Package ‘bmem’

February 19, 2015

Type Package
Title Mediation analysis with missing data using bootstrap
Version 1.5
Date 2011-01-04
Author Zhiyong Zhang and Lijuan Wang
Maintainer Zhiyong Zhang <zhiyongzhang@nd.edu>
Depends R (>= 1.7), Amelia, MASS, lavaan, sem, snowfall
Description Four methods for mediation analysis with missing data: Listwise deletion, Pairwise deletion, Multiple imputation, and Two Stage Maximum Likelihood algorithm. For MI and TS-ML, auxiliary variables can be included. Bootstrap confidence intervals for mediation effects are obtained. The robust method is also implemented for TS-ML. Since version 1.4, bmem adds the capability to conduct power analysis for mediation models.
License GPL-2
LazyLoad yes
URL http://nd.psychstat.org
ZipData no
NeedsCompilation no
Repository CRAN
Date/Publication 2013-10-08 08:18:14

R topics documented:

 bmem-package .. 2
 bmem .. 3
 bmem.bs ... 4
 bmem.ci.bc .. 5
 bmem.ci.bc1 ... 6
 bmem.ci.bca ... 6
 bmem.ci.bca1 .. 7
 bmem.ci.norm ... 7
 bmem.ci.p .. 8
Description

Four methods for mediation analysis with missing data: Listwise deletion, Pairwise deletion, Multiple imputation, and Two-stage ML. For MI and TSML, auxiliary variables can be included. Bootstrap confidence intervals for mediation effects are obtained.

Details
Author(s)

Zhiyong Zhang and Lijuan Wang
Maintainer: Zhiyong Zhang <zhiyongzhang@nd.edu>

Description

Mediation analysis based on bootstrap

Usage

bmem(x, ram, indirect, v, method='tsml', ci='bc', cl=.95,
 boot=1000, m=10, varphi=.1, st='i', robust=FALSE,
 max_it=500, moment=FALSE, ...)

Arguments

x A data set
ram RAM path for the mediation model
indirect A vector of indirect effect
v Indices of variables used in the mediation model. If omitted, all variables are used.
ci norm: normal approximation CI, perc: percentile CI, bc: bias-corrected CI, bca: BCa
cl Confidence level. Can be a vector.
boot Number of bootstraps
m Number of imputations
varphi Percent of data to be downweighted
Starting values

Robust method

Select mean structure or covariance analysis. moment=FALSE, covariance analysis. moment=TRUE, mean and covariance analysis.

Maximum number of iterations in EM

Other options for sem function can be used.

The indirect effect can be specified using equations such as a*b, a*b+c, and a*b*c+d*e+f. A vector of indirect effects can be used indirect=c('a*b', 'a*b+c').

The on-screen output includes the parameter estimates, bootstrap standard errors, and CIs.

Zhiyong Zhang and Lijuan Wang

Bootrap but using the Bollen-Stine method

The same as bmem but using the Bollen-Stine method

Arguments

x: A data set
ram: RAM path for the mediation model
indirect: A vector of indirect effects
v: Indices of variables used in the mediation model. If omitted, all variables are used.

norm: normal approximation CI, perc: percentile CI, bc: bias-corrected CI, bca: BCa
bmem.ci.bc

```r
bmem.ci.bc(par.boot, par0, cl=.95)
```

Description

Bias-corrected confidence intervals

Usage

```r
bmem.ci.bc(par.boot, par0, cl=.95)
```

Arguments

- `par.boot` A bootstrap object.
- `par0` Original estimate
- `cl` Confidence level. Default 0.95.

Value

BC confidence intervals. The output includes estimates, bootstrap standard errors, and confidence intervals.

Author(s)

Zhiyong Zhang and Lijuan Wang
See Also

`bmem.ci.norm, bmem.ci.p, bmem.ci.bca`

bmem.ci.bcl

Bias-corrected confidence intervals (for a single variable)

Description

Bias-corrected confidence intervals (for a single variable)

Usage

`bmem.ci.bcl(x, b, cl = 0.95)`

Arguments

- `x`: A vector from a bootstrap output.
- `b`: Parameter estimate from the original sample
- `cl`: Confidence level. Default 0.95.

