Package ‘bst’

July 23, 2018

Type Package
Title Gradient Boosting
Version 0.3-15
Date 2018-07-22
Author Zhu Wang [aut, cre],
 Torsten Hothorn [ctb]
Maintainer Zhu Wang <zwang@connecticutchildrens.org>
Imports rpart, methods, foreach, doParallel
Depends gbm
Suggests hdi, pROC, R.rsp, knitr, gdata
VignetteBuilder R.rsp, knitr
License GPL (>= 2)
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2018-07-23 20:40:07 UTC

R topics documented:

 bfunc ... 2
 bst ... 3
 bst.sel ... 5
 bst_control ... 6
 cv.bst ... 8
 cv.mada .. 9
 cv.mbst ... 10
bfunc

Compute upper bound of second derivative of loss

Description

Compute upper bound of second derivative of loss.

Usage

```r
bfunc(family, s)
```

Arguments

- `family` a family from "closs", "gloss", "qloss" for classification and "clossR" for robust regression.
- `s` a parameter related to robustness.

Details

A finite upper bound is required in quadratic majorization.

Value

A positive number.

Author(s)

Zhu Wang
Description

Gradient boosting for optimizing loss functions with componentwise linear, smoothing splines, tree models as base learners.

Usage

bst(x, y, cost = 0.5, family = c("gaussian", "hinge", "hinge2", "binom", "expo", "poisson", "tgaussianDC", "tgingDC", "tbinomDC", "tbinomdDC", "texpoDC", "tpoissonDC", "huber", "thuberDC", "clossR", "clossRMM", "closs", "gloss", "qloss", "glossMM", "glossMMR", "lar"), ctrl = bst_control(), control.tree = list(maxdepth = 1), learner = c("ls", "sm", "tree"))

S3 method for class 'bst'
print(x, ...)

S3 method for class 'bst'
predict(object, newdata=NULL, newy=NULL, mstop=NULL, type=c("response", "all.res", "class", "loss", "error"), ...)

S3 method for class 'bst'
plot(x, type = c("step", "norm"), ...)

S3 method for class 'bst'
coef(object, which=object$ctrl$mstop, ...)

S3 method for class 'bst'
fpartial(object, mstop=NULL, newdata=NULL)

Arguments

- **x**
a data frame containing the variables in the model.
- **y**
 a vector of responses. `y` must be in \{1,-1\} for family = "hinge".
- **cost**
 price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.
- **family**
 A variety of loss functions. `family` = "hinge" for hinge loss and `family`="gaussian" for squared error loss. Implementing the negative gradient corresponding to the loss function to be minimized. For hinge loss, +1/-1 binary responses is used.
- **ctrl**
 an object of class `bst_control`.
- **type**
 type of prediction or plot, see `predict`, `plot`
- **control.tree**
 control parameters of rpart.
- **learner**
 a character specifying the component-wise base learner to be used: 1s linear models, sm smoothing splines, tree regression trees.
- **object**
 class of `bst`.
- **newdata**
 new data for prediction with the same number of columns as `x`.
- **newy**
 new response.
- **mstop**
 boosting iteration for prediction.
which at which boosting mstop to extract coefficients.

... additional arguments.

Details

Boosting algorithms for classification and regression problems. In a classification problem, suppose f is a classifier for a response y. A cost-sensitive or weighted loss function is

$$L(y, f, \text{cost}) = l(y, f, \text{cost}) \max(0, (1 - yf))$$

For family="hinge",

$$l(y, f, \text{cost}) = 1 - \text{cost}, \text{if } y = +1; \text{ cost}, \text{if } y = -1$$

For family="hinge2", $l(y,f,\text{cost})= 1$, if $y = +1$ and $f > 0$; = 1-cost, if $y = +1$ and $f < 0$; = cost, if $y = -1$ and $f > 0$; = 1, if $y = -1$ and $f < 0$.

For twin boosting if twinboost=TRUE, there are two types of adaptive boosting if learner="ls": for twintype=1, weights are based on coefficients in the first round of boosting; for twintype=2, weights are based on predictions in the first round of boosting. See Buehlmann and Hothorn (2010).

Value

An object of class bst with print, coef, plot and predict methods are available for linear models. For nonlinear models, methods print and predict are available.

x, y, cost, family, learner, control.tree, maxdepth

These are input variables and parameters

ctrl the input ctrl with possible updated fk if family="thingeDC", "tbinomDC", "binomDC"

yhat predicted function estimates

ens a list of length mstop. Each element is a fitted model to the pseudo residuals, defined as negative gradient of loss function at the current estimated function

ml.fit the last element of ens

ensemble a vector of length mstop. Each element is the variable selected in each boosting step when applicable

xselect selected variables in mstop

coef estimated coefficients in each iteration. Used internally only

Author(s)

Zhu Wang

References

See Also

cv.bst for cross-validated stopping iteration. Furthermore see bst_control

Examples

```r
x <- matrix(rnorm(100*5),ncol=5)
c <- 2*x[,1]
p <- exp(c)/(exp(c)+exp(-c))
y <- rbinom(100,1,p)
y[y != 1] <- -1
x <- as.data.frame(x)
dat.m <- bst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls")
predict(dat.m)
dat.m1 <- bst(x, y, ctrl = bst_control(twinboost=TRUE, coefir=coef(dat.m), xselect.init = dat.m$xselect, mstop=50))
dat.m2 <- rbst(x, y, ctrl = bst_control(mstop=50, s=0, trace=TRUE), rfamily = "hinge", learner = "ls")
predict(dat.m2)
```

bst.sel

Function to select number of predictors

Description

Function to determine the first q predictors in the boosting path, or perform (10-fold) cross-validation and determine the optimal set of parameters

Usage

```r
bst.sel(x, y, q, type=c("firstq", "cv"), ...)
```

Arguments

- `x`: Design matrix (without intercept).
- `y`: Continuous response vector for linear regression
- `q`: Maximum number of predictors that should be selected if `type="firstq"`
- `type`: if `type="firstq"`, return the first q predictors in the boosting path. if `type="cv"`, perform (10-fold) cross-validation and determine the optimal set of parameters
- `...`: Further arguments to be passed to `bst.cv.bst`

Details

Function to determine the first q predictors in the boosting path, or perform (10-fold) cross-validation and determine the optimal set of parameters. This may be used for p-value calculation. See below.

