Package ‘blm’

February 19, 2015

Type Package
Title Binomial linear and linear-expit regression
Version 2013.2.4.4
Date 8-14-2013
Depends R (>= 2.10.1), methods
Imports stats, stats4
Author S. Kovalchik
Maintainer S.Kovalchik <s.a.kovalchik@gmail.com>
Description Implements regression models for binary data on the absolute risk scale. These models are applicable to cohort and population-based case-control data.
License GPL (>= 2)
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2013-08-16 18:36:19

R topics documented:

blm-package ... 2
aarp ... 3
blm ... 4
blm-class ... 5
ccdata ... 7
coeff ... 7
confint ... 8
crude.risk ... 8
EO ... 9
expit ... 10
gof ... 11
gof.pearson ... 12
lexpit ... 13
Description

The functions `blm` and `lexpit` implement a binomial linear and linear-expit regression model. Estimates are the maximum likelihood estimates with constrained optimization through adaptive barrier method to ensure that estimable probabilities are in the (0,1) interval.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>blm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>2013.2.4.4</td>
</tr>
<tr>
<td>Date:</td>
<td>2013-8-14</td>
</tr>
<tr>
<td>Depends:</td>
<td>R (>= 2.10.1), methods</td>
</tr>
<tr>
<td>Imports:</td>
<td>stats, stats4</td>
</tr>
<tr>
<td>License:</td>
<td>GPL (>= 2)</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>

Author(s)

Maintainer: Stephanie Kovalchik <s.a.kovalchik@gmail.com>

References

See Also
cstrOptim, blm, lexpit

aarp

Nested case-control data set of bladder cancer in the NIH-AARP Diet and Health Study

Description
The aarp data set is a nested case-control study of bladder cancer outcomes in the NIH-AARP Diet and Health Study. The data set is intended for demonstration purposes only.

Usage
aarp

Format

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bladder70:</td>
<td>indicator of bladder cancer by age 70 years</td>
</tr>
<tr>
<td>female:</td>
<td>indicator of female gender</td>
</tr>
<tr>
<td>smoke_status:</td>
<td>factor of smoking status (four categories)</td>
</tr>
<tr>
<td>w:</td>
<td>inverse of sampling fraction</td>
</tr>
<tr>
<td>redmeat:</td>
<td>total daily redmeat consumption (grams/day)</td>
</tr>
<tr>
<td>fiber.centered:</td>
<td>total daily fiber consumption (grams), centered on sample median</td>
</tr>
<tr>
<td>educ:</td>
<td>factor of education status (six categories)</td>
</tr>
</tbody>
</table>

Source

Examples

data(aarp)

ABSOLUTE RISK OF BLADDER CANCER BY 70 YEARS
FOR DIFFERENT GENDER AND RISK GROUP

fit <- blm(bladder70~female*smoke_status,
 data = aarp,
 weight=aarp$w)

INTERCEPT IS BASELINE RISK
ALL OTHER COEFFICIENTS ARE RISK DIFFERENCES FROM BASELINE
blm

Fit a binomial linear regression model

Description

A direct probability model for regression with a binary outcome from observational data.

Usage

blm(formula, data, na.action = na.omit, weights = NULL,
 strata = NULL, par.init = NULL, warn=FALSE,...)

Arguments

formula formula for linear model for binary outcome, event~x1+x2+...
data data.frame containing the variables of formula
na.action function specifying how missing data should be handled, na.action
weights Vector of weights equal to the number of observations. For population-based case-control study, weights are the inverse sampling fractions for controls.
strata vector indicating the stratification for weighted regression with stratified observational data
par.init vector (optional) of initial parameters
warn logical indicator whether to include warnings during algorithm fitting. Default of FALSE suppresses warnings when testing for feasible parameters.
... Additional arguments passed to constrOptim

Details

The blm model coefficients are the solutions to the maximum of a pseudo log-likelihood using a constrained optimization algorithm with an adaptive barrier method, constrOptim (Lange, 2010). Variance estimates are based on Taylor linearization (Shah, 2002). When weights are not NULL, it is assumed that the study is a case-control design.