Author(s)

Zhiyong Zhang and Lijuan Wang

See Also

`bmem.ci.norm, bmem.ci.p, bmem.ci.bca`

bmem.ci.bca

Bias-corrected and accelerated confidence intervals

Description

Bias-corrected and accelerated confidence intervals

Usage

`bmem.ci.bca(par.boot, par0, jack, cl = 0.95)`

Arguments

- `par.boot`: A bootstrap object.
- `par0`: Original estimate
- `jack`: A Jackknife object.
- `cl`: Confidence level. Default 0.95.
Value
BCa confidence intervals. The output includes - estimates, bootstrap standard errors, and confidence intervals.

Author(s)
Zhiyong Zhang and Lijuan Wang

See Also
- `bmem.ci.norm`, `bmem.ci.p`, `bmem.ci.bc`, `bmem.list.jack`, `bmem.pair.jack`, `bmem.mi.jack`, `bmem.em.jack`

bmem.ci.bca1

BCa for a single variable

Description
BCa for a single variable

Usage
```r
bmem.ci.bca1(x, b, jack, cl = 0.95)
```

Arguments
- **x**: A vector from a bootstrap output.
- **b**: Parameter estimate from the original sample
- **jack**: A vector from a Jackknife analysis
- **cl**: Confidence level. Default 0.95.

bmem.ci.norm

Confidence interval based on normal approximation

Description
Confidence interval based on normal approximation

Usage
```r
bmem.ci.norm(par.boot, par0, cl = 0.95)
```

Arguments
- **par.boot**: A bootstrap object.
- **par0**: Original estimate
- **cl**: Confidence level. Default 0.95.
Value

Normal confidence intervals. The output includes estimates, bootstrap standard errors, and confidence intervals.

Author(s)

Zhiyong Zhang and Lijuan Wang

See Also

bmem.ci.bca, bmem.ci.p, bmem.ci.bc

Description

Percentile confidence interval

Usage

bmem.ci.p(par.boot, par0, cl = 0.95)

Arguments

par.boot A bootstrap object.
par0 Original estimate
cl Confidence level. Default 0.95.

Value

Percentile confidence intervals. The output includes estimates, bootstrap standard errors, and confidence intervals.

Author(s)

Zhiyong Zhang and Lijuan Wang

See Also

bmem.ci.bca, bmem.ci.norm, bmem.ci.bc
bmem.cov

Calculate the covariance matrix based on a given ram model

Description

Can be used to simulated data for an SEM model.

Usage

```r
bmem.cov(ram, obs.variables, moment=FALSE, debug=FALSE)
```

Arguments

- **ram**: An ram model
- **obs.variables**: Names of the observed variables
- **moment**: Whether to use the mean structure
- **debug**: Debug mode

bmem.em

Estimate a mediation model based on EM covariance matrix

Description

Estimate a mediation model based on EM covariance matrix

Usage

```r
bmem.em(x, ram, indirect, v, robust = FALSE, varphi = 0.1, st = "i", moment = FALSE, max_it = 500, ...)
```

Arguments

- **x**: A data set
- **ram**: RAM path for the mediation model
- **indirect**: A vector of indirect effects
- **v**: Indices of variables used in the mediation model. If omitted, all variables are used.
- **robust**: Robust method
- **varphi**: Percent of data to be downweighted
- **st**: Starting values
- **moment**: Select mean structure or covariance analysis. moment=FALSE, covariance analysis. moment=TRUE, mean and covariance analysis.
- **max_it**: Maximum number of iterations in EM
- **...**: Other options for `sem` function can be used.
bmem.em.boot
Bootstrap for EM

Description
Bootstrap for EM

Usage

```r
bmem.em.boot(x, ram, indirect, v, robust = FALSE,
              varphi = 0.1, st = "i", boot = 1000,
              moment = FALSE, max_it = 500, ...)
```

Arguments
- **x**: A data set
- **ram**: RAM path for the mediation model
- **indirect**: A vector of indirect effects
- **v**: Indices of variables used in the mediation model. If omitted, all variables are used.
- **robust**: Robust method
- **varphi**: Percent of data to be downweighted
- **st**: Starting values
- **boot**: Number of bootstraps. Default is 1000.
- **moment**: Select mean structure or covariance analysis. `moment=FALSE`, covariance analysis. `moment=TRUE`, mean and covariance analysis.
- **max_it**: Maximum number of iterations in EM
- **...**: Other options for `sem` function can be used.

