Package ‘brglm’

June 29, 2017

Title Bias Reduction in Binomial-Response Generalized Linear Models
Version 0.6.1
Date 2017-06-28
Author Ioannis Kosmidis <i.kosmidis@ucl.ac.uk>
Maintainer Ioannis Kosmidis <i.kosmidis@ucl.ac.uk>
URL http://www.ucl.ac.uk/~ucakiko/index.html
Description Fit generalized linear models with binomial responses using either an adjusted-score approach to bias reduction or maximum penalized likelihood where penalization is by Jeffreys invariant prior. These procedures return estimates with improved frequentist properties (bias, mean squared error) that are always finite even in cases where the maximum likelihood estimates are infinite (data separation). Fitting takes place by fitting generalized linear models on iteratively updated pseudo-data. The interface is essentially the same as 'glm'. More flexibility is provided by the fact that custom pseudo-data representations can be specified and used for model fitting. Functions are provided for the construction of confidence intervals for the reduced-bias estimates.
License GPL (>= 2)
Depends R (>= 2.6.0), profileModel
Suggests MASS
NeedsCompilation yes
Repository CRAN
Date/Publication 2017-06-29 05:56:44 UTC

R topics documented:

 brglm ... 2
 brglm.control .. 7
 confint.brglm .. 8
 gethats .. 11
 glm.control ... 12
 lizards .. 13
 modifications ... 14
Bias reduction in Binomial-response GLMs

Description

Fits binomial-response GLMs using the bias-reduction method developed in Firth (1993) for the removal of the leading \(O(n^{-1})\) term from the asymptotic expansion of the bias of the maximum likelihood estimator. Fitting is performed using pseudo-data representations, as described in Kosmidis (2007, Chapter 5). For estimation in binomial-response GLMs, the bias-reduction method is an improvement over traditional maximum likelihood because:

- the bias-reduced estimator is second-order unbiased and has smaller variance than the maximum likelihood estimator and
- the resultant estimates and their corresponding standard errors are always finite while the maximum likelihood estimates can be infinite (in situations where complete or quasi separation occurs).

Usage

```r
brglm(formula, family = binomial, data, weights, subset, na.action,
      start = NULL, etastart = NULL, offset,
      control.glm = glm.control(...), model = TRUE, method = "brglm.fit",
      pl = FALSE, x = FALSE, y = TRUE, contrasts = NULL,
      control.brglm = brglm.control(...), ...)
```

```r
brglm.fit(x, y, weights = rep(1, nobs), start = NULL, etastart = NULL,
          mustart = NULL, offset = rep(0, nobs), family = binomial(),
          control = glm.control(), control.brglm = brglm.control(),
          intercept = TRUE, pl = FALSE)
```

Arguments

- `formula` as in `glm`.
- `family` as in `glm`. `brglm` currently supports only the "binomial" family with links "logit", "probit", "cloglog", "cauchit".
- `data` as in `glm`.
- `weights` as in `glm`.
- `subset` as in `glm`.
- `na.action` as in `glm`.
start as in glm.
etastart as in glm.
mustart as in glm.
offset as in glm.
control.glm control.glm replaces the control argument in glm but essentially does the same job. It is a list of parameters to control glm.fit. See the documentation of glm.control for details.
control same as in glm. Only available to brglm.fit.
intercept as in glm.
model as in glm.
method the method to be used for fitting the model. The default method is "brglm.fit", which uses either the modified-scores approach to estimation or maximum penalized likelihood (see the pl argument below). The standard glm methods "glm.fit" for maximum likelihood and "model.frame" for returning the model frame without any fitting, are also accepted.
pl a logical value indicating whether the model should be fitted using maximum penalized likelihood, where the penalization is done using Jeffreys invariant prior, or using the bias-reducing modified scores. It is only used when method = "brglm.fit". The default value is FALSE (see also the Details section).
x as in glm.
y as in glm.
contrasts as in glm.
control.brglm a list of parameters for controlling the fitting process when method = "brglm.fit". See documentation of brglm.control for details.
... further arguments passed to or from other methods.

Details

brglm.fit is the workhorse function for fitting the model using either the bias-reduction method or maximum penalized likelihood. If method = "glm.fit", usual maximum likelihood is used via glm.fit.

The main iteration of brglm.fit consists of the following steps:

1. Calculate the diagonal components of the hat matrix (see gethats and hatvalues).
2. Obtain the pseudo-data representation at the current value of the parameters (see modifications for more information).
3. Fit a local GLM, using glm.fit on the pseudo data.
4. Adjust the quadratic weights to agree with the original binomial totals.

Iteration is repeated until either the iteration limit has been reached or the sum of the absolute values of the modified scores is less than some specified positive constant (see the br.maxit and br.epsilon arguments in brglm.control).

