Package ‘boussinesq’

February 19, 2015

Maintainer Emanuele Cordano <emanuele.cordano@gmail.com>
License GPL (>= 2)
Title Analytic Solutions for (ground-water) Boussinesq Equation
Type Package
Depends R (>= 2.10)
Author Emanuele Cordano

Description This package is a collection of R functions implemented from published and available analytic solutions for the One-Dimensional Boussinesq Equation (ground-water). In particular, the function ‘beq.lin’ is the analytic solution of the linearized form of Boussinesq Equation between two different head-based boundary (Dirichlet) conditions; ‘beq.song’ is the non-linear power-series analytic solution of the motion of a wetting front over a dry bedrock (Song et al, 2007, see complete reference on function documentation).

Bugs/comments/questions/collaboration of any kind are warmly welcomed.

Version 1.0.3
Repository CRAN
Date 2013-04-18

Collate 'beq.lin.dimensionless.R' 'beq.lin.R'
 'beq.song.dimensionless.R' 'beq.song.R' 'boussinesq-package.R'
 'coefficient.song.solution.R'

NeedsCompilation no
Date/Publication 2013-04-19 16:29:04

R topics documented:

boussinesq-package ... 2
beq.lin .. 2
Analytic solutions for (ground-water) Boussinesq Equation

Details

Package: boussinesq
Type: Package
Version: 1.0.2
Date: 2013-04-18
License: GPL (>= 2)
LazyLoad: yes
Depends: R(>=2.12)

Author(s)

Emanuele Cordano <emanuele.cordano@gmail.org>

beq.lin

Analytic exact solution for One-Dimensional Boussinesq Equation in a two-bounded domain with two constant-value Dirichlet Condition

Usage

beq.lin(t = 0, x = seq(from = 0, to = L, by = by),
 h1 = 1, h2 = 1, L = 100, ks = 0.01, s = 0.4,
 big = 10^7, by = L/100, p = 0.5)
Arguments

- **t**: time coordinate.
- **x**: spatial coordinate. Default is `seq(from=0L, to=L, by=by)`.
- **big**: maximum level of Fourier series considered. Default is 10^7.
- **by**: see `seq`.
- **L**: length of the domain.
- **h1**: water surface level at $x=0$. Left Dirichlet Boundary Condition.
- **h2**: water surface level at $x=L$. Right Dirichlet Boundary Condition.
- **ks**: Hydraulic conductivity.
- **s**: drainable porosity (assumed to be constant).
- **p**: empirical coefficient to estimate hydraulic diffusivity $D = ks/\left(s \times (p \times h1 + (1 - p) \times h2)\right)$. It ranges between 0 and 1.

Value

Solutions for the indicated values of x and t.

Author(s)

Emanuele Cordano

See Also

- `beq.lin.dimensionless`

Examples

```r
L <- 1000
x <- seq(from=0L, to=L, by=L/100)
t <- 4 # 4 days
h_sol0 <- beq.lin(x=x, t=t*24*3600, h1=2, h2=1, ks=0.01, L=L, s=0.4, big=100, p=0.0)
h_solp <- beq.lin(x=x, t=t*24*3600, h1=2, h2=1, ks=0.01, L=L, s=0.4, big=100, p=0.5)
h_sol1 <- beq.lin(x=x, t=t*24*3600, h1=2, h2=1, ks=0.01, L=L, s=0.4, big=100, p=1.0)

plot(x, h_sol0, type="l", lty=1, main=paste("Water Surface Elevation after", t, "days", sep=" "), xlab="x[m]", ylab="h[m]"
lines(x, h_solp, lty=2)
lines(x, h_sol1, lty=3)
legend("topright", lty=1:3, legend=c("p=0", "p=0.5", "p=1"))
```
beq.lin.dimensionless Analytic exact solution for Dimensionless (i.e. diffusivity equal to 1 - unity) One Dimensional Heat Equation in a two-bounded domain with two constant-value Dirichlet Conditions

Description

Analytic exact solution for Dimensionless (i.e. diffusivity equal to 1 - unity) One Dimensional Heat Equation in a two-bounded domain with two constant-value Dirichlet Conditions

Usage

beq.lin.dimensionless(t = 0,
 x = seq(from = 0, to = L, by = by), big = 1e+05,
 by = L * 0.01, L = 1)

Arguments

t time coordinate.

x spatial coordinate. Default is seq(from=0, to=L, by=by).

big maximum level of Fourier series considered. Default is 100000.

by see seq

L length of the domain. It is used if x is not specified.