Details
The indirect effect can be specified using equations such as \(ab\), \(ab+c\), and \(ab+cd+e+f\). A vector of indirect effects can be used `indirect=c('ab', 'ab+c')`.

Value
- **par.boot**: Parameter estimates from bootstrap samples
- **par0**: Parameter estimates from the original samples

Author(s)
Zhiyong Zhang and Lijuan Wang
bmem.em.cov
Covariance matrix from EM

Description
Covariance matrix from EM

Usage
```
bmem.em.cov(xmis, moment = FALSE, max_it = 500)
```

Arguments
- **xmis**: An object from output of `bmem.pattern`.
- **moment**: Whether estimating mean
- **max_it**: Maximum number of iterations

bmem.em.jack
Jackknife estimate using EM

Description
Jackknife estimate using EM

Usage
```
bmem.em.jack(x, ram, indirect, v, robust = FALSE,
              varphi = 0.1, st = “i”, moment = FALSE,
              max_it = 500, ...)
```

Arguments
- **x**: A data set
- **ram**: RAM path for the mediation model
- **indirect**: A vector of indirect effect
- **v**: Indices of variables used in the mediation model. If omitted, all variables are used.
- **robust**: Robust method
- **varphi**: Percent of data to be downweighted
- **st**: Starting values
- **moment**: Select mean structure or covariance analysis. moment=FALSE, covariance analysis. moment=TRUE, mean and covariance analysis.
- **max_it**: Maximum number of iterations in EM
- **...**: Other options for `sem` function can be used.
bmem.em.rcov

Estimation of robust covariance matrix

Description

Estimation of robust covariance matrix

Usage

bmem.em.rcov(xmis, varphi=.1, moment=FALSE, max_it=1000, st='i')

Arguments

- **xmis**: Missing data pattern
- **varphi**: Percent of data to be downweighted
- **moment**: Moment analysis if TRUE
- **max_it**: Maximum number of iteration
- **st**: Starting values

Value

An interval function to calculate the robust covariance matrix

Author(s)

Zhiyong Zhang and Lijuan Wang

bmem.list

Estimate a mediation model based on listwise deletion

Description

Estimate a mediation model based on listwise deletion

Usage

bmem.list(x, ram, indirect, moment = FALSE, ...)

Arguments

- **x**: A data set
- **ram**: RAM path for the mediation model
- **indirect**: A vector of indirect effect
- **moment**: Select mean structure or covariance analysis. moment=FALSE, covariance analysis. moment=TRUE, mean and covariance analysis.
- **...**: Other options for `sem` function can be used.
bmem.list.boot
Bootstrap for listwise deletion method

Description

Bootstrap for listwise deletion method

Usage

```r
bmem.list.boot(x, ram, indirect, boot = 1000, moment = FALSE, ...)
```

Arguments

- `x`: A data set
- `ram`: RAM path for the mediation model
- `indirect`: A vector of indirect effect
- `boot`: Number of bootstraps. Default is 1000.
- `moment`: Select mean structure or covariance analysis. `moment=FALSE`, covariance analysis. `moment=TRUE`, mean and covariance analysis.
- `...`: Other options for `sem` function can be used.

bmem.list.cov
Covariance matrix for listwise deletion

Description

Covariance matrix for listwise deletion

Usage

```r
bmem.list.cov(x, moment = FALSE)
```

Arguments

- `x`: A data set
- `moment`: Estimate mean or not
bmem.list.jack \hspace{1cm} \textit{Jackknife for listwise deletion}