The default value (FALSE) of pl, when method = "brglm.fit", results in estimates that are free of any $O(n^{-1})$ terms in the asymptotic expansion of their bias. When pl = TRUE bias-reduction
is again achieved but generally not at such order of magnitude. In the case of logistic regression the value of \(pl \) is irrelevant since maximum penalized likelihood and the modified-scores approach coincide for natural exponential families (see Firth, 1993).

For other language related details see the details section in \texttt{glm}.

Value

\texttt{brglm} returns an object of class "\texttt{brglm}". A "\texttt{brglm}" object inherits first from "\texttt{glm}" and then from "\texttt{lm}" and is a list containing the following components:

- **coefficients** as in \texttt{glm}.
- **residuals** as in \texttt{glm}.
- **fitted.values** as in \texttt{glm}.
- **effects** as in \texttt{glm}.
- **R** as in \texttt{glm}.
- **rank** as in \texttt{glm}.
- **qr** as in \texttt{glm}.
- **family** as in \texttt{glm}.
- **linear.predictors** as in \texttt{glm}.
- **deviance** as in \texttt{glm}.
- **aic** as in \texttt{glm} (see Details).
- **null.deviance** as in \texttt{glm}.
- **iter** as in \texttt{glm}.
- **weights** as in \texttt{glm}.
- **prior.weights** as in \texttt{glm}.
- **df.residual** as in \texttt{glm}.
- **df.null** as in \texttt{glm}.
- **y** as in \texttt{glm}.
- **converged** as in \texttt{glm}.
- **boundary** as in \texttt{glm}.
- **ModifiedScores** the vector of the modified scores for the parameters at the final iteration. If \(pl = \) TRUE they are the derivatives of the penalized likelihood at the final iteration.
- **FisherInfo** the Fisher information matrix evaluated at the resultant estimates. Only available when \texttt{method = "brglm.fit"}.
- **hats** the diagonal elements of the hat matrix. Only available when \texttt{method = "brglm.fit"}.
- **nIter** the number of iterations that were required until convergence. Only available when \texttt{method = "brglm.fit"}.
- **cur.model** a list with components \texttt{ar} and \texttt{at} which contains the values of the additive modifications to the responses (\texttt{y}) and to the binomial totals (\texttt{prior.weights}) at the resultant estimates (see \texttt{modifications} for more information). Only available when \texttt{method = "brglm.fit"}.

model as in glm.
call as in glm.
formula as in glm.
terms as in glm.
data as in glm.
offset as in glm.
control.glm as control in the result of glm.
control.brglm the control.brglm argument that was passed to brglm. Only available when method = "brglm.fit".
method the method used for fitting the model.
contrasts as in glm.
xlevels as in glm.
pl logical having the same value with the pl argument passed to brglm. Only available when method = "brglm.fit".

Warnings

1. It is not advised to use methods associated with model comparison (add1, drop1, anova, etc.) on objects of class "brglm". Model comparison when estimation is performed using the modified scores or the penalized likelihood is an on-going research topic and will be implemented as soon as it is concluded.

2. The use of Akaike’s information criterion (AIC) for model selection when method = "brglm.fit" is controversial. AIC was developed under the assumptions that (i) estimation is by maximum likelihood and (ii) that estimation is carried out in a parametric family of distributions that contains the “true” model. At least the first assumption is not valid when using method = "brglm.fit". However, since the MLE is asymptotically unbiased, asymptotically the modified-scores approach is equivalent to maximum likelihood. A more appropriate information criterion seems to be Konishi’s generalized information criterion (see Konishi & Kitagawa, 1996, Sections 3.2 and 3.3), which will be implemented in a future version.

Note

1. Supported methods for objects of class "brglm" are:

 - print through print.brglm.
 - summary through summary.brglm.
 - coefficients inherited from the "glm" class.
 - vcov inherited from the "glm" class.
 - predict inherited from the "glm" class.
 - residuals inherited from the "glm" class.
 - and other methods that apply to objects of class "glm"
2. A similar implementation of the bias-reduction method could be done for every GLM, following Kosmidis (2007) (see also Kosmidis and Firth, 2009). The full set of families and links will be available in a future version. However, bias-reduction is not generally beneficial as it is in the binomial family and it could cause inflation of the variance (see Firth, 1993).

3. Basically, the differences between maximum likelihood, maximum penalized likelihood and the modified scores approach are more apparent in small sample sizes, in sparse data sets and in cases where complete or quasi-complete separation occurs. Asymptotically (as \(n \) goes to infinity), the three different approaches are equivalent to first order.

4. When an offset is not present in the model, the modified-scores based estimates are usually smaller in magnitude than the corresponding maximum likelihood estimates, shrinking towards the origin of the scale imposed by the link function. Thus, the corresponding estimated asymptotic standard errors are also smaller.