Value

Vector of selected predictors.
Author(s)
Zhu Wang

Examples

```r
# Not run:
x <- matrix(rnorm(100*100), nrow = 100, ncol = 100)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
set <- bst.sel(x, y, q=10)
library("hdi")
fit.multi <- hdi(x, y, method = "multi.split",
model.selector =bst.sel,
args.model.selector=list(type="firstq", q=10))
fit.multi
fit.multi$pval[1:10] # the first 10 p-values
```

bst_control

Control Parameters for Boosting

Description
Specification of the number of boosting iterations, step size and other parameters for boosting algorithms.

Usage

```r
bst_control(mstop = 50, nu = 0.1, twinboost = FALSE, twintype=1, threshold=c("standard", "adaptive"), f.init = NULL, coefir = NULL, xselect.init = NULL, center = FALSE, trace = FALSE, numsample = 50, df = 4, s = NULL, sh = NULL, q = NULL, qh = NULL, fk = NULL, start=FALSE, iter = 10, intercept = FALSE, trun=FALSE)
```

Arguments

- `mstop`: an integer giving the number of boosting iterations.
- `nu`: a small number (between 0 and 1) defining the step size or shrinkage parameter.
- `twinboost`: a logical value: TRUE for twin boosting.
- `twintype`: for twinboost=TRUE only. For learner="ls", if twintype=1, twin boosting with weights from magnitude of coefficients in the first round of boosting. If twintype=2, weights are correlations between predicted values in the first round of boosting and current predicted values. For learners not componentwise least squares, twintype=2.
bst_control

threshold if threshold="adaptive", the estimated function \texttt{ctrl$fk} is updated in every boosting step. Otherwise, no update for \texttt{ctrl$fk} in boosting steps. Only used in robust nonconvex loss function.

\texttt{f.init} the estimate from the first round of twin boosting. Only useful when \texttt{twinboost=TRUE} and learner="sm" or "tree".

\texttt{coefir} the estimated coefficients from the first round of twin boosting. Only useful when \texttt{twinboost=TRUE} and learner="ls".

\texttt{xselect.init} the variable selected from the first round of twin boosting. Only useful when \texttt{twinboost=TRUE}.

center a logical value: \texttt{TRUE} to center covariates with mean.

trace a logical value for printout of more details of information during the fitting process.

numsample number of random sample variable selected in the first round of twin boosting. This is potentially useful in the future implementation.

df degree of freedom used in smoothing splines.

s, q nonconvex loss tuning parameter \(s\) or frequency \(q\) of outliers for robust regression and classification. If \(s\) is missing but \(q\) is available, \(s\) may be computed as the \(1-q\) quantile of robust loss values using conventional software.

sh, qh threshold value or frequency \(qh\) of outliers for Huber regression family="huber" or family="rhuberDC". For family="huber", if \(sh\) is not provided, \(sh\) is then updated adaptively with the median of \(y\)-\(yhat\) where \(yhat\) is the estimated \(y\) in the last boosting iteration. For family="rhuberDC", if \(sh\) is missing but \(qh\) is available, \(sh\) may be computed as the \(1-qh\) quantile of robust loss values using conventional software.

\texttt{fk} predicted values at an iteration in the MM algorithm

\texttt{start} a logical value, if \texttt{start=TRUE} and \texttt{fk} is a vector of values, then \texttt{bst} iterations begin with \texttt{fk}. Otherwise, \texttt{bst} iterations begin with the default values. This can be useful, for instance, in \texttt{rbst} for the MM boosting algorithm.

\texttt{iter} number of iteration in the MM algorithm

\texttt{intercept} logical value, if \texttt{TRUE}, estimation of intercept with linear predictor model

\texttt{trun} logical value, if \texttt{TRUE}, predicted value in each boosting iteration is truncated at \(-1,1\), for family="closs" in \texttt{bst} and \texttt{rfamily="closs"} in \texttt{rbst}

Details

Objects to specify parameters of the boosting algorithms implemented in \texttt{bst}, via the \texttt{ctrl} argument. The default value of \(s\) is \(-1\) if family="thinge", \(-\log(3)\) if family="tbinom", and \(4\) if family="binomd". If \texttt{trun=TRUE}, boosting classifiers can produce real values in \([-1,1]\) indicating their confidence in \([-1,1]\)-valued classification. cf. R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. In Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pages 80-91, 1998.

Value

An object of class \texttt{bst_control}, a list. Note \texttt{fk} may be updated for robust boosting.
Cross-Validation for Boosting

Description

Cross-validated estimation of the empirical risk/error for boosting parameter selection.

