Package ‘bmk’

February 19, 2015

Type Package
Title MCMC diagnostics package
Version 1.0
Date 2012-09-21
Author Matthew Krachey and Edward L. Boone
Maintainer Matthew Krachey <matthewkrachey@yahoo.com>
Description MCMC diagnostic package that contains tools to diagnose
convergence as well as to evaluate sensitivity studies,
Includes summary functions which output mean, median,
95percentCI, Gelman & Rubin diagnostics and the Hellinger
distance based diagnostics, Also contains functions to
determine when an MCMC chain has converged via Hellinger
distance, A function is also provided to compare outputs from
identically dimensioned chains for determining sensitivity to
prior distribution assumptions
License GPL (>= 2)
Depends coda, plyr, functional
Collate 'bmkconverge.R' 'bmk.R' 'bmksensitive.R' 'bmksummary.R'

 'HBconverg1.R' 'HDistNoSize.R' 'HDistSize.R' 'HWconverg1.R'
Repository CRAN
Date/Publication 2012-10-17 07:29:42
NeedsCompilation no

R topics documented:

 bmkconverge .. 2
 bmksensitive .. 3
 bmksummary .. 4
 HBconverg1 .. 4
 HDistNoSize .. 5
 HDistSize .. 6
 HWconverg1 .. 6
bmkconverge: Convergence via the Hellinger distance

Description

MCMC chain convergence diagnostic.

Usage

bmkconverge(inputlist1, binsize = 1000)

Arguments

inputlist1 A list of the MCMC chains

binsize a scalar giving how large each bin should be for consecutive batches. outputs the Hellinger distances between the sampled distribution for one scenario against the other.

Details

This takes an MCMC chain and divides it into batches of size binsize and calculates the Hellinger distance between consecutive batches.

References

Examples

```r
## Not run:
library(dismo); library(MCMCpack);
data(Anguilla_train)
b0mean <- 0
b0precision <- (1/5)^2
mcmclen = 1000
burn=10000
MCMC.one <- MCMClogit(Angaus ~ SegSumT+DSDist+USNative+as.factor(Method)+DSMaxSlope+USSlope, data=Anguilla_train,burnin=burn, mcmc=mcmclen, beta.start=-1, b0=b0mean, B0=b0precision)
```
bmksensitive

Description
Determine if two identically dimensioned sets of chains match. This is good for conducting sensitivity studies.

Usage
```
bmksensitive(inputlist1, inputlist2)
```

Arguments
- `inputlist1`: A list of the combined MCMC chains for all samples from one scenario.
- `inputlist2`: A list of the combined MCMC chains for all samples from another scenario.

References

Examples
```
data(MCMCsamples)
bmksensitive(MCMC.one.mean0, MCMC.one.mean1)
## Not run:
library(dismo); library(MCMCpack)
data(Anguilla_train)
b0mean0 <- 0
b0mean1 <- 1
b0precision <- (1/5)^2
mcmclen = 1000
burn=10000
MCMC.one.mean0 <- MCMClogit(Angaus ~ SegSumT+DSDist+USNative+as.factor(Method)+DSMaxSlope+USSlope, data=Anguilla_train, burnin=burn, mcmc=mcmclen, beta.start=-1, b0=b0mean0, B0=b0precision)
MCMC.one.mean1 <- MCMClogit(Angaus ~ SegSumT+DSDist+USNative+as.factor(Method)+DSMaxSlope+USSlope, data=Anguilla_train, burnin=burn, mcmc=mcmclen, beta.start=-.5, b0=b0mean1, B0=b0precision)
bmksensitive(one, two)
## Not run
```
bmksummary

Summaries of MCMC chains

Description
Generate the mean, standard deviation, median, 2.5 percent and 97.5 percent quantiles, Gelman Rubin statistic for convergence, effective samples size and the minimum and maximum Hellinger distances across all chains. outputs summaries for the MCMC samples including the convergence diagnostics of Gelman and Rubin and the Hellinger distance of Boone, Merrick and Krachey.

Usage
bmksummary(inputlist)

Arguments
inputlist A list of the combined MCMC chains for all samples from one scenario.

References

Examples
data(MCMCsamples)
bmksummary(list(MCMC.one, MCMC.two, MCMC.three))

HBconverg1

Hellinger distance between distributions

Description
This computes the Hellinger distance for all pairwise combinations of MCMC chains.

Usage
HBconverg1(chains1)

Arguments
chains1 A matrix of MCMC for the same variable. Each column corresponds to a different chain.
Value

c2 A vector containing the minimum and maximum Hellinger distances across all pairwise comparisons.

Note

The matrix must consist of samples from the same variable derived from different chains.

\[\text{hdistnosize} \]

Hellinger distance between two MCMC chains using default grid in kernel density estimator.

Description

This function determines the Hellinger distance between two MCMC chains via kernel density estimates.

Usage

\[\text{hdistnosize}(b1, b2) \]

Arguments

\begin{itemize}
 \item \textbf{b1} \hspace{1cm} vector of first MCMC chain.
 \item \textbf{b2} \hspace{1cm} vector of second MCMC chain.
\end{itemize}

Value

The Hellinger distance between the kernel density estimates for b1 and b2.

Note

The chains need to be the same length.
HDistSize

Hellinger distance between two MCMC chains using a specified grid size.

Description

This function determines the Hellinger distance between two MCMC chains via kernel density estimates.