The same is true for the maximum penalized likelihood estimates when for example, the logit (where the maximum penalized likelihood and modified-scores approaches coincide) or the probit links are used. However, generally the maximum penalized likelihood estimates do not shrink towards the origin. In terms of mean-value parameterization, in the case of maximum penalized likelihood the fitted probabilities would shrink towards the point where the Jeffreys prior is maximized or equivalently where the quadratic weights are simultaneously maximized (see Kosmidis, 2007).

5. Implementations of the bias-reduction method for logistic regressions can also be found in the \texttt{logistf} package. In addition to the obvious advantage of \texttt{brglm} in the range of link functions that can be used ("logit", "probit", "cloglog" and "cauchit"), \texttt{brglm} is also more efficient computationally. Furthermore, for any user-specified link function (see the Example section of \texttt{family}), the user can specify the corresponding pseudo-data representation to be used within \texttt{brglm} (see \texttt{modifications} for details).

Author(s)
Ioannis Kosmidis, i.kosmidis@ucl.ac.uk

References

See Also

`glm`, `glm.fit`

Examples

```r
## Begin Example
data(lizards)
# Fit the GLM using maximum likelihood
lizards.glm <- brglm(cbind(grahami, opalinus) ~ height + diameter +
                    light + time, family = binomial(logit), data=lizards,
                    method = "glm.fit")
# Now the bias-reduced fit:
lizards.brglm <- brglm(cbind(grahami, opalinus) ~ height + diameter +
                      light + time, family = binomial(logit), data=lizards,
                      method = "brglm.fit")

lizards.glm
lizards.brglm
# Other links
update(lizards.brglm, family = binomial(probit))
update(lizards.brglm, family = binomial(cloglog))
update(lizards.brglm, family = binomial(cauchit))
# Using penalized maximum likelihood
update(lizards.brglm, family = binomial(probit), pl = TRUE)
update(lizards.brglm, family = binomial(cloglog), pl = TRUE)
update(lizards.brglm, family = binomial(cauchit), pl = TRUE)
```

`brglm.control`

Auxiliary for Controlling BRGLM Fitting

Description

Auxiliary function as user interface for `brglm` fitting. Typically only used when calling `brglm` or `brglm.fit`.

Usage

```r
brglm.control(br.epsilon = 1e-08, br.maxit = 100, br.trace=FALSE,
              brconsts = NULL, ...)
```
Arguments

br.epsilon positive convergence tolerance for the iteration described in brglm.fit.
br.maxit integer giving the maximum number of iterations for the iteration in brglm.fit.
br.trace logical indicating if output should be produced for each iteration.
brconsts a (small) positive constant or a vector of such.
... further arguments passed to or from other methods.

Details

If br.trace=TRUE then for each iteration the iteration number and the current value of the modified scores is cat'ed. If brconsts is specified then brconsts is added to the original binomial counts and 2*brconsts. Then the model is fitted to the adjusted data to provide starting values for the iteration in brglm.fit. If brconsts = NULL (default) then brglm.fit adjusts the responses and totals by "number of parameters"/"number of observations" and twice that, respectively.

Value

A list with the arguments as components.

Author(s)

Ioannis Kosmidis, <i.kosmidis@ucl.ac.uk>

References

See Also

brglm.fit, the fitting procedure used by brglm.