Usage

```r
cv.bst(x, y, K=10, cost=0.5, family=c("gaussian", "hinge", "hinge2", "binom", "expo", "poisson", "tgaussianDC", "thingeDC", "tbinomDC", "tbinomddC", "texpoDC", "tpoissonDC", "clossR", "closs", "gloss", "qloss", "lar"), learner = c("ls", "sm", "tree"), ctrl = bst_control(), type = c("loss", "error"), plot.it = TRUE, main = NULL, se = TRUE, n.cores=2, ...)
```

Arguments

- `x`: a data frame containing the variables in the model.
- `y`: vector of responses. `y` must be in `{1, -1}` for binary classifications.
- `K`: K-fold cross-validation
- `cost`: price to pay for false positive, `0 < cost < 1`; price of false negative is `1-cost`.
- `family`: family = "hinge" for hinge loss and family="gaussian" for squared error loss.
- `learner`: a character specifying the component-wise base learner to be used: `ls` linear models, `sm` smoothing splines, `tree` regression trees.
- `ctrl`: an object of class `bst_control`.
- `type`: cross-validation criteria. For `type="loss"`, loss function values and type="error" is misclassification error.
- `plot.it`: a logical value, to plot the estimated loss or error with cross validation if TRUE.
- `main`: title of plot
- `se`: a logical value, to plot with standard errors.
- `n.cores`: The number of CPU cores to use. The cross-validation loop will attempt to send different CV folds off to different cores.
- `...`: additional arguments.

See Also

- `bst`
cv.mada

Value

object with

- **residmat**: empirical risks in each cross-validation at boosting iterations
- **mstop**: boosting iteration steps at which CV curve should be computed.
- **cv**: The CV curve at each value of mstop
- **cv.error**: The standard error of the CV curve
- **family**: loss function types

See Also

- bst

Examples

```r
# Not run:
x <- matrix(rnorm(100*5), ncol=5)
c <- 2*x[,1]
p <- exp(c)/(exp(c)+exp(-c))
y <- rbinom(100,1,p)
y[y != 1] <- -1
x <- as.data.frame(x)
cv.bst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls", loss="loss")
cv.bst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls", error)
dat.m <- bst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls")
dat.ml <- cv.bst(x, y, ctrl = bst_control(twinboost=TRUE, coefir=coef(dat.m),
xselect.init = dat.m$xselect, mstop=50), family = "hinge", learner="ls")
```

End(Not run)

cv.mada

Cross-Validation for one-vs-all AdaBoost with multi-class problem

Description

Cross-validated estimation of the empirical misclassification error for boosting parameter selection.

Usage

```r
cv.mada(x, y, balance=FALSE, K=10, nu=0.1, mstop=200, interaction.depth=1,
trace=FALSE, plot.it = TRUE, se = TRUE, ...)
```
Arguments

- **x**: a data matrix containing the variables in the model.
- **y**: vector of multi-class responses. `y` must be an integer vector from 1 to `C` for `C` class problem.
- **balance**: logical value. If `TRUE`, the `K` parts were roughly balanced, ensuring that the classes were distributed proportionally among each of the `K` parts.
- **K**: K-fold cross-validation
- **nu**: a small number (between 0 and 1) defining the step size or shrinkage parameter.
- **mstop**: number of boosting iteration.
- **interaction.depth**: used in `gbm` to specify the depth of trees.
- **trace**: if `TRUE`, iteration results printed out.
- **plot.it**: a logical value, to plot the cross-validation error if `TRUE`.
- **se**: a logical value, to plot with 1 standard deviation curves.
- **...**: additional arguments.

Value

- object with
 - **residmat**: empirical risks in each cross-validation at boosting iterations
 - **fraction**: abscissa values at which CV curve should be computed.
 - **cv**: The CV curve at each value of fraction
 - **cv.error**: The standard error of the CV curve
 - **...**

See Also

- mada

cv.mbst

Cross-Validation for Multi-class Boosting

Description

Cross-validated estimation of the empirical multi-class loss for boosting parameter selection.

Usage

```r
cv.mbst(x, y, balance=FALSE, K = 10, cost = NULL,
family = c("hinge","hinge2","thingeDC", "closs", "clossMM"),
learner = c("tree", "ls", "sm"), ctrl = bst_control(),
type = c("loss","error"), plot.it = TRUE, se = TRUE, n.cores=2, ...)
```
Arguments

x a data frame containing the variables in the model.
y vector of responses. y must be integers from 1 to C for C class problem.
balance logical value. If TRUE, The K parts were roughly balanced, ensuring that the classes were distributed proportionally among each of the K parts.
K K-fold cross-validation

cost price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.

family family = "hinge" for hinge loss. "hinge2" is a different hinge loss

learner a character specifying the component-wise base learner to be used: ls linear models, sm smoothing splines, tree regression trees.

ctrl an object of class bst_control.

type for family="hinge", type="loss" is hinge risk. For family="thingeDC", type="loss"

plot.it a logical value, to plot the estimated risks if TRUE.
se a logical value, to plot with standard errors.
n.cores The number of CPU cores to use. The cross-validation loop will attempt to send different CV folds off to different cores.

... additional arguments.

Value

object with

residmat empirical risks in each cross-validation at boosting iterations

fraction abscissa values at which CV curve should be computed.

cv The CV curve at each value of fraction

cv.error The standard error of the CV curve

...

See Also

mbst
Cross-Validation for Multi-class Hinge Boosting

Description

Cross-validated estimation of the empirical multi-class hinge loss for boosting parameter selection.