Description

Jackknife for listwise deletion

Usage

\texttt{bmem.list.jack(x, ram, indirect, moment = FALSE, \ldots)}

Arguments

- \texttt{x} \hspace{0.5cm} A data set
- \texttt{ram} \hspace{0.5cm} RAM path for the mediation model
- \texttt{indirect} \hspace{0.5cm} A vector of indirect effect
- \texttt{moment} \hspace{0.5cm} Select mean structure or covariance analysis. \texttt{moment=FALSE}, covariance analysis. \texttt{moment=TRUE}, mean and covariance analysis.
- \texttt{\ldots} \hspace{0.5cm} Other options for \texttt{sem} function can be used.

bmem.mi \hspace{1cm} \textit{Estimate a mediation model based on multiple imputation}

Description

Estimate a mediation model based on multiple imputation

Usage

\texttt{bmem.mi(x, ram, indirect, v, m = 10, moment = FALSE, \ldots)}

Arguments

- \texttt{x} \hspace{0.5cm} A data set
- \texttt{ram} \hspace{0.5cm} RAM path for the mediation model
- \texttt{indirect} \hspace{0.5cm} A vector of indirect effect
- \texttt{v} \hspace{0.5cm} Indices of variables used in the mediation model. If omitted, all variables are used.
- \texttt{m} \hspace{0.5cm} Number of imputations.
- \texttt{moment} \hspace{0.5cm} Select mean structure or covariance analysis. \texttt{moment=FALSE}, covariance analysis. \texttt{moment=TRUE}, mean and covariance analysis.
- \texttt{\ldots} \hspace{0.5cm} Other options for \texttt{sem} function can be used.
bmem.mi.boot

Bootstrap for multiple imputation

Description

Bootstrap for multiple imputation

Usage

```r
bmem.mi.boot(x, ram, indirect, v, m = 10, boot = 1000, moment = FALSE, ...)
```

Arguments

- `x`: A data set
- `ram`: RAM path for the mediation model
- `indirect`: A vector of indirect effects
- `v`: Indices of variables used in the mediation model. If omitted, all variables are used.
- `m`: Number of imputations
- `boot`: Number of bootstraps. Default is 1000.
- `moment`: Select mean structure or covariance analysis. `moment=FALSE`, covariance analysis. `moment=TRUE`, mean and covariance analysis.
- `...`: Other options for `sem` function can be used.

bmem.mi.cov

Covariance estimation for multiple imputation

Description

Covariance estimation for multiple imputation

Usage

```r
bmem.mi.cov(x, m = 10, moment = FALSE)
```

Arguments

- `x`: A data set
- `m`: Number of imputations
- `moment`: Estimate mean or not
bmem.moments

Jackknife for multiple imputation

Description

Jackknife for multiple imputation

Usage

bmem.mi.jack(x, ram, indirect, v, m = 10, moment = FALSE, ...)

Arguments

x A data set
ram RAM path for the mediation model
indirect A vector of indirect effects
v Indices of variables used in the mediation model. If omitted, all variables are used.
m Number of imputations.
moment Select mean structure or covariance analysis. moment=FALSE, covariance analysis. moment=TRUE, mean and covariance analysis.
... Other options for sem function can be used.

bmem.moments

Calculate the moments of a data set

Description

Calculate the moments of a data set using either listwise deletion or pairwise deletion

Usage

bmem.moments(x, type=0)

Arguments

x A data set
type How to deal with missing data. 0: listwise deletion; 1: pairwise deletion
bmem.pair

Estimate a mediation model based on pairwise deletion

Description

Estimate a mediation model based on pairwise deletion

Usage

```r
bmem.pair(x, ram, indirect, moment = FALSE, ...)
```

Arguments

- `x`: A data set
- `ram`: RAM path for the mediation model
- `indirect`: A vector of indirect effects
- `moment`: Select mean structure or covariance analysis. `moment=FALSE`, covariance analysis. `moment=TRUE`, mean and covariance analysis.
- `...`: Other options for `sem` function can be used.

bmem.pair.boot

Bootstrap for pairwise deletion

Description

Bootstrap for pairwise deletion

Usage

```r
bmem.pair.boot(x, ram, indirect, boot = 1000, moment = FALSE, ...)
```

Arguments

- `x`: A data set
- `ram`: RAM path for the mediation model
- `indirect`: A vector of indirect effects
- `boot`: Number of bootstraps. Default is 1000.
- `moment`: Select mean structure or covariance analysis. `moment=FALSE`, covariance analysis. `moment=TRUE`, mean and covariance analysis.
- `...`: Other options for `sem` function can be used.
Covariance matrix estimation based on pairwise deletion

Description
Covariance matrix estimation based on pairwise deletion

Usage
bmem.pair.cov(x, moment = FALSE)

Arguments
- x: A data set
- moment: Estimate mean or not

Jackknife for pairwise deletion

Description
Jackknife for pairwise deletion

Usage
bmem.pair.jack(x, ram, indirect, moment = FALSE, ...)