confint.br glm

Computes confidence intervals of parameters for bias-reduced estimation

Description

Computes confidence intervals for one or more parameters when estimation is performed using brglm. The resultant confidence intervals are based on manipulation of the profiles of the deviance, the penalized deviance and the modified score statistic (see profileObjectives).
Usage

```r
## S3 method for class 'brglm'
confint(object, parm = 1:length(coef(object)), level = 0.95,
       verbose = TRUE, endpoint.tolerance = 0.001,
       max.zoom = 100, zero.bound = 1e-08, stepsize = 0.5,
       stdn = 5, gridsize = 10, scale = FALSE, method = "smooth",
       ci.method = "union", n.interpolations = 100, ...)
```

```r
## S3 method for class 'profile.brglm'
confint(object, parm, level = 0.95, method = "smooth",
         ci.method = "union", endpoint.tolerance = 0.001,
         max.zoom = 100, n.interpolations = 100, verbose = TRUE,
         ...)```

Arguments

- `object`: an object of class "brglm" or "profile.brglm".
- `parm`: either a numeric vector of indices or a character vector of names, specifying the parameters for which confidence intervals are to be estimated. The default is all parameters in the fitted model. When `object` is of class "profile.brglm", `parm` is not used and confidence intervals are returned for all the parameters for which profiling took place.
- `level`: the confidence level required. The default is 0.95. When `object` is of class "profile.brglm", `level` is not used and the level attribute of `object` is used instead.
- `verbose`: logical. If TRUE (default) progress indicators are printed during the progress of calculating the confidence intervals.
- `endpoint.tolerance`: as in `confintModel`.
- `max.zoom`: as in `confintModel`.
- `zero.bound`: as in `confintModel`.
- `stepsize`: as in `confintModel`.
- `stdn`: as in `confintModel`.
- `gridsize`: as in `confintModel`.
- `scale`: as in `confintModel`.
- `method`: as in `confintModel`.
- `ci.method`: The method to be used for the construction of confidence intervals. It can take values "union" (default) and "mean" (see Details).
- `n.interpolations`: as in `confintModel`.
- `...`: further arguments to or from other methods.
Details

In the case of logistic regression Heinze & Schemper (2002) and Bull et. al. (2007) suggest the use of confidence intervals based on the profiles of the penalized likelihood, when estimation is performed using maximum penalized likelihood.

Kosmidis (2007) illustrated that because of the shape of the penalized likelihood, confidence intervals based on the penalized likelihood could exhibit low or even zero coverage for hypothesis testing on large parameter values and also misbehave illustrating severe oscillation (see Brown et. al., 2001). Kosmidis (2007) suggested an alternative confidence interval that is based on the union of the confidence intervals resulted by profiling the ordinary deviance for the maximum likelihood fit and by profiling the penalized deviance for the maximum penalized fit. Such confidence intervals, despite of being slightly conservative, illustrate less oscillation and avoid the loss of coverage. Another possibility is to use the mean of the corresponding endpoints instead of “union”. Yet unpublished simulation studies suggest that such confidence intervals are not as conservative as the “union” based intervals but illustrate more oscillation, which however is not as severe as in the case of the penalized likelihood based ones.

The properties of the “union” and “mean” confidence intervals extend to all the links that are supported by `brglm`, when estimation is performed using maximum penalized likelihood.

In the case of estimation using modified scores and for models other than logistic, where there is not an objective that is maximized, the profiles of the penalized likelihood for the construction of the “union” and “mean” confidence intervals can be replaced by the profiles of modified score statistic (see `profileObjectives`).

The `confint` method for `brglm` and `profile.brglm` objects implements the “union” and “mean” confidence intervals. The method is chosen through the `ci.method` argument.

Value

A matrix with columns the endpoints of the confidence intervals for the specified (or profiled) parameters.

Author(s)

Ioannis Kosmidis, <i.kosmidis@ucl.ac.uk>

References


See Also

`confintModel, profileModel, profile.brglm`. 
Examples

```r
Begin Example 1
Not run:
library(MASS)
data(bacteria)
contrasts(bacteria$treat) <- structure(contr.sdif(3),
 dimnames = list(NULL, c("drug", "encourage")))
fixed effects analyses
m.glm.logit <- brglm(y ~ treat * week, family = binomial,
 data = bacteria, method = "glm.fit")
m.brglm.logit <- brglm(y ~ treat * week, family = binomial,
 data = bacteria, method = "brglm.fit")
p.glm.logit <- profile(m.glm.logit)
p.brglm.logit <- profile(m.brglm.logit)
plot(p.glm.logit)
plot(p.brglm.logit)
confidence intervals for the glm fit based on the profiles of the
ordinary deviance
confint(p.glm.logit)
confidence intervals for the brglm fit
confint(p.brglm.logit, ci.method = "union")
confint(p.brglm.logit, ci.method = "mean")
A cloglog link
m.brglm.cloglog <- update(m.brglm.logit, family = binomial(cloglog))
p.brglm.cloglog <- profile(m.brglm.cloglog)
plot(p.brglm.cloglog)
confint(m.brglm.cloglog, ci.method = "union")
confint(m.brglm.cloglog, ci.method = "mean")
End example

End(Not run)
Not run:
Begin Example 2
y <- c(1, 1, 0, 0)
totals <- c(2, 2, 2, 2)
x1 <- c(1, 0, 1, 0)
x2 <- c(1, 1, 0, 0)
m1 <- brglm(y / totals ~ x1 + x2, weights = totals,
 family = binomial(cloglog))
p.m1 <- profile(m1)
confint(p.m1, method="zoom")
End(Not run)
```

gethats

*Calculates the Leverages for a GLM through a C Routine*
Description
Calculates the leverages of a GLM through a C routine. It is intended to be used only within \texttt{brglm.fit}.

Usage
\begin{verbatim}
gethats(nobs, nvars, x.t, XWXinv, ww)
\end{verbatim}

Arguments
- \texttt{nobs} The number of observations, i.e. \texttt{dim(x)[1]}.
- \texttt{nvars} The number of parameters, i.e. \texttt{dim(x)[1]}, where \texttt{x} is the model matrix, excluding the columns that correspond to aliased parameters.
- \texttt{x.t} \texttt{t(x)}.
- \texttt{XWXinv} The inverse of the Fisher information.
- \texttt{ww} The ‘working’ weights.

Value
A vector containing the diagonal elements of the hat matrix.

Author(s)
Ioannis Kosmidis, \texttt{i.kosmidis@ucl.ac.uk}

See Also
- \texttt{hatvalues, brglm.fit}

\begin{verbatim}
glm.control1(epsilon = 1e-08, maxit = 25, trace = FALSE, ...)
\end{verbatim}

Arguments
- \texttt{epsilon} as in \texttt{glm.control}.
- \texttt{maxit} as in \texttt{glm.control}.
- \texttt{trace} as in \texttt{glm.control}.
- \texttt{...} further arguments passed to or from other methods.
Details

The only difference with glm.control is that glm.control1 supports further arguments to be passed from other methods. However, this additional arguments have no effect on the resultant list.

Author(s)

Ioannis Kosmidis, <i.kosmidis@ucl.ac.uk>

---

**lizards**  
*Habitat Preferences of Lizards*

Description

The lizards data frame has 23 rows and 6 columns. Variables grahami and opalinus are counts of two lizard species at two different perch heights, two different perch diameters, in sun and in shade, at three times of day.

Usage

data(lizards)

Format

This data frame contains the following columns:

- **grahami**: count of grahami lizards
- **opalinus**: count of opalinus lizards
- **height**: a factor with levels "<5ft", ">5ft"
- **diameter**: a factor with levels "<2in", ">2in"
- **light**: a factor with levels "sunny", "shady"
- **time**: a factor with levels "early", "midday", "late"

Source


Originally from


Examples

data(lizards)