Usage

```r
cv.mhingebst(x, y, balance=FALSE, K = 10, cost = NULL, family = "hinge", learner = c("tree", "ls", "sm"), ctrl = bst_control(), type = c("loss","error"), plot.it = TRUE, main = NULL, se = TRUE, n.cores=2, ...)
```

Arguments

- **x**: a data frame containing the variables in the model.
- **y**: vector of responses. y must be integers from 1 to C for C class problem.
- **balance**: logical value. If TRUE, The K parts were roughly balanced, ensuring that the classes were distributed proportionally among each of the K parts.
- **K**: K-fold cross-validation
- **cost**: price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.
- **family**: family = "hinge" for hinge loss. Implementing the negative gradient corresponding to the loss function to be minimized.
- **learner**: a character specifying the component-wise base learner to be used: ls linear models, sm smoothing splines, tree regression trees.
- **ctrl**: an object of class `bst_control`.
- **type**: for family="hinge", type="loss" is hinge risk.
- **plot.it**: a logical value, to plot the estimated loss or error with cross validation if TRUE.
- **main**: title of plot
- **se**: a logical value, to plot with standard errors.
- **n.cores**: The number of CPU cores to use. The cross-validation loop will attempt to send different CV folds off to different cores.
- **...**: additional arguments.

Value

- **residmat**: empirical risks in each cross-validation at boosting iterations
- **fraction**: abscissa values at which CV curve should be computed.
- **cv**: The CV curve at each value of fraction
- **cv.error**: The standard error of the CV curve
- **...**
Cross-Validation for one-vs-all HingeBoost with multi-class problem

Description

Cross-validated estimation of the empirical misclassification error for boosting parameter selection.

Usage

cv.mhingeova(x, y, balance=FALSE, K=10, cost = NULL, nu=0.1,
learner=c("tree", "ls", "sm"), maxdepth=1, m1=200, twinboost = FALSE,
m2=200, trace=FALSE, plot.it = TRUE, se = TRUE, ...)

Arguments

- **x** a data frame containing the variables in the model.
- **y** vector of multi class responses. y must be an integer vector from 1 to C for C class problem.
- **balance** logical value. If TRUE, The K parts were roughly balanced, ensuring that the classes were distributed proportionally among each of the K parts.
- **K** K-fold cross-validation
- **cost** price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.
- **nu** a small number (between 0 and 1) defining the step size or shrinkage parameter.
- **learner** a character specifying the component-wise base learner to be used: ls linear models, sm smoothing splines, tree regression trees.
- **maxdepth** tree depth used in learner=tree
- **m1** number of boosting iteration
- **twinboost** logical: twin boosting?
- **m2** number of twin boosting iteration
- **trace** if TRUE, iteration results printed out
- **plot.it** a logical value, to plot the estimated risks if TRUE.
- **se** a logical value, to plot with standard errors.
- ... additional arguments.
Value

object with

residmat empirical risks in each cross-validation at boosting iterations
fraction abscissa values at which CV curve should be computed.
cv The CV curve at each value of fraction
cv.error The standard error of the CV curve

Note

The functions for balanced cross validation were from R package pmar.

See Also

mhingeova

cv.rbst Cross-Validation for Nonconvex Loss Boosting

Description

Cross-validated estimation of the empirical risk/error, can be used for tuning parameter selection.

Usage

```
cv.rbst(x, y, K = 10, cost = 0.5, rfamily = c("tgaussian", "thuber", "thinge",
  "tbinom", "binomd", "texpo", "tpoisson", "clossR", "closs", "gloss", "gloss"),
  learner = c("ls", "sm", "tree"), ctrl = bst_control(), type = c("loss", "error"),
  plot.it = TRUE, main = NULL, se = TRUE, n.cores=2,...)
```

Arguments

- `x` a data frame containing the variables in the model.
- `y` vector of responses. `y` must be in \{1,-1\} for binary classification
- `K` K-fold cross-validation
- `cost` price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.
- `rfamily` nonconvex loss function types.
- `learner` a character specifying the component-wise base learner to be used: `ls` linear models, `sm` smoothing splines, `tree` regression trees.
- `ctrl` an object of class `bst_control`.
- `type` cross-validation criteria. For type="loss", loss function values and type="error" is misclassification error.
plot.it a logical value, to plot the estimated loss or error with cross validation if TRUE.
main title of plot
se a logical value, to plot with standard errors.
n.cores The number of CPU cores to use. The cross-validation loop will attempt to send different CV folds off to different cores.
... additional arguments.

Value

object with

residmat empirical risks in each cross-validation at boosting iterations
mstop boosting iteration steps at which CV curve should be computed.
cv The CV curve at each value of mstop
cv.error The standard error of the CV curve
rfamily nonconvex loss function types.
...

Author(s)

Zhu Wang

See Also

rbst

Examples

Not run:
x <- matrix(rnorm(100*5),ncol=5)
c <- 2*x[,1]
p <- exp(c)/(exp(c)+exp(-c))
y <- rbinom(100,1,p)
y[y != 1] <- -1
x <- as.data.frame(x)
cv.rbst(x, y, ctrl = bst_control(mstop=50), rfamily = "thinge", learner = "ls", type="lose")
cv.rbst(x, y, ctrl = bst_control(mstop=50), rfamily = "thinge", learner = "ls", type="error")
dat.m <- rbst(x, y, ctrl = bst_control(mstop=50), rfamily = "thinge", learner = "ls")
dat.m1 <- cv.rbst(x, y, ctrl = bst_control(twinboost=TRUE, coefir=coef(dat.m), xselect.init = dat.m$xselect, mstop=50), family = "thinge", learner="ls")

End(Not run)
Cross-Validation for Nonconvex Multi-class Loss Boosting

Description

Cross-validated estimation of the empirical multi-class loss, can be used for tuning parameter selection.