Value

Returns an object of class blm.

Author(s)

S. Kovalchik <s.a.kovalchik@gmail.com>
References

See Also

`constrOptim`

Examples

```r
# data
data(ccdata)
fit <- blm(y~female+packyear, weights = ccdata$w,strata=ccdata$strata,
data=ccdata)
summary(fit)

# data
data(aarp)
# ABSOLUTE RISK OF BLADDER CANCER BY 70 YEARS
# FOR DIFFERENT GENDER AND RISK GROUP
fit <- blm(bladder70~female * smoke_status,
data = aarp,
weight=aarp$w)
logLik(fit)
# INTERCEPT IS BASELINE RISK
# ALL OTHER COEFFICIENTS ARE RISK DIFFERENCES FROM BASELINE
summary(fit)
# RISK DIFFERENCE CONFIDENCE INTERVALS (PER 1,000 PERSONS)
confint(fit)*1000
```

blm-class
Class “blm”

Description
Class for binomial linear regression (BLM).
Objects from the Class

Objects can be created by calls of the form `new("blm", ...)`.

Slots

coeff: vector of fitted coefficients
vcov: matrix of variance-covariate estimates for coeff
formula: model formula
df.residual: residual degrees of freedom
data: data frame used in fitting, after applying na.action
which.kept: vector of index of values in original data source that were used in the model fitting
y: response vector for fitted model
weights: vector of weights used in model fitting
strata: stratification factor for weighted regression.
converged: logical message about convergence status at the end of algorithm
par.init: initial parameter values for optimization algorithm
loglik: value of log-likelihood (normalized for weighted likelihood) under full model
loglik.null: value of log-likelihood (normalized for weighted likelihood) under null model

Methods

show signature(object = "blm"): Display point estimates of blm object.
print signature(x = "blm", ...): Display point estimates of blm object.
summary signature(object = "blm", ...): List of estimates and convergence information.
coef signature(object = "blm"): Extractor for fitted coefficients.
logLik signature(object = "blm"): Extractor for log-likelihood of blm model.
model.formula signature(object = "blm"): Extractor for formula of blm object.
resid signature(object = "blm"): Extractor for residuals.
vcov signature(object = "blm"): Extractor for variance-covariance based on Taylor series
large-sample Hessian approximation with the pseudo-likelihood of the constrained optimization.
predict signature(object = "blm"): Returns vector of linear predictors for each subject of the fitted model.

See Also

blm, constrOptim
ccdata

Simulated case-control dataset

Description

Simulated population-based case-control dataset

Usage

cedata

Format

- `female`: indicator for female gender
- `packyear`: discrete variable representing pack-years smoked
- `strata`: stratification variable
- `y`: indicator of case status (1 for case, 0 for control)
- `w`: inverse of sampling fraction

coef

Get coefs from blm and lexpit objects.

Description

Extract vector of coefs of the fit of a blm or lexpit model.

Methods

- `coef signature(object = "blm")`: Extractor for MLEs returned as a matrix with one column.

Author(s)

S. Kovalchik <s.a.kovalchik@gmail.com>
confint

Confidence intervals for parameters of blm and lexpit objects.

Description

Return the confidence intervals for specified parameters and confidence level.

Methods

confint signature(object = "blm", parm, level = 0.95,...): Returns confidence interval (at a given level) for the specified regression parameters.

confint signature(object = "lexpit", parm, level = 0.95,...): Returns confidence interval (at a given level) for the specified regression parameters.