Usage

`HDistSize(b1, b2, n2)`

Arguments

- `b1` vector of first MCMC chain.
- `b2` vector of second MCMC chain.
- `n2` is the number of divisions to run for the kernel density estimator.

Value

`res1` The Hellinger distance between the kernel density estimates for `b1` and `b2`.

Note

The chains need to be the same length.

HWconverg1

Hellinger distance within consecutive batches of MCMC samples.

Description

Determine if a specific chain has converged. This takes a chain and divides it into batches and calculates the Hellinger distance between consecutive batches.

Usage

`HWconverg1(chain1, batchsize1 = 1000)`

Arguments

- `chain1` A vector of a single MCMC chain.
- `batchsize1` An integer that defines the size of the batches.

Value

`c2` A vector of Hellinger distances between consecutive batches.
MCMC.one

MCMC.one is an mcmc object resulting from the following code:

Description

MCMC.one is an mcmc object resulting from the following code:

Author(s)

Edward L. Boone <elboone@vcu.edu>

Examples

```r
## Not run:
library(dismo); library(MCMCpack)
data(Anguilla_train)
b0mean0 <- 0
b0precision <- (1/5)^2
mcmclen = 50000
burn=200000
MCMC.one <- MCMClogit(Angaus ~ SegSumT+DSDist+USNative+as.factor(Method)+DSMaxSlope+USSlope, 
data=Anguilla_train,burnin=burn, mcmc=mcmclen, beta.start=-1, 
b0=b0mean0, B0=b0precision)

## End(Not run)
```

MCMC.one.mean0

MCMC.one.mean0 is an mcmc object resulting from the following code:

Description

MCMC.one.mean0 is an mcmc object resulting from the following code:

Author(s)

Edward L. Boone <elboone@vcu.edu>

Examples

```r
## Not run:
library(dismo); library(MCMCpack)
data(Anguilla_train)
b0mean0 <- 0
b0precision <- (1/5)^2
mcmclen = 50000
burn=200000
```
MCMC.three

MCMC.three is an mcmc object resulting from the following code:

Description

MCMC.three is an mcmc object resulting from the following code:

Author(s)

Edward L. Boone <elboone@vcu.edu>

Examples

Not run:
library(dismo); library(MCMCpack)
data(Anguilla_train)
b0mean1 <- 1
b0precision <- (1/5)^2
mcmclen = 50000
burn=200000
MCMC.three <- MCMClogit(Angaus ~ SegSumT+DSDist+USNative+as.factor(Method)+DSMaxSlope+USslope,
data=Anguilla_train,burnin=burn, mcmc=mcmclen, beta.start=-1,
b0=b0mean1, B0=b0precision)

End(Not run)

MCMC.one.mean1

MCMC.one.mean1 is an mcmc object resulting from the following code:

Description

MCMC.one.mean1 is an mcmc object resulting from the following code:

Author(s)

Edward L. Boone <elboone@vcu.edu>

Examples

Not run:
library(dismo); library(MCMCpack)
data(Anguilla_train)
b0mean1 <- 1
b0precision1 <- (1/5)^2
mcmclen = 50000
burn=200000
MCMC.one.mean1 <- MCMClogit(Angaus ~ SegSumT+DSDist+USNative+as.factor(Method)+DSMaxSlope+USslope,
data=Anguilla_train,burnin=burn, mcmc=mcmclen, beta.start=-1,
b0=b0mean1, B0=b0precision1)

End(Not run)
Examples

```r
## Not run:
library(dismo); library(MCMCpack)
data(Anguilla_train)
b0mean0 <- 0
b0precision <- (1/5)^2
mcmclen = 50000
burn=200000
MCMC.three <- MCMClogit(Angaus ~ SegSumT+Dist+USNative+as.factor(Method)+DSMaxSlope+USSlope,
data=Anguilla_train,burnin=burn, mcmc=mcmclen, beta.start=-1,
b0=b0mean0, B0=b0precision)
```

End(Not run)

MCMC.two

MCMC.two is an mcmc object resulting from the following code:

Description

MCMC.two is an mcmc object resulting from the following code:

Author(s)

Edward L. Boone <elboone@vcu.edu>

Examples

```r
## Not run:
library(dismo); library(MCMCpack)
data(Anguilla_train)
b0mean0 <- 0
b0precision <- (1/5)^2
mcmclen = 50000
burn=200000
MCMC.two <- MCMClogit(Angaus ~ SegSumT+Dist+USNative+as.factor(Method)+DSMaxSlope+USSlope,
data=Anguilla_train,burnin=burn, mcmc=mcmclen, beta.start=-1,
b0=b0mean0, B0=b0precision)
```

End(Not run)
Index

*Topic datasets
 MCMC.one, 7
 MCMC.one.mean0, 7
 MCMC.one.mean1, 8
 MCMC.three, 8
 MCMC.two, 9

*Topic data
 MCMC.one, 7
 MCMC.one.mean0, 7
 MCMC.one.mean1, 8
 MCMC.three, 8
 MCMC.two, 9

 bmkconverge, 2
 bmksensitive, 3
 bmksummary, 4

 HBconverg1, 4
 HDistNoSize, 5
 HDistSize, 6
 HWconverg1, 6

 MCMC.one, 7
 MCMC.one.mean0, 7
 MCMC.one.mean1, 8
 MCMC.three, 8
 MCMC.two, 9