```r
glm(cbind(grahami, opalinus) ~ height + diameter + light + time,
 family = binomial, data=lizards)
```

```r
brglm(cbind(grahami, opalinus) ~ height + diameter + light + time,
 family = binomial, data=lizards)
```
modifications

Additive Modifications to the Binomial Responses and Totals for Use within 'brglm.fit'

Description

Get, test and set the functions that calculate the additive modifications to the responses and totals in binomial-response GLMs, for the application of bias-reduction either via modified scores or via maximum penalized likelihood (where penalization is by Jeffreys invariant prior).

Usage

modifications(family, pl = FALSE)

Arguments

family a family object of the form binomial(link = "link"), where "link" can be one of "logit", "probit", "cloglog" and "cauchit". The usual ways of giving the family name are supported (see family).

pl logical determining whether the function returned corresponds to modifications for the penalized maximum likelihood approach or for the modified-scores approach to bias-reduction. Default value is FALSE.

Details

The function returned from modifications accepts the argument p which are the binomial probabilities and returns a list with components ar and at, which are the link-dependent parts of the additive modifications to the actual responses and totals, respectively.

Since the resultant function is used in brglm.fit, for efficiency reasons no check is made for 
\[ p > 0 \text{ or } p < 1 \]

Construction of custom pseudo-data representations

If \( y^* \) are the pseudo-responses (pseudo-counts) and \( m^* \) are the pseudo-totals then we call the pair \((y^*, m^*)\) a pseudo-data representation. Both the modified-scores approach and the maximum penalized likelihood have a common property:

there exists \((y^*, m^*)\) such that if we replace the actual data \((y, m)\) with \((y^*, m^*)\) in the expression for the ordinary scores (first derivatives of the likelihood) of a binomial-response GLM, then we end-up either with the modified-scores or with the derivatives of the penalized likelihood (see Kosmidis, 2007, Chapter 5).

Let \( \mu \) be the mean of the binomial response \( y \) (i.e. \( \mu = mp \), where \( p \) is the binomial probability corresponding to the count \( y \)). Also, let \( d \) and \( d' \) denote the first and the second derivatives, respectively, of \( \mu \) with respect to the linear predictor \( \eta \) of the model. All the above are viewed as functions of \( p \). The pseudo-data representations have the generic form

\[
\begin{align*}
\text{pseudo-response :} & \quad y^* = y + ha_r(p) \\
\text{pseudo-totals :} & \quad m^* = m + ha_t(p),
\end{align*}
\]
where \( h \) is the leverage corresponding to \( y \). The general expressions for \( a_r(p) \) ("r" for "response") and \( a_t(p) \) ("t" for "totals") are:

**modified-scores approach**

\[
\begin{align*}
a_r(p) &= d'(p)/(2w(p)) \\
a_t(p) &= 0,
\end{align*}
\]

**maximum penalized likelihood approach**

\[
\begin{align*}
a_r(p) &= d'(p)/w(p) + p - 0.5 \\
a_t(p) &= 0.
\end{align*}
\]

For supplying \((y^*, m^*)\) in \texttt{glm.fit} (as is done by \texttt{brglm.fit}), an essential requirement for the pseudo-data representation is that it should mimic the behaviour of the original responses and totals, i.e., \( 0 \leq y^* \leq m^* \). Since \( h \in [0, 1] \), the requirement translates to \( 0 \leq a_r(p) \leq a_t(p) \) for every \( p \in (0, 1) \). However, the above definitions of \( a_r(p) \) and \( a_t(p) \) do not necessarily respect this requirement.

On the other hand, the pair \((a_r(p), a_t(p))\) is not unique in the sense that for a given link function and once the link-specific structure of the pair has been extrapolated, there is a class of equivalent pairs that can be resulted following only the following two rules:

- add and subtract the same quantity from either \( a_r(p) \) or \( a_t(p) \).
- if a quantity is to be moved from \( a_r(p) \) to \( a_t(p) \) it first has to be divided by \(-p\).

For example, in the case of penalized maximum likelihood, the pairs \( (d'(p)/w(p) + p - 0.5, 0) \) and \( (d'(p)/w(p) + p, 0.5/p) \) are equivalent, in the sense that if the corresponding pseudo-data representations are substituted in the ordinary scores both return the same expression.

So, in order to construct a pseudo-data representation that corresponds to a user-specified link function and has the property \( 0 \leq a_r(p) \leq a_t(p) \) for every \( p \in (0, 1) \), one merely has to pursue a simple algebraic calculation on the initial pair \((a_r(p), a_t(p))\) using only the two aforementioned rules until an appropriate pair is resulted. There is always a pair!

Once the pair has been found the following steps should be followed.

1. For a user-specified link function the user has to write a modification function with name "br.custom.family" or "pml.custom.family" for \texttt{pl} = \texttt{FALSE} or \texttt{pl} = \texttt{TRUE}, respectively. The function should take as argument the probabilities \( p \) and return a list of two vectors with same length as \( p \) and with names \texttt{cHBar}, \texttt{BatBI}. The result corresponds to the pair \((a_r(p), a_t(p))\).
2. Check if the custom-made modifications function is appropriate. This can be done via the function \texttt{checkModifications} which has arguments \texttt{fun} (the function to be tested) and \texttt{Length} with default value \texttt{Length=100}. \texttt{Length} is to be used when the user-specified link function takes as argument a vector of values (e.g. the \texttt{logexp} link in \texttt{?family}). Then the value of \texttt{Length} should be the length of that vector.
3. Put the function in the search patch so that \texttt{modifications} can find it.
4. \texttt{brglm} can now be used with the custom family as \texttt{glm} would be used.
Note

The user could also deviate from modified-scores and maximum penalized likelihood and experiment with implemented (or not) links, e.g. probit, constructing his own pseudo-data representations of the aforementioned general form. This could be done by changing the link name, e.g. by