Usage

```r
cv.rmbst(x, y, balance=FALSE, K = 10, cost = NULL, rfamily = c("thinge", "closs"),
learner = c("tree", "ls", "sm"), ctrl = bst_control(), type = c("loss","error"),
plot.it = TRUE, main = NULL, se = TRUE, n.cores=2, ...)
```

Arguments

- `x`: a data frame containing the variables in the model.
- `y`: vector of responses. `y` must be integers from 1 to C for C class problem.
- `balance`: logical value. If TRUE, The K parts were roughly balanced, ensuring that the classes were distributed proportionally among each of the K parts.
- `K`: K-fold cross-validation
- `cost`: price to pay for false positive, $0 < \text{cost} < 1$; price of false negative is $1-\text{cost}$.
- `rfamily`: rfamily = "thinge" for truncated multi-class hinge loss. Implementing the negative gradient corresponding to the loss function to be minimized.
- `learner`: a character specifying the component-wise base learner to be used: ls linear models, sm smoothing splines, tree regression trees.
- `ctrl`: an object of class bst_control.
- `type`: loss value or misclassification error.
- `plot.it`: a logical value, to plot the estimated loss or error with cross validation if TRUE.
- `main`: title of plot
- `se`: a logical value, to plot with standard errors.
- `n.cores`: The number of CPU cores to use. The cross-validation loop will attempt to send different CV folds off to different cores.
- `...`: additional arguments.

Value

- object with
 - `residmat`: empirical risks in each cross-validation at boosting iterations
 - `fraction`: abscissa values at which CV curve should be computed.
 - `cv`: The CV curve at each value of fraction
 - `cv.error`: The standard error of the CV curve
 - `...`:
evalerr

Author(s)

Zhu Wang

See Also

rmbst

evalerr

Compute prediction errors

Description

Compute prediction errors for classification and regression problems.

Usage

```r
evalerr(family, y, yhat)
```

Arguments

- `family` a family used in bst. Classification or regression family.
- `y` response variable. For classification problems, y must be 1/-1.
- `yhat` predicted values.

Details

For classification, returns misclassification error. For regression, returns mean squared error.

Value

For classification, returns misclassification error. For regression, returns mean squared error.

Author(s)

Zhu Wang
ex1data Generating Three-class Data with 50 Predictors

Description
Randomly generate data for a three-class model.

Usage
ex1data(n.data, p)

Arguments
n.data number of data samples.
p number of predictors.

Details
The data is generated based on Example 1 described in Wang (2012).

Value
A list with n.data by p predictor matrix x, three-class response y and conditional probabilities.

Author(s)
Zhu Wang

References

Examples
Not run:
dat <- ex1data(100, p=5)
mhingebst(x=dat$x, y=dat$y)

End(Not run)

loss Internal Function

Description
Internal Function
mada

Multi-class AdaBoost

Description

One-vs-all multi-class AdaBoost

Usage

```r
mada(xtr, ytr, xte=NULL, yte=NULL, mstop=50, nu=0.1, interaction.depth=1)
```

Arguments

- `xtr`: training data matrix containing the predictor variables in the model.
- `ytr`: training vector of responses. `ytr` must be integers from 1 to C, for C class problem.
- `xte`: test data matrix containing the predictor variables in the model.
- `yte`: test vector of responses. `yte` must be integers from 1 to C, for C class problem.
- `mstop`: number of boosting iteration.
- `nu`: a small number (between 0 and 1) defining the step size or shrinkage parameter.
- `interaction.depth`: used in gbm to specify the depth of trees.

Details

For a C-class problem (C > 2), each class is separately compared against all other classes with AdaBoost, and C functions are estimated to represent confidence for each class. The classification rule is to assign the class with the largest estimate.

Value

A list contains variable selected `xselect` and training and testing error `err.tr`, `err.te`.

Author(s)

Zhu Wang

See Also

`cv.mada` for cross-validated stopping iteration.

Examples

```r
data(iris)
mada(xtr=iris[, -5], ytr=iris[, 5])
```
Boosting for Multi-Classification

Description

Gradient boosting for optimizing multi-class loss functions with componentwise linear, smoothing splines, tree models as base learners.

Usage

```r
mbst(x, y, cost = NULL, family = c("hinge", "hinge2", "thingeDC", "closs", "clossMM"),
ctrl = bst_control(), control.tree=list(fixed.depth=TRUE,
n.term.node=6, maxdepth = 1), learner = c("ls", "sm", "tree"))
## S3 method for class 'mbst'
print(x, ...)
## S3 method for class 'mbst'
predict(object, newdata=NULL, newy=NULL, mstop=NULL,
type=c("response", "class", "loss", "error"), ...)
## S3 method for class 'mbst'
fpartial(object, mstop=NULL, newdata=NULL)
```

Arguments

- `x` a data frame containing the variables in the model.
- `y` vector of responses. `y` must be 1, 2, ..., k for a k classification problem.
- `cost` price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.
- `family` family = "hinge" for hinge loss, family="hinge2" for hinge loss but the response is not recoded (see details). family="thingeDC" for DCB loss function, see rmbst.
- `ctrl` an object of class `bst_control`.
- `control.tree` control parameters of rpart.
- `learner` a character specifying the component-wise base learner to be used: ls linear models, sm smoothing splines, tree regression trees.
- `type` in predict a character indicating whether the response, all responses across the boosting iterations, classes, loss or classification errors should be predicted in case of hinge problems. in plot, plot of boosting iteration or L_1 norm.
- `object` class of `mbst`.
- `newdata` new data for prediction with the same number of columns as `x`.
- `newy` new response.
- `mstop` boosting iteration for prediction.
- `...` additional arguments.
Details

A linear or nonlinear classifier is fitted using a boosting algorithm for multi-class responses. This function is different from mhingebst on how to deal with zero-to-sume constraint and loss functions. If family="hinge", the loss function is the same as in mhingebst but the boosting algorithm is different. If family="hinge2", the loss function is different from family="hinge": the response is not recoded as in Wang (2012). In this case, the loss function is

$$\sum I(y_i \neq j)(f_j + 1)_+.$$

family="thingedc" for robust loss function used in the DCB algorithm.