Arguments
- x: A data set
- ram: RAM path for the mediation model
- indirect: A vector of indirect effects
- moment: Select mean structure or covariance analysis. moment=FALSE, covariance analysis. moment=TRUE, mean and covariance analysis.
- ... Other options for sem function can be used.
bmem.pattern

Obtain missing data pattern information

Description

Obtain missing data pattern information

Usage

```r
bmem.pattern(x)
```

Arguments

- `x` A data set

bmem.plot

Plot of the bootstrap distribution. This function is replaced by plot.

Description

Plot of the bootstrap distribution

Usage

```r
bmem.plot(x, par,...)
```

Arguments

- `x` A bmem object
- `par` Name of parameter to be plotted.
- `...` Options used for the generic plot function.

Value

A plot

Author(s)

Zhiyong Zhang and Lijuan Wang

References

Zhang, Z. (2011) Robust mediation analysis with missing data and auxiliary variables.

See Also

`bmem`, `bmem.sobel`, `bmem.plot`
bmem.raw2cov

Convert a raw moment matrix to covariance matrix

Description
Convert a raw moment matrix to covariance matrix

Usage
bmem.raw2cov(x)

Arguments
x
A moment matrix

Value
A covariance matrix

Author(s)
Zhiyong Zhang and Lijuan Wang

References
Zhang, Z. (2011) Robust mediation analysis with missing data and auxiliary variables.

See Also
bmem, bmem.sobel, bmem.plot

bmem.sem

Estimate a mediation model using SEM technique

Description
Estimate a mediation model using SEM technique

Usage
bmem.sem(x, ram, N, indirect, moment=FALSE, ...)

Arguments

- `x`: A covariance matrix
- `ram`: A path diagram from `specify.model`
- `N`: Sample size
- `indirect`: A vector of indirect effects
- `moment`: Whether mean structure is used. The default is `FALSE`
- `...`: Options that can be supplied to function `sem`.

See Also

- `bmem.list.cov`, `bmem.pair.cov`, `bmem.mi.cov`, `bmem.em.cov`

Description

Mediation analysis using sobel test (for complete data only)

Usage

```r
bmem.sobel(x, ram, indirect, moment=FALSE, ...)
```

Arguments

- `x`: A data set
- `ram`: RAM path for the mediation model
- `indirect`: A vector of indirect effects
- `moment`: Covariance or moment analysis
- `...`: Other options for `sem` function can be used.

Value

The on-screen output includes the parameter estimates and sobel standard errors.

Author(s)

Zhiyong Zhang and Lijuan Wang

References

Zhang, Z. (2011) Robust mediation analysis with missing data and auxiliary variables.

See Also

- `bmem`, `bmem.sobel`, `bmem.plot`
bmem.sobel.ind
Mediation analysis using sobel test for one indirect effect

Description
Internal function

Usage
`bmem.sobel.ind(sem.object, ind)`

Arguments
- `sem.object` A sem object
- `ind` Indirect effect

Value
Internal output

Author(s)
Zhiyong Zhang and Lijuan Wang

References
Zhang, Z. (2011) Robust mediation analysis with missing data and auxiliary variables.

See Also
`bmem, bmem.sobel, bmem.plot`

bmem.ssq
Sum square of a matrix

Description
Sum square of a matrix

Usage
`bmem.ssq(x)`

Arguments
- `x` A matrix
bmem.v

Select data according to a vector of indices

Description

Select data according to a vector of indices

Usage

```r
bmem.v(x, v, moment = FALSE)
```

Arguments

- `x`: A matrix
- `v`: A vector of indices
- `moment`: Covariance analysis or mean and covariance analysis

plot.bmem

Plot of the bootstrap distribution

Description

Plot of the bootstrap distribution

Usage

```r
## S3 method for class 'bmem'
plot(x, par, ...)
```

Arguments

- `x`: A `bmem` object
- `par`: Name of parameter to be plotted.
- `...`: Options used for the generic plot function.