```r
probit <- make.link(probit); probitt$name <- "probit"
```

and then setting a custom `br.custom.family` that does not necessarily depend on the probit link. Then, `brglm` could be used with `pl=FALSE`.

A further generalization would be to completely remove the hat value $h$ in the generic expression of the pseudo-data representation and have general additive modifications that depend on $p$. To do this divide both $ar$ and $at$ by $pmax(get("hats",parent.frame()),.Machine$double.eps$) within the custom modification function (see also Examples).

Author(s)

Ioannis Kosmidis, <i.kosmidis@ucl.ac.uk>

References


See Also

`brglm`, `brglm.fit`

Examples

```r
Begin Example 1
logistic exposure model, following the Example in ?family. See,
Definition of the link function
logexp <- function(days = 1) {
 linkfun <- function(mu) plogis(mu*(1/days))
 linkinv <- function(eta) plogis(eta)^days
 mu.eta <- function(eta) days * plogis(eta)^days-1 * binomial()$mu.eta(eta)
 valideta <- function(eta) TRUE
 link <- paste("logexp(" days, ")", sep="")
 structure(list(linkfun = linkfun, linkinv = linkinv,
 mu.eta = mu.eta, valideta = valideta, name = link),
 class = "link-glm")
}
Here d(p) = days * p * (1 - p*(1/days))
d'(p) = (days - (days+1) * p*(1/days)) * d(p)
w(p) = days^2 * p * (1-p^*(1/days))^2 / (1-p)
Initial modifications, as given from the general expressions above:
br.custom.family <- function(p) {
 etas <- binomial(logexp(.days))$linkfun(p)
 # the link function argument ".days" will be detected by lexical
```
# scoping. So, make sure that the link-function inputted arguments
# have unusual names, like `.days' and that
# the link function enters `brglm' as
# `family=binomial(logexp(.days))'.
list(ar = 0.5*(1-p)-0.5*(1-p)*exp(etas)/.days,
     at = 0*p/p) # so that to fix the length of at
}
.days <-3
# `.days' could be a vector as well but then it should have the same
# length as the number of observations (`length(.days)’ should be
# equal to `length(p)'). In this case, `checkModifications' should
# have argument `Length=length(.days)'.
#
# Check:
## Not run: checkModifications(br.custom.family)
# OOOPS error message... the condition is not satisfied
#
# After some trivial algebra using the two allowed operations, we
# get new modifications:
br.custom.family <- function(p) {
  etas <- binomial(logexp(.days))$linkfun(p)
  list(ar=0.5*p/p, # so that to fix the length of ar
       at=0.5+exp(etas)*(1-p)/(2*p*.days))
}
# Check:
checkModifications(br.custom.family)
# It is OK.
# Now,
modifications(binomial(logexp(.days)))
# works.
# Notice that for `.days <- 1', `logexp(.days)' is the `logit' link
# model and `a_r=0.5', `a_t=1'.
# In action:
library(MASS)
example(birthwt)
  m.glm <- glm(formula = low ~ ., family = binomial, data = bwt)
  .days <- bwt$age
  m.glm.logexp <- update(m.glm,family=binomial(logexp(.days)))
  m.brglm.logexp <- brglm(formula = low ~ ., family =
                          binomial(logexp(.days)), data = bwt)
# The fit for the `logexp' link via maximum likelihood
m.glm.logexp
# and the fit for the `logexp' link via modified scores
m.brglm.logexp
## End Example
## Begin Example 2
## Another possible use of brglm.fit:
## Deviating from bias reducing modified-scores:
## Add 1/2 to the response of a probit model.
y <- c(1,2,3,4)
totals <- c(5,5,5,5)
x1 <- c(1,0,1,0)
x2 <- c(1,1,0,0)
my.probit <- make.link("probit")
my.probit$name <- "my.probit"
br.custom.family <- function(p) {
  h <- pmax(get("hats",parent.frame()),.Machine$double.eps)
  list(ar=0.5/h,at=1/h)
}
m1 <- brglm(y/totals~x1+x2,weights=totals,family=binomial(my.probit))
m2 <- glm((y+0.5)/(totals+1)~x1+x2,weights=totals+1,family=binomial(probit))
# m1 and m2 should be the same.

plot.profile.brglm

Plot methods for 'profile.brglm' objects

Description

plot.profile.brglm plots the objects of class "profileModel" that are contained in an object of class "profile.brglm". pairs.profile.brglm is a diagnostic tool that plots pairwise profile traces.

Usage

## S3 method for class 'profile.brglm'
plot(x, signed = FALSE, interpolate = TRUE,
