Running time is different as n and p change

Author(s)
Francisco Juretig <fjuretig@yahoo.com>

References

Examples
```
bin_ps(1000, 20, 0.5)
```
draw_i

generate random integer numbers

Description

Random +1/-1 numbers. This is a secondary function used by bin_ps

Usage

`draw_i()`

Value

+1,-1

Author(s)

Francisco Juretig <fjuretig@yahoo.com>
Index

*Topic CFTP
 bin_ps, 3

*Topic \textasciiitildekw1
 draw_i, 4

*Topic \textasciiitildekw2
 draw_i, 4

*Topic binomial
 bin_ps, 3
 binomialcftp-package, 2
 bin_ps, 3
 binomialcftp(binomialcftp-package), 2
 binomialcftp-package, 2

 draw_i, 4