Author(s)

Stephanie Kovalchik <s.a.kovalchik@gmail.com>

Examples

data(ccdata)

fit <- lexpit(y~female, y~packyear, data = ccdata, weight = ccdata$w, strata = ccdata$strata)

confint(fit)

crude.risk

Risk-exposure scatter plot

Description

Calculates the weighted average crude risk against the average exposure level for a continuous exposure. Each point corresponds to overlapping subgroups of 20 percent of the sample ordered from lowest to highest exposure and a sliding window of 1

Usage

crude.risk(formula, data, weights = NULL, na.action = na.omit)
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>formula specifying the binary outcome and the continuous covariate of interest, e.g. y~x</td>
</tr>
<tr>
<td>data</td>
<td>dataframe containing the variables specified in formula</td>
</tr>
<tr>
<td>weights</td>
<td>vector of sample weights</td>
</tr>
<tr>
<td>na.action</td>
<td>function used for handling missing variables in the variables of formula and weights</td>
</tr>
</tbody>
</table>

Details

The `crudeNrisk` function is intended to explore the possible functional relationship between risk and exposure in a non-parametric way.

Author(s)

S. Kovalchik <s.a.kovalchik@gmail.com>

See Also

`risk.exposure.plot`

Examples

data(aarp)

```r
risk <- crudeNrisk(bladder~redmeat,
weights = aarp$w,
data = aarp)
```

```r
risk.exposure.plot(risk,
xlab = "Avg. Red Meat Consumption")
```

EO

`EO`
Compute the ratio of expected event to observed events for `b1m` and `lexpit` objects.

Description

Returns a list of expected to observed counts and the specified confidence interval. The argument group can be used to estimate this ratio by the categories of the categorical variable group. If population-based case-control data is used to fit the model, the expected counts are for the population and make use of the sampling weights.

Usage

```r
EO(object, index = NULL, level = 0.95)
```
Arguments

object object of class blm or lexpit
index factor for computing E/O comparison by subgroups
level numeric, confidence level (between 0 and 1) for the E/O ratios

Value

Data frame with:

E expected count
0 observed counts
Eto0 ratio of expected to observed
lowerCI lower endpoint of confidence interval for E over O ratio
upperCI upper endpoint of confidence interval for E over O ratio

Author(s)

Stephanie Kovalchik <s.a.kovalchik@gmail.com>

Examples

data(ccdata)

fit <- blm(y=female+packyear,data = ccdata,
weight = ccdata$w, strata = ccdata$strata)

EO(fit)

EO(fit, ccdata$strata) # BY FACTOR

expit Inverse-logit function

Description

Returns the inverse logit. Where,

\[\expit(x) = \frac{\exp(x)}{1 + \exp(x)} \]

Usage

expit(x)
Arguments

x numeric vector

Value

Numeric that is the inverse logit of x.

Examples

expit(1:10)

Description

Computes the deviance and Pearson chi-squared statistics for the fit from a blm or lexpit model. These tests are appropriate when all predictors are categorical and there are many replicates within each covariate class.

Value

Returns a list with table, with expected E and observed O, and the chi-square test chisq and p-value (p.value) for the Pearson goodness-of-fit test. The observed and expected count are listed in the order of the unique levels formed by the design matrix.

When sample weights are present, the goodness-of-fit test is a modified F-test as suggested by Archer et al. (2007).

usage

gof(object)

arguments

object instance of blm or lexpit

Author(s)

Stephanie Kovalchik <s.a.kovalchik@gmail.com>

References

gof.pearson

See Also

blm, lexpit

Examples

data(ccdata)

ccdata$packyear <- ccdata$packyear+runif(nrow(ccdata))

UNWEIGHTED GOF
fit <- blm(y~female+packyear, data = ccdata)
gof(fit)

WEIGHTED GOF
fit <- blm(y~female+packyear, data = ccdata, weight = ccdata$w)
gof(fit)

gof.pearson Pearson's goodness-of-fit statistics for blm and lexpit objects.

Description

Computes the deviance and Pearson chi-squared statistics for the fit from a blm or lexpit model. These tests are appropriate when all predictors are categorical and there are many replicates within each covariate class.