Value

An object of class mbst with print, coef, plot and predict methods are available for linear models. For nonlinear models, methods print and predict are available.

- x, y, cost, family, learner, control.tree, maxdepth
 These are input variables and parameters
- ctrl
 the input ctrl with possible updated fk if family="thingedc"
- yhat
 predicted function estimates
- ens
 a list of length mstop. Each element is a fitted model to the pseudo residuals, defined as negative gradient of loss function at the current estimated function
- m1.fit
 the last element of ens
- ensemble
 a vector of length mstop. Each element is the variable selected in each boosting step when applicable
- xselect
 selected variables in mstop
- coef
 estimated coefficients in each iteration. Used internally only

Author(s)

Zhu Wang

References

See Also

cv.mbst for cross-validated stopping iteration. Furthermore see bst_control
Description

Gradient boosting for optimizing multi-class hinge loss functions with componentwise linear least squares, smoothing splines and trees as base learners.

Usage

```r
mhingebst(x, y, cost = NULL, family = c("hinge"), ctrl = bst_control(),
          control.tree = list(fixed.depth=TRUE, n.term.node=6, maxdepth = 1),
          learner = c("ls", "sm", "tree"))
```

Arguments

- **x**: a data frame containing the variables in the model.
- **y**: vector of responses. `y` must be in `{1,-1}` for `family = "hinge"`.
- **cost**: equal costs for now and unequal costs will be implemented in the future.
- **family**: family = "hinge" for multi-class hinge loss.
- **ctrl**: an object of class `bst_control`.
- **control.tree**: control parameters of rpart.
- **learner**: a character specifying the component-wise base learner to be used: `ls` linear models, `sm` smoothing splines, `tree` regression trees.
mhingebst

- `type` in `predict` a character indicating whether the response, classes, loss or classification errors should be predicted in case of hinge object.
- `newdata` new data for prediction with the same number of columns as `x`.
- `newy` new response.
- `mstop` boosting iteration for prediction.
- `...` additional arguments.

Details

A linear or nonlinear classifier is fitted using a boosting algorithm based on component-wise base learners for multi-class responses.

Value

An object of class `mhingebst` with `print` and `predict` methods being available for fitted models.

Author(s)

Zhu Wang

References

See Also

`cv.mhingebst` for cross-validated stopping iteration. Furthermore see bst_control

Examples

```r
## Not run:
dat <- ex1data(100, p=5)
res <- mhingebst(x=dat$x, y=dat$y)

## End(Not run)
```
mhingeova
Multi-class HingeBoost

Description

Multi-class algorithm with one-vs-all binary HingeBoost which optimizes the hinge loss functions with componentwise linear, smoothing splines, tree models as base learners.

Usage

```r
mhingeova(xtr, ytr, xte=NULL, yte=NULL, cost = NULL, nu=0.1, 
learner=c("tree", "ls", "sm"), maxdepth=1, m1=200, twinboost = FALSE, m2=200) 
## S3 method for class 'mhingeova'
print(x, ...)
```

Arguments

- **xtr**: training data containing the predictor variables.
- **ytr**: vector of training data responses. `ytr` must be in \{1,2,...,k\}.
- **xte**: test data containing the predictor variables.
- **yte**: vector of test data responses. `yte` must be in \{1,2,...,k\}.
- **cost**: default is `NULL` for equal cost; otherwise a numeric vector indicating price to pay for false positive, \(0 < \text{cost} < 1\); price of false negative is \(1 - \text{cost}\).
- **nu**: a small number (between 0 and 1) defining the step size or shrinkage parameter.
- **learner**: a character specifying the component-wise base learner to be used: `ls` linear models, `sm` smoothing splines, `tree` regression trees.
- **maxdepth**: tree depth used in `learner=tree`.
- **m1**: number of boosting iteration.
- **twinboost**: logical: twin boosting?
- **m2**: number of twin boosting iteration.
- **x**: class of `mhingeova`.
- **...**: additional arguments.

Details

For a C-class problem (C > 2), each class is separately compared against all other classes with HingeBoost, and C functions are estimated to represent confidence for each class. The classification rule is to assign the class with the largest estimate. A linear or nonlinear multi-class HingeBoost classifier is fitted using a boosting algorithm based on one-against component-wise base learners for +1/-1 responses, with possible cost-sensitive hinge loss function.

Value

An object of class `mhingeova` with `print` method being available.
Author(s)
Zhu Wang

References

See Also
bst for HingeBoost binary classification. Furthermore see cv.bst for stopping iteration selection by cross-validation, and bst_control for control parameters.