Value

Generate the bootstrap histogram for a chosen parameter.

Author(s)

Zhiyong Zhang and Lijuan Wang
References

Zhang, Z. (2011) Robust mediation analysis with missing data and auxiliary variables.

See Also

bmem, bmem.sobel, bmem.plot

popPar

Get the population parameter values

Description

Get the population parameter values including both direct and indirect effects in a model

Usage

popPar(object)

Arguments

object A lavaan object

power.basic

Conducting power analysis based on Sobel test

Description

Different from power.boot, this function conduct power analysis based on the Sobel test.

Usage

power.basic(model, indirect = NULL, nobs, nrep = 1000, alpha = 0.95,
 skewness = NULL, kurtosis = NULL, ovnames = NULL, se = "default",
estimator = "default", parallel = "no", ncore = 1, ...)
Arguments

model
A model specified using lavaan notation and above. See `model.syntax` for basic model specification.

For the power analysis, the population parameter values should be provided in the following way. For example, the coefficient between math and HE is .39. Then it is specified as `start(.39)`. If the parameter will be referred in the mediation effect, a label should be given as a modifier as `b*HE+start(.39)*HE`.

```
model<-' math ~ c*ME+start(0)*ME + b*HE+start(.39)*HE HE ~ a*ME+start(.39)*ME`
```

indirect
The indirect or other composite effects are specified in the following way

```
indirect<-' ab: = a*b abc := a*b + c`
```

nobs
Number of observations for power analysis. If it is a vector, multiple group analysis will be conducted.

nrep
Number of replications for Monte Carlo simulation. At least 1,000 is recommended.

alpha
The alpha level is used to obtain the confidence interval for model parameters.

skewness
A vector to give the skewness for the observed variables.

kurtosis
A vector to give the kurtosis for the observed variables.

ovnames
A vector to give the variable names for the observed variables. This is only needed when the skewness and kurtosis are provided. The skewness, kurtosis and variable names should be in the same order.

se
How to calculate the standard error, for example, robust standard error can be specified using `se="robust"`.

estimator
Estimation methods to be used here.

parallel
Parallel methods, snow or multicore, can be used here.

ncore
Number of cores to be used in parallel. By default, the maximum number of cores are used.

...
Other named arguments for lavaan can be passed here.

Value

power
power for all parameters and required ones in the model

coverage
coverage probability

pop.value
Population parameter values

results
A list to give all intermediate results

data
The last data set generated for checking purpose

Examples

```
# Not run:
ex1model<-' 
math ~ c*ME+start(0)*ME + b*HE+start(0.39)*HE 
HE ~ a*ME+start(0.39)*ME
```
Conducting power analysis based on bootstrap

Description

Different from `power.basic`, this function conduct power analysis based on the bootstrap method.

Usage

```r
power.boot(model, indirect = NULL, nobs, nrep = 1000, nboot = 1000, alpha = 0.95, skewness = NULL, kurtosis = NULL, ovnames = NULL, ci='default', boot.type='default', se = "default", estimator = "default", parallel = "no", ncore = 1, ...)```

**Arguments**

- `model` A model specified using lavaan notation and above. See `model.syntax` for basic model specification.
  
  For the power analysis, the population parameter values should be provided in the following way. For example, the coefficient between math and HE is .39. Then it is specified as start(.39). If the parameter will be referred in the mediation effect, a label should be given as a modifier as b*HE+start(.39)*HE.
  
  ```r
 model<-' math ~ c*ME+start(0)*ME + b*HE+start(.39)*HE HE ~ a*ME+start(.39)*ME '```