Value

Returns a list with expected E and observed O and the chi-square test chisq and p-value (p.value) for the Pearson goodness-of-fit test. The observed and expected count are listed in the order of the unique levels formed by the design matrix.

usage
gof.pearson(object)

arguments

object instance of blm or lexpit

Author(s)

Stephanie Kovalchik <s.a.kovalchik@gmail.com>

See Also

blm, lexpit
lexpit

Examples

```r
data(ccdata)

fit <- blm(y=female+I(packyear>20), data = ccdata,
             weight = ccdata$w, strata = ccdata$strata)

gof.pearson(fit)
```

lexpit

Fit a linear-expit regression model

Description

A direct probability model for regression with a binary outcome from observational data. Covariate effects are the sum of additive terms and an expit term, which allows some explanatory variables to be additive and others non-linear.

Usage

```r
lexpit(formula.linear, formula.expit, data, na.action = na.omit,
       weights = NULL, strata = NULL, par.init = NULL,
       warn = FALSE,
       control.lexpit = list(max.iter = 1000, tol = 1e-7), ...)
```

Arguments

- `formula.linear`: formula for linear model for binary outcome, *event~x1+x2+...*
- `formula.expit`: formula for expit model, linear in expit, *event~z1+z2+...*
- `data`: data.frame containing the variables of `formula.linear` and `formula.expit`
- `na.action`: function specifying how missing data should be handled, `na.action`
- `weights`: Vector of weights equal to the number of observations. For population-based case-control study, weights are the inverse sampling fractions for controls.
- `strata`: vector indicating the stratification for weighted regression with stratified observational data
- `par.init`: list (optional) of initial parameters for linear and expit terms.
- `warn`: logical indicator whether to include warnings during algorithm fitting. Default of `FALSE` suppresses warnings when testing for feasible parameters.
- `control.lexpit`: list with control parameters for optimization algorithm
- `...`: Additional arguments passed to `constrOptim`
Details

lexpit model uses a two-stage optimization procedure. At the first stage linear terms the solutions to the maximum of a pseudo log-likelihood using a constrained optimization algorithm with an adaptive barrier method, constrOptim (Lange, 2010). The second stage maximizes the pseudo log-likelihood with respect to the expit terms using iterative reweighted least squares with an offset term for the linear component of the model.

Variance estimates are based on Taylor linearization (Shah, 2002). When weights are not NULL, it is assumed that the study is a case-control design.

Value

Returns an object of class lexpit.

Author(s)

S. Kovalchik <s.a.kovalchik@gmail.com>

References

See Also

constrOptim, nlm

Examples

data(ccdata)

fit <- lexpit(y=female,y=packyear,weights = ccdata$w,
 strata=ccdata$strata,data=ccdata)

summary(fit)

LEXPIT MODEL FOR BLADDER CANCER RISK BY AGE 70
formula.linear <- bladder70*female * smoke_status
formula.expit <- bladder70*redmeat+fiber.centered+I(fiber.centered^2)

ADDITIVE EFFECTS FOR GENDER AND SMOKING
LOGISTIC EFFECTS FOR FIBER AND REDMEAT CONSUMPTION
data(aarp)

fit <- lexpit(formula.linear, formula.expit, aarp, weight=aarp$w)
logLik(fit)

model.formula(fit)
Description
Class for linear-expit regression (lexpit).

Objects from the Class
Objects can be created by calls of the form new("lexpit", ...).