     n.interpolations = 100, print.grid.points = FALSE, ...)

## S3 method for class 'profile.brglm'
pairs(x, colours = 2:3, ...)

Arguments

x 
a "profile.brglm" object.
signed as in plot.profileModel.
interpolate as in plot.profileModel.
n.interpolations as in plot.profileModel.
print.grid.points as in plot.profileModel.
colours as in plot.profileModel.
... further arguments passed to or from other methods.

Details

See Details in plot.profileModel.

Author(s)

Ioannis Kosmidis, <i.kosmidis@ucl.ac.uk>
profile.brglm

See Also

plot.profileModel, profile.brglm.

Examples

# see example in 'confint.brglm'.

profile.brglm

Calculate profiles for objects of class 'brglm'.

Description

Creates "profile.brglm" objects to be used for the calculation of confidence intervals and for plotting.

Usage

## S3 method for class 'brglm'
profile(fitted, gridsize = 10, stdn = 5,
    stepsize = 0.5, level = 0.95,
    which = 1:length(coef(fitted)), verbose = TRUE,
    zero.bound = 1e-08, scale = FALSE, ...)

Arguments

fitted an object of class "brglm".
gridsize as in profileModel.
stdn as in profileModel.
stepsize as in profileModel.
level qchisq(level, 1) indicates the range that the profiles must cover.
which as in profileModel.
verbose as in profileModel.
zero.bound as in profileModel.
scale as in profileModel.
... further arguments passed to or from other methods.

Details

profile.brglm calculates the profiles of the appropriate objectives to be used for the construction of confidence intervals for the bias-reduced estimates (see confint.brglm for the objectives that are profiled).
Value

An object of class "profile.glm" with attribute "level" corresponding to the argument level. The object supports the methods print, plot, pairs and confint and it is a list of the components:

- profilesML: a "profileModel" object containing the profiles of the ordinary deviance for the maximum likelihood fit corresponding to fitted.
- profilesBR: NULL if method = "glm.fit" in brglm. If method = "brglm.fit" and pl = TRUE, profilesBR is a "profileModel" object containing the profiles of the penalized deviance for the parameters of fitted. If method = "brglm.fit" and pl = FALSE profilesBR is a "profileModel" object containing the profiles of the modified score statistic (see profileObjectives) for the parameters of fitted.

Note

Objects of class "profile.brglm" support the methods:

- print which prints the "level" attribute of the object, as well as the supported methods.
- confint see confint.brglm.
- plot see plot.profile.brglm.
- pairs see plot.profile.brglm.

Author(s)

Ioannis Kosmidis, <i.kosmidis@ucl.ac.uk>

See Also

profileModel, profile.brglm.

Examples

# see example in 'confint.brglm'.

profileObjectives-brglm

Objectives to be profiled

Description

Objectives that are used in profile.brglm

Usage

penalizedDeviance(fm, X, dispersion = 1)

modifiedScoreStatistic(fm, X, dispersion = 1)
Arguments

- `fm` the **restricted** fit.
- `X` the model matrix of the fit on all parameters.
- `dispersion` the dispersion parameter.

Details

These objectives follow the specifications for objectives in the `profileModel` package and are used from `profile.brglm`.

`penalizedDeviance` returns a deviance-like value corresponding to a likelihood function penalized by Jeffreys invariant prior. It has been used by Heinze & Schemper (2002) and by Bull et. al. (2002) for the construction of confidence intervals for the bias-reduced estimates in logistic regression. The `X` argument is the model matrix of the full (not the restricted) fit.

`modifiedScoreStatistic` mimics `RaoScoreStatistic` in `profileModel`, but with the ordinary scores replaced with the modified scores used for bias reduction. The argument `X` has the same interpretation as for `penalizedDeviance`.

Value

A scalar.

Author(s)

Ioannis Kosmidis, <i.kosmidis@ucl.ac.uk>

References


See Also

`profileModel`, `profile.brglm`.

Description

Provides a tool for identifying whether or not separation has occurred.

Usage