Value

Solutions for the specified values of x and t

Author(s)

Emanuele Cordano

References

See Also

beq.lin
Song et al.’s analytic solution to Boussinesq equation in a 1D semi-infinite domain with a Dirichlet boundary condition

Description

Song et al.’s analytic solution to Boussinesq equation in a 1D semi-infinite domain with a Dirichlet boundary condition

Usage

beq.song(t = 0.5, x = 1, s = 0.4, h1 = 1, ks = 0.01, nmax = 4, alpha = 1)

Arguments

- **t**
 time coordinate.
- **x**
 spatial coordinate. Default is seq(from=0, to=L, by=by).
- **h1**
 water surface level or boundary condition coefficient at x=0. Left Dirichlet Boundary Condition.
- **ks**
 Hydraulic conductivity
- **s**
 drainable porosity (assumed to be constant)
- **nmax**
 order of power series considered for the analytic solution. Default is 4.
- **alpha**
 α exponent see Song et al., 2007

Value

The water surface elevation vs time and space obtained by the analytic solution of Boussinesq Equation

Note

For major details, see Song at al., 2007

Author(s)

Emanuele Cordano

References

Song, Zhi-yao; Li, Ling; David, Lockington. (2007), "Note on Barenblatt power series solution to Boussinesq equation", Applied Mathematics and Mechanics, http://www.springerlink.com/content/w0u8667772712801/, http://dx.doi.org/10.1007/s10483-007-6012-x

See Also

beq.song.dimensionless
Examples

```r
L <- 1000
x <- seq(from=0, to=L, by=L/100)
t <- c(4,5,20) # days

h_sol1 <- beq.song(t[1]*3600*24,x=x,s=0.4,h1=1,ks=0.01,nmax=10,alpha=0)
h_sol2 <- beq.song(t[2]*3600*24,x=x,s=0.4,h1=1,ks=0.01,nmax=10,alpha=0)
h_sol3 <- beq.song(t[3]*3600*24,x=x,s=0.4,h1=1,ks=0.01,nmax=10,alpha=0)

plot(x,h_sol1,type="l",lty=1,main="Water Surface Elevation (Song at's solution) ",xlab="x[m]",ylab="h[m]")
lines(x,h_sol2,lty=2)
lines(x,h_sol3,lty=3)
legend("topright",lty=1:3,legend=paste("t","days",sep= " "))
```

beq.song.dimensionless

Dimensionless solution for one-dimensional derived equation from scaling Boussinesq Equation (Song et al, 2007)

Description

Dimensionless solution for one-dimensional derived equation from scaling Boussinesq Equation (Song et al, 2007)

Usage

```r
beq.song.dimensionless(xi, xi0, a)
```

Arguments

- `xi`: dimensionless coordinate (see Note)
- `xi0`: displacement of wetting front expressed as dimensionless coordinate (see Note)
- `a`: vector of coefficient returned by `coefficient.song.ssolution`

Value

the dimensionless solution, i.e. the variable `H`

Note

The expression for the dimensionless coordinate (Song et al., 2007) is

$$\xi = x \left(\frac{2 s}{\eta \alpha + 1} \right)^{1/2}$$

and the solution for the dimensionless equation derived by Boussinesq Equation is:

$$H = \sum_{n=0}^{\infty} a_n \left(1 - \frac{\xi}{\xi_0}\right)^n$$

for $$\xi < \xi_0$$, otherwise is 0.

Author(s)

Emanuele Cordano
References

Song, Zhi-yao; Li, Ling; David, Lockington. (2007), "Note on Barenblatt power series solution to Boussinesq equation", Applied Mathematics and Mechanics, http://www.springerlink.com/content/w0u8667772712801/, http://dx.doi.org/10.1007/s10488-007-0612-x

See Also

beq.song

Description

Algorithm for resolution of the series coefficient a_n for the dimensionless formula for H in beq.song.dimensionless

Usage

coefficient.song.solution(n = 4, lambda = 0)

Arguments

- **n**
 - approximation order
- **lambda**
 - dimensionless parameter related to α see Song et al., 2007

Value

the a_n series coefficient

Note

For major details, see Song et al., 2007

Author(s)

Emanuele Cordano

References

Song, Zhi-yao; Li, Ling; David, Lockington. (2007), "Note on Barenblatt power series solution to Boussinesq equation", Applied Mathematics and Mechanics, http://www.springerlink.com/content/w0u8667772712801/, http://dx.doi.org/10.1007/s10488-007-0612-x
Index

*Topic package
 boussinesq-package, 2

beq.lin, 2, 4
beq.lin.dimensionless, 3, 4
beq.song, 5, 7
beq.song.dimensionless, 5, 6, 7
boussinesq (boussinesq-package), 2
boussinesq-package, 2

coefficient.song.solution, 6, 7

seq, 3, 4