Slots
- `coef.linear`: vector of fitted linear coefficients
- `coef.expit`: vector of fitted expit coefficients
- `vcov.linear`: matrix of variance-covariate estimates for linear coef
- `vcov.expit`: matrix of variance-covariate estimates for expit coef
- `formula.linear`: model formula for linear component
- `formula.expit`: model formula for expit component
- `df.residual`: residual degrees of freedom
- `p`: number of linear parameters
- `q`: number of expit parameters
- `data`: data frame used in fitting, after applying `na.action`
- `which.kept`: vector of index of values in original data source that were used in the model fitting
- `y`: response vector for fitted model
- `weights`: vector of weights used in model fitting
- `strata`: stratification factor for weighted regression.
- `converged`: logical message about convergence status at the end of algorithm
- `par.init`: initial parameter values for optimization algorithm
- `loglik`: value of log-likelihood (normalized for weighted likelihood) under full model
- `loglik.null`: value of log-likelihood (normalized for weighted likelihood) under null model
- `barrier.value`: value of the barrier function at the optimum
- `control.lexpit`: list with control parameters for optimization algorithm
Methods

show signature(object = "lexpit"): Display point estimates of lexpit object.
print signature(x = "lexpit", ...): Display point estimates of lexpit object.
summary signature(object = "lexpit", ...): List of estimates and convergence information.
coef signature(object = "lexpit"): Extractor for fitted coefficients.
logLik signature(object = "lexpit"): Extractor for log-likelihood of lexpit model.
model.formula signature(object = "lexpit"): Extractor for formula of lexpit object.
vcov signature(object = "lexpit"): Extractor for variance-covariance based on Taylor series large-sample Hessian approximation with the pseudo-likelihood of the constrained optimization.
resid signature(object = "lexpit"): Extractor for residuals.
predict signature(object = "lexpit"): Returns vector of linear predictors for each subject of the fitted model.
confint signature(object = "lexpit", parm, level = 0.95, ...): Returns confidence interval (at a given level) for the specified regression parameters.

See Also

lexpit, constrOptim

logit

Logit function

Description

Returns the logit. Where,

\[\text{logit}(x) = \log\left(\frac{x}{1 - x}\right) \]

Usage

logit(x)

Arguments

x numeric vector

Value

Numeric that is the logit of x.

See Also

expit
Examples

logit(1:10)

logLik

Log-likelihood of blm and lexpit objects.

Description

Method to access the log-likelihood of the fitted blm or lexpit model.

Details

The return object is of the logLik class. This method is registered with the stats4 package and can therefore be used with applicable methods like AIC and BIC. Note that when weights are used in the model estimation, the logLik is a pseudo-log-likelihood.

Methods

logLik signature(object = "blm", ...): Extract log-likelihood. Returns object of logLik class.

logLik signature(object = "lexpit", ...): Extract log-likelihood. Returns object of logLik class.

Author(s)

Stephanie Kovalchik <s.a.kovalchik@gmail.com>

See Also

logLik.lm

Examples

data(ccdata)

fit <- lexpit(y~female, y~packyear, data = ccdata,
 weight = ccdata$w, strata = ccdata$strata)

logLik(fit)

AIC(fit)
LRT

Perform likelihood-ratio test for lexpit and BLM models of cohort data

Description
Computes the likelihood ratio test for the significance of the specified variable in a lexpit or BLM model fit to cohort data. This method is only valid for study designs that use simple random sampling.

Usage
LRT(object, var)

Arguments
object a model of the lexpit or blm class.
var character name of term label to be tested

Value
A matrix with the LRT statistic and p-value for the test of the significance of the specified variable given all other variables in the model.

Author(s)
S. Kovalchik <s.a.kovalchik@gmail.com>

See Also
constrOptim

Examples

cohort <- data.frame(
 x1 = runif(500),
 x2 = runif(500)
)

cohort$event <- rbinom(n=nrow(cohort), size=1, prob=0.25+0.1*cohort$x1+.1*cohort$x2)

fit <- blm(event~x1+x2, data=cohort)

summary(fit)