```
separation.detection(fit, nsteps = 30)
```
Arguments

fit  the result of a glm call.
nsteps  Starting from maxit = 1, the GLM is refitted for maxit = 2, maxit = 3, ..., maxit = nsteps. Default value is 30.

Details

Identifies separated cases for binomial-response GLMs, by refitting the model. At each iteration the maximum number of allowed IWLS iterations is fixed starting from 1 to nsteps (by setting control = glm.control(maxit = j), where j takes values 1, ..., nsteps in glm). For each value of maxit, the estimated asymptotic standard errors are divided to the corresponding ones resulted for control = glm.control(maxit = 1). Based on the results in Lesaffre & Albert (1989), if the sequence of ratios in any column of the resultant matrix diverges, then separation occurs and the maximum likelihood estimate for the corresponding parameter has value minus or plus infinity.

Value

A matrix of dimension nsteps by length(coef(fit)), that contains the ratios of the estimated asymptotic standard errors.

Author(s)

Ioannis Kosmidis, <i.kosmidis@ucl.ac.uk>

References


Examples

```r
Begin Example
y <- c(1,1,0,0)
totals <- c(2,2,2,2)
x1 <- c(1,0,1,0)
x2 <- c(1,1,0,0)
m1 <- glm(y/totals ~ x1 + x2, weights = totals, family = binomial())
No warning from glm...

m1
However estimates for (Intercept) and x2 are unusually large in # absolute value... Investigate further:
#
separation.detection(m1,nsteps=30)
Note that the values in the column for (Intercept) and x2 diverge, # while for x1 converged. Hence, separation has occurred and the # maximum likelihood estimate for (Intercept) is minus infinity and # for x2 is plus infinity. The signs for infinity are taken from the # signs of (Intercept) and x1 in coef(m1).
End Example
```
Index

*Topic **datasets**
  lizards, 13

*Topic **dplot**
  plot.profile.brglm, 18

*Topic **hplot**
  plot.profile.brglm, 18

*Topic **htest**
  confint.brglm, 8

*Topic **iteration**
  brglm, 2
  brglm.control, 7
  glm.control, 12

*Topic **models**
  brglm, 2
  confint.brglm, 8
  modifications, 14
  profile.brglm, 19
  profileObjectives-brglm, 20
  separation.detection, 21

*Topic **regression**
  brglm, 2
  gethats, 11
  modifications, 14

*Topic **utilities**
  separation.detection, 21

add1, 5
anova, 5

brglm, 2, 4, 7, 8, 10, 12, 15, 16, 20
brglm.control, 3, 7
brglm.fit, 8, 12, 14–16

cat, 8
checkModifications, 15
checkModifications (modifications), 14
coefficients, 5
confint, 20
confint.brglm, 8, 19, 20
confint.profile.brglm(confint.brglm), 8

confintModel, 9, 10
drop1, 5
family, 6, 14
gethats, 3, 11
glm, 2–5, 7, 15, 22
glm.control, 12, 13
glm.control1, 12
glm.fit, 3, 7, 15
hatvalues, 3, 12
lizards, 13
modifications, 3, 4, 6, 14
modifiedScoreStatistic
  (profileObjectives-brglm), 20
pairs, 20
pairs.profile.brglm
  (plot.profile.brglm), 18
penalizedDeviance
  (profileObjectives-brglm), 20
plot, 20
plot.profile.brglm, 18, 20
plot.profileModel, 18, 19
predict, 5
print, 5, 20
print.brglm(brglm), 2
print.profile.brglm(profile.brglm), 19
print.summary.brglm(brglm), 2
profile.brglm, 10, 19, 19, 20, 21
profileModel, 10, 19–21
profileObjectives, 8, 10, 20
profileObjectives
  (profileObjectives-brglm), 20
profileObjectives-brglm, 20
RaoScoreStatistic, 21

23
residuals, 5

separation.detection, 21

summary, 5

summary.brglm (brglm), 2

vcov, 5