Examples
Not run:
dat2 <- read.table("http://archive.ics.uci.edu/ml/machine-learning-databases/thyroid-disease/ann-test.data")
res <- mhingeova(xtr=dat1[,-22], ytr=dat1[,22], xte=dat2[,-22], yte=dat2[22],
cost=c(2/3, 0.5, 0.5), nu=0.5, learner="ls", m1=100, K=5, cv1=FALSE,
twinboost=TRUE, m2= 200, cv2=FALSE)
res <- mhingeova(xtr=dat1[,-22], ytr=dat1[,22], xte=dat2[,-22], yte=dat2[22],
cost=c(2/3, 0.5, 0.5), nu=0.5, learner="ls", m1=100, K=5, cv1=FALSE,
twinboost=TRUE, m2= 200, cv2=TRUE)
End(Not run)

nsel

Find Number of Variables In Multi-class Boosting Iterations

Description
Find Number of Variables In Multi-class Boosting Iterations

Usage
nsel(object, mstop)

Arguments
object an object of mhingebst, mbst, or rmbst
mstop boosting iteration number
Value

- A vector of length \texttt{mstop} indicating number of variables selected in each boosting iteration.

Author(s)

- Zhu Wang

\texttt{rbst} \hspace{1cm} \textit{Robust Boosting for Robust Loss Functions}

Description

MM (majorization/minimization) algorithm based gradient boosting for optimizing nonconvex robust loss functions with componentwise linear, smoothing splines, tree models as base learners.

Usage

\begin{verbatim}
rbst(x, y, cost = 0.5, rfamily = c("tgaussian", "thuber", "thinge", "tbinom", "binomd",
"texpo", "tpoisson", "clossR", "closs", "gloss", "qloss"), ctrl=bst_control(),
control.tree=list(maxdepth = 1), learner=c("ls", "sm", "tree"), del=1e-10)
\end{verbatim}

Arguments

- \texttt{x}: A data frame containing the variables in the model.
- \texttt{y}: Vector of responses. \texttt{y} must be in \{1, -1\} for classification.
- \texttt{cost}: Price to pay for false positive, \(0 < \texttt{cost} < 1\); price of false negative is \(1 - \texttt{cost}\).
- \texttt{rfamily}: Robust loss function, see details.
- \texttt{ctrl}: An object of class \texttt{bst_control}.
- \texttt{control.tree}: Control parameters of \texttt{rpart}.
- \texttt{learner}: A character specifying the component-wise base learner to be used: \texttt{ls} linear models, \texttt{sm} smoothing splines, \texttt{tree} regression trees.
- \texttt{del}: Convergency criteria.

Details

An MM algorithm operates by creating a convex surrogate function that majorizes the nonconvex objective function. When the surrogate function is minimized with gradient boosting algorithm, the desired objective function is decreased. The MM algorithm contains difference of convex (DC) algorithm for \texttt{rfamily}=c("tgaussian", "thuber", "thinge", "tbinom", "binomd", "texpo", "tpoisson") and quadratic majorization boosting algorithm (QMBA) for \texttt{rfamily}=c("clossR", "closs", "gloss", "qloss").

- \texttt{rfamily} = "tgaussian" for truncated square error loss, "thuber" for truncated Huber loss, "thinge" for truncated hinge loss, "tbinom" for truncated logistic loss, "binomd" for logistic difference loss, "texpo" for truncated exponential loss, "tpoisson" for truncated Poisson loss, "clossR" for C-loss in regression, "closs" for C-loss in classification, "gloss" for G-loss, "qloss" for Q-loss.
s must be a numeric value to be specified in bst_control. For rfamily="thinge", "tbinom", "texpo" s < 0. For rfamily="binomd", "tpoisson", "closs", "qloss", "clossR", s > 0 and for rfamily="gloss", s > 1. Some suggested s values: "thinge"= -1, "tbinom"= -log(3), "binomd"= log(4), "texpo"= log(0.5), "closs"=1, "gloss"=1.5, "qloss"=2, "clossR"=1.

Value

An object of class bst with print, coef, plot and predict methods are available for linear models. For nonlinear models, methods print and predict are available.

x, y, cost, rfamily, learner, control.tree, maxdepth

These are input variables and parameters

ctrl the input ctrl with possible updated fk if family="tgaussian", "thingeDC", "tbinomDC", "binomdDC"
yhat predicted function estimates
ens a list of length mstop. Each element is a fitted model to pseido residuals, defined as negative gradient of loss function at the current estimated function
ml.fit the last element of ens
ensemble a vector of length mstop. Each element is the variable selected in each boosting step when applicable
xselect selected variables in mstop
coeff estimated coefficients in mstop

Author(s)

Zhu Wang

References

See Also
cv.rbst for cross-validated stopping iteration. Furthermore see bst_control

Examples

x <- matrix(rnorm(100*5),ncol=5)
c <- 2*x[,1]
p <- exp(c)/(exp(c)+exp(-c))
y <- rbinom(100,1,p)
y[y != 1] <- -1
y[1:10] <- -y[1:10]
x <- as.data.frame(x)
dat.m <- bst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls")
predict(dat.m)

dat.m1 <- bst(x, y, ctrl = bst_control(twinboost=TRUE,
coefir=coef(dat.m), xselect.init = dat.m$xselect, mstop=50))

dat.m2 <- rbst(x, y, ctrl = bst_control(mstop=50, s=0, trace=TRUE),
rfamily = "thinge", learner = "1s")
predict(dat.m2)

rbstpath

Robust Boosting Path for Nonconvex Loss Functions

Description

Gradient boosting path for optimizing robust loss functions with componentwise linear, smoothing splines, tree models as base learners. See details below before use.