LRT(fit, "x1")
model.formula

\texttt{LRT(\texttt{fit}, \texttt{"x2"})}

\begin{itemize}
 \item \texttt{model.formula} \texttt{signature(object = "blm")}: Extractor for formula of blm object.
 \item \texttt{model.formula} \texttt{signature(object = "lexpit")}: Extractor for formulas of lexpit object. Returns a list containing the linear and expit formulas.
\end{itemize}

\textbf{Author(s)}

S. Kovalchik \texttt{<s.a.kovalchik@gmail.com>}

\begin{itemize}
 \item \texttt{predict} \texttt{signature(object = "blm", newdata, se = FALSE)}: Risk predictions for fit design matrix.
 \item \texttt{predict} \texttt{signature(object = "lexpit", newdata, se = FALSE)}: Risk predictions for fit design matrix.
\end{itemize}

\textbf{Author(s)}

Stephanie Kovalchik \texttt{<s.a.kovalchik@gmail.com>}

Examples

data(ccdata)

fit <- lexpit(y~female, y~packyear, data = ccdata,
 weight = ccdata$w, strata = ccdata$strata)

predict(fit)[1:10]

resid

Description

Extract residuals of model fit.

Methods

resid signature(object = "blm"): Extractor for residuals of blm object.
resid signature(object = "lexpit"): Extractor for residuals of blm object.

Author(s)

Stephanie Kovalchik <s.a.kovalchik@gmail.com>
Description

Calculates the weighted average crude risk against the average exposure level for a continuous exposure. Each point corresponds to overlapping subgroups of 20 percent of the sample ordered from lowest to highest exposure and a sliding window of 1.

Usage

```
risk.exposure.plot(object, scale=1,...)
```

Arguments

- **object**: list or data.frame with `risk` and `x` covariate. Return object of `crude.risk`
- **scale**: multiplicative factor to modify scale of crude risk estimates
- ...: additional arguments passed to `scatter.smooth`

Details

The risk-exposure scatter plot is intended to explore the possible functional relationship between risk and exposure.

Author(s)

S. Kovalchik <s.a.kovalchik@gmail.com>

Examples

```
data(aarp)
risk <- crude.risk(bladder70~redmeat,
  weights = aarp$w,
  data = aarp)
risk.exposure.plot(risk,
  xlab = "Avg. Red Meat Consumption")
```
R_squared

Compute R-squared measures of model fit for blm and lepfit objects.

Description

Returns McFadden's unadjusted and adjusted R-squared measures for models of a binary outcome.

Usage

```r
Rsquared(object)
```

Arguments

- `object` object of class `blm` or `lepfit`

Value

List of `R2` and `R2adj`.

Author(s)

Stephanie Kovalchik <s.a.kovalchik@gmail.com>

Examples

```r
data(ccdata)

fit <- blm(y~female+packyear, data = ccdata, 
weight = ccdata$w, strata = ccdata$strata)

Rsquared(fit)
```

show

Show blm and lepfit model fit.

Description

Print estimates of a blm or lepfit model fit.

Methods

- `show signature(object = "blm")`: Call and coefficient estimates.
- `show signature(object = "lepfit")`: Call and coefficient estimates.

Author(s)

Stephanie Kovalchik <s.a.kovalchik@gmail.com>
Summary of blm and lexpit model fit.

Description

A list of estimates and convergence status of a blm or lexpit model fit.

Methods

- **summary** signature(object = "blm"): Matrix of estimates and convergence information.
- **summary** signature(object = "lexpit"): Matrix of estimates and convergence information.

The matrix returned has the named components:

- **Est.** vector of estimated regression coefficients. For lexpit model estimates are split into est.linear and est.expit components of list
- **Std. Err** standard error of model estimates
- **t-value** t-value of model estimates
- **p-value** p-value (two-sided) of model estimates

Author(s)

S. Kovalchik <s.a.kovalchik@gmail.com>

See Also

- blm, lexpit

Examples

data(ccdata)

```r
fit <- blm(y~female+packyear, data = ccdata, 
            weight = ccdata$w, strata = ccdata$strata)

summary(fit)
```

```r
fit.lexpit <- lexpit(y~female, y~packyear, data = ccdata, 
                     weight = ccdata$w, strata = ccdata$strata)

summary(fit.lexpit)
```
vcov

Get variance-covariance from blm and lexpit objects.