- `indirect` The indirect or other composite effects are specified in the following way

  ```r
  indirect<-' ab:=a*b '```

- `nobs` Number of observations for power analysis. If it is a vector, multiple group analysis will be conducted.

- `nrep` Number of replications for Monte Carlo simulation. At least 1,000 is recommended.

- `nboot` Number of bootstraps to conduct.
alpha The alpha level is used to obtain the confidence interval for model parameters.
skewness A vector to give the skewness for the observed variables.
kurtosis A vector to give the kurtosis for the observed variables.
ovnames A vector to give the variable names for the observed variables. This is only needed when the skewness and kurtosis are provided. The skewness, kurtosis and variable names should be in the same order.
se How to calculate the standard error, for example, robust standard error can be specified using se="robust".
estimator Estimation methods to be used here.
parallel Parallel methods, snow or multicore, can be used here.
ncore Number of cores to be used in parallel. By default, the maximum number of cores are used.
ci Type of bootstrap confidence intervals. By default, the percentile one is used. To get the bias-corrected one, use ci='BC'.
boot.type Type of bootstrap method. By default, the nonparametric one is used. Changing it to "BS" to use the Bollen-Stine method.
... Other named arguments for lavaan can be passed here.

Value

power power for all parameters and required ones in the model
coverage coverage probability
pop.value Population parameter values
results A list to give all intermediate results
data The last data set generated for checking purpose

Examples

## Not run:
ex1model<-
math ~ c*ME+start(0)*ME + b*HE+start(0.39)*HE
HE ~ a*ME+start(0.39)*ME
'
indirect<-'ab=a*b'

N<50

system.time(boot.non.normal<-power.boot(ex1model, indirect, N,
nrep=2000, nboot=10000, parallel='multicore', skewness=c(-.3, -.7, 1.3), kurtosis=c(1.5, 0, 5), ovnames=c('ME', 'HE', 'math'), ncore=8, ci='percent', boot.type='simple'))
summary(boot.non.normal)

## End(Not run)
Description

Generate a power curve either based on Sobel test or bootstrap

Usage

```r
power.curve(model, indirect=NULL, nobs=100, type='basic', nrep=1000,
nboot=1000, alpha=.95, skewness=NULL, kurtosis=NULL, ovnames=NULL,
ci='default', boot.type='default',
se="default", estimator="default", parallel="no",
ncore=1, interactive=TRUE, ...)
```

Arguments

- `model` A model specified using lavaan notation and above. See `model.syntax` for basic model specification.
  For the power analysis, the population parameter values should be provided in the following way. For example, the coefficient between math and HE is .39. Then it is specified as `start(.39)`. If the parameter will be referred in the mediation effect, a label should be given as a modifier as `b*HE+start(.39)*HE`.
  ```r
 model<-' math ~ c*ME+start(0)*ME + b*HE+start(.39)*HE
 HE ~ a*ME+start(.39)*ME
 '
  ```

- `indirect` The indirect or other composite effects are specified in the following way
  ```r
 indirect<-' ab: = a*b abc := a*b + c '
  ```

- `nobs` Number of observations for power analysis. It is typically should be a vector for single group analysis. For multiple group analysis, it should be a matrix.

- `type` Type of power analysis

- `nrep` Number of replications for Monte Carlo simulation. At least 1,000 is recommended.

- `nboot` Number of bootstraps to conduct.

- `alpha` The alpha level is used to obtain the confidence interval for model parameters.

- `skewness` A vector to give the skewness for the observed variables.

- `kurtosis` A vector to give the kurtosis for the observed variables.

- `ovnames` A vector to give the variable names for the observed variables. This is only needed when the skewness and kurtosis are provided. The skewness, kurtosis and variable names should be in the same order.

- `se` How to calculate the standard error, for example, robust standard error can be specified using `se="robust"`.

- `estimator` Estimation methods to be used here.

- `parallel` Parallel methods, snow or multicore, can be used here.
**ncore**  
Number of cores to be used in parallel. By default, the maximum number of cores are used.

**ci**  
Type of bootstrap confidence intervals. By default, the percentile one is used.  
To get the bias-corrected one, use *ci*='BC'

**boot.type**  
Type of bootstrap method. By default, the nonparametric one is used. Changing it to "BS" to use the Bollen-Stine method.

**interactive**  
Whether to get the figure interactively.

**...**  
Other named arguments for lavaan can be passed here.

---

**Value**

- **power**  
  power for all parameters and required ones in the model

- **coverage**  
  coverage probability

- **pop.value**  
  Population parameter values

- **results**  
  A list to give all intermediate results

- **data**  
  The last data set generated for checking purpose

---

**Examples**