Description

Returns Hessian-based variance-covariance matrix of the fit of a blm or lexpit model. If any constraints are active, only the augmented Lagrangian takes this into account in the Hessian computation, so if augmented is FALSE, i.e. the adaptive barrier method of optimization is used, the covariance-variance might be inaccurate.

Methods

vcov signature(object = "blm"): Extractor for variance-covariance of MLEs.
vcov signature(object = "lexpit"): Extractor for variance-covariance of MLEs.

Author(s)

Stephanie Kovalchik <s.a.kovalchik@gmail.com>

which.at.boundary

Covariate patterns at the boundary for blm and lexpit objects.

Description

Returns matrix of covariate types with a predicted probability at the lower or upper boundary defined by the specified criterion or NA if no boundary constraints are present.

Value

Returns all rows of design matrix whose predicted risk are less than or equal to criterion or greater than or equal to 1 - criterion.

usage

which.at.boundary (object, criterion = 1e-06)

arguments

object model fit of class blm or lexpit

criterion numeric distance from 0 (or 1) that is considered to be at the boundary

Author(s)

Stephanie Kovalchik <s.a.kovalchik@gmail.com>
Examples

data(ccdata)

fit <- blm(y~female+packyear, data = ccdata,
weight = ccdata$w, strata = ccdata$strata)

which.at.boundary(fit)
Index

*Topic classes
 blm-class, 5
 lexpit-class, 15
*Topic datasets
 aarp, 3
 ccdata, 7
*Topic methods
 coef, 7
 confint, 8
 logLik, 17
 model.formula, 19
 predict, 19
 print, 20
 resid, 20
 show, 22
 summary, 23
 vcov, 24
*Topic package
 blm-package, 2

aarp, 3
AIC, 17

BIC, 17
blm, 3, 4, 6, 12, 23
blm-class, 5
blm-package, 2

ccdata, 7
coef, 7
coef, blm-method(coef), 7
coef, lexpit-method(coef), 7
coef.blm(coef), 7
confint, 8
confint, blm-method(confint), 8
confint, lexpit-method(confint), 8
confint.blm(confint), 8
constrOptim, 3, 5, 6, 14, 16, 18
crude.risk, 8, 21
EO, 9

expit, 10, 16

goF, 11

goF.pearson, 12
lexpit, 3, 12, 13, 16, 23
lexpit-class, 15
logit, 16
logLik, 17
logLik, blm-method(logLik), 17
logLik, lexpit-method(logLik), 17
logLik.blm(logLik), 17
logLik.lm, 17
LRT, 18

model.formula, 19
model.formula, blm-method
 (model.formula), 19
model.formula, lexpit-method
 (model.formula), 19

na.action, 4, 13
nlm, 14

predict, 19
predict, blm-method(predict), 19
predict, lexpit-method(predict), 19
predict.blm(predict), 19
print, 20
print, blm-method(print), 20
print, lexpit-method(print), 20
print.blm(print), 20

resid, 20
resid, blm-method(resid), 20
resid, lexpit-method(resid), 20
resid.blm(resid), 20
risk.exposure.plot, 9, 21
Rsquared, 22

scatter.smooth, 21
INDEX

show, 22
show,blm-method (show), 22
show,lexpit-method (show), 22
show.blm (show), 22
stats4, 17
summary, 23
summary,blm-method (summary), 23
summary,lexpit-method (summary), 23
summary.blm (summary), 23

vcov, 24
vcov,blm-method (vcov), 24
vcov,lexpit-method (vcov), 24
vcov.blm (vcov), 24

which.at.boundary, 24