```r
Not run:
ex2model<-'
 ept ~ start(.4)*hvltt + b*hvltt + start(0)*age + start(0)*edu + start(2)*R
 hvltt ~ start(-.35)*age + a*age + c*edu + start(.5)*edu
 R ~ start(-.06)*age + start(.2)*edu
 R =~ 1*ws + start(.8)*ls + start(.5)*lt
 age ~~ start(30)*age
 edu ~~ start(8)*edu
 age ~~ start(-.8)*edu
 hvltt ~~ start(23)*hvltt
 R ~~ start(14)*R
 ws ~~ start(3)*ws
 ls ~~ start(3)*ls
 lt ~~ start(3)*lt
 ept ~~ start(3)*ept

indirect<-'ind1 := a*b + c*b'

nobs <- seq(100, 2000, by=200)

power.curve(model = ex2model, indirect = indirect, nobs = nobs,
 type = 'boot', parallel = 'multicore', ncore = 60, ci = 'percent',
 boot.type = 'simple', interactive = f)

End(Not run)
```
### summary.bmem

**Calculate bootstrap confidence intervals**

**Description**

Calculate bootstrap confidence intervals

**Usage**

```r
S3 method for class 'bmem'
summary(object, ci='bc', cl=.95, ...)
```

**Arguments**

- **object**: An output object from the function `bmem`
- **ci**: `norm`: normal approximation CI, `perc`: percentile CI, `bc`: bias-corrected CI, `bca`: BCa
- **cl**: Confidence level. Can be a vector.
- **...**: Other options can be used for the generic `summary` function.

**Details**

The other type of confidence intervals can be constructed from the output of the function `bmem`. Note if the BCa is required, the `ci='Bca'` should have been specified in the function `bmem`.

**Value**

The on-screen output includes the parameter estimates, bootstrap standard errors, and CIs.

### summary.power

**Organize the results into a table**

**Description**

This function is adapted from the `lavaan` summary function to put the results in a table.

**Usage**

```r
S3 method for class 'power'
summary(object,...)
```

**Arguments**

- **object**: Output from the function either `power.basic` or `power.boot`.
- **...**: Other options
Index

*Topic bmem

bmem, 3, 4, 5, 19–22, 24, 30
bmem-package, 2
bmem.bs, 4
bmem.ci.bc, 5, 7, 8
bmem.ci.bcl, 6
bmem.ci.bca, 6, 6, 8
bmem.ci.bcal, 7
bmem.ci.norm, 6, 7, 7, 8
bmem.ci.p, 6–8, 8
bmem.cov, 9
bmem.em, 9
bmem.em.boot, 10
bmem.em.cov, 11, 21
bmem.em.jack, 7, 11
bmem.em.rcov, 12
bmem.list, 12
bmem.list.boot, 13
bmem.list.cov, 13, 21
bmem.list.jack, 7, 14
bmem.mi, 14
bmem.mi.boot, 15
bmem.mi.cov, 15, 21
bmem.mi.jack, 7, 16
bmem.moments, 16
bmem.pair, 17
bmem.pair.boot, 17
bmem.pair.cov, 18, 21
bmem.pair.jack, 7, 18
bmem.pattern, 11, 19
bmem.plot, 5, 19, 19, 20–22, 24
bmem.raw2cov, 20
bmem.sem, 20
bmem.sobel, 5, 19–21, 21, 22, 24
bmem.sobel.ind, 22
bmem.ssq, 22
bmem.v, 23

lavaan, 24, 30

model.syntax, 25, 26, 28
plot(plot.bmem), 23
plot.bmem, 23
popPar, 24
power.basic, 24, 26, 30
power.boot, 24, 26, 30
power.curve, 28

sem, 4, 5, 9–18, 21
summary(summary.bmem), 30
summary.bmem, 30
summary.power, 30