Usage

```r
rbstpath(x, y, rmstop=seq(40, 400, by=20), ctrl=bst_control(), del=1e-16, ...)
```

Arguments

- **x**: a data frame containing the variables in the model.
- **y**: vector of responses. y must be in \{1, -1\}.
- **rmstop**: vector of boosting iterations
- **ctrl**: an object of class `bst_control`.
- **del**: convergency criteria
- **...**: arguments passed to rbst

Details

This function invokes rbst with mstop being each element of vector rmstop. It can provide different paths. Thus rmstop serves as another hyper-parameter. However, the most important hyper-parameter is the loss truncation point or the point determines the level of nonconvexity. This is an experimental function and may not be needed in practice.

Value

A length rmstop vector of lists with each element being an object of class rbst.

Author(s)

Zhu Wang

See Also

rbst
Examples

```r
x <- matrix(rnorm(100*5), ncol=5)
c <- 2*x[,1]
p <- exp(c)/(exp(c)+exp(-c))
y <- rbinom(100, 1, p)
y[y != 1] <- -1
y[1:10] <- -y[1:10]
x <- as.data.frame(x)
dat.m <- bst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls")
predict(dat.m)
dat.m1 <- bst(x, y, ctrl = bst_control(twinboost=TRUE, coefir=coef(dat.m), xselect.init = dat.m$xselect, mstop=50))
dat.m2 <- rbst(x, y, ctrl = bst_control(mstop=50, s=0, trace=TRUE), rfamily = "thinge", learner = "ls")
predict(dat.m2)
rmstop <- seq(10, 40, by=10)
dat.m3 <- rbstpath(x, y, rmstop, ctrl=bst_control(s=0), rfamily = "thinge", learner = "ls")
```

rmbst
Robust Boosting for Multi-class Robust Loss Functions

Description

MM (majorization/minimization) based gradient boosting for optimizing nonconvex robust loss functions with componentwise linear, smoothing splines, tree models as base learners.

Usage

```r
rmbst(x, y, cost = 0.5, rfamily = c("thinge", "closs"), ctrl=bst_control(), control.tree=list(maxdepth = 1), learner=c("ls","sm","tree"), del=1e-10)
```

Arguments

- **x**: a data frame containing the variables in the model.
- **y**: vector of responses. `y` must be in \{1, 2, ..., k\}.
- **cost**: price to pay for false positive, 0 < cost < 1; price of false negative is 1-cost.
- **rfamily**: family = "thinge" is currently implemented.
- **ctrl**: an object of class `bst_control`.
- **control.tree**: control parameters of rpart.
- **learner**: a character specifying the component-wise base learner to be used: ls linear models, sm smoothing splines, tree regression trees.
- **del**: convergency criteria.
Details

An MM algorithm operates by creating a convex surrogate function that majorizes the nonconvex objective function. When the surrogate function is minimized with gradient boosting algorithm, the desired objective function is decreased. The MM algorithm contains difference of convex (DC) for rfamily="thinge", and quadratic majorization boosting algorithm (QMB) for rfamily="closs".

Value

An object of class bst with print, coef, plot and predict methods are available for linear models. For nonlinear models, methods print and predict are available.

x, y, cost, rfamly, learner, control.tree, maxdepth
 These are input variables and parameters
ctrl
 the input ctrl with possible updated fk if type="adaptive"
yhat
 predicted function estimates
ens
 a list of length mstop. Each element is a fitted model to the pseudo residuals, defined as negative gradient of loss function at the current estimated function
ml.fit
 the last element of ens
ensemble
 a vector of length mstop. Each element is the variable selected in each boosting step when applicable
xselect
 selected variables in mstop
coef
 estimated coefficients in mstop

Author(s)

Zhu Wang

References

See Also

cv.rmbst for cross-validated stopping iteration. Furthermore see bst_control

Examples

x <- matrix(rnorm(100*5), ncol=5)
c <- quantile(x[,1], prob=c(0.33, 0.67))
y <- rep(1, 100)
y[x[,1] > c[2]] <- 3
```r
x <- as.data.frame(x)
x <- as.data.frame(x)
dat.m <- mbst(x, y, ctrl = bst_control(mstop=50), family = "hinge", learner = "ls")
predict(dat.m)
dat.m1 <- mbst(x, y, ctrl = bst_control(twinboost=TRUE,
    f.init=predict(dat.m), xselect.init = dat.m$xselect, mstop=50))
dat.m2 <- rmbst(x, y, ctrl = bst_control(mstop=50, s=1, trace=TRUE),
    rfamily = "thinge", learner = "ls")
predict(dat.m2)
```
Index

*Topic classification, regression
 bfunc, 2
 evalerr, 17
*Topic classification
 bst, 3
 ex1data, 18
 mada, 19
 mbst, 20
 mhingebst, 22
 mhingeova, 24
 rbst, 26
 rbstpath, 28
 rmbst, 29
*Topic models
 bst.sel, 5
*Topic regression
 bst.sel, 5

balanced.folds (loss), 18
bf UNC, 2
bst, 3, 3, 5, 7–9, 25
bst.sel, 5
bst_control, 3, 5, 6, 8, 11, 12, 14, 16, 20–23, 25–30
coef, 4, 2, 23
coef.bst (bst), 3
cv.bst, 5, 8, 25
cv.mada, 9, 19
cv.mbst, 10, 21
cv.mhingebst, 12, 23
cv.mhingeova, 13
cv.rbst, 14, 27
cv.rmbst, 16, 30
cvfolds (loss), 18

error.bars (loss), 18
evalerr, 17
ex1data, 18
fpartial.bst (bst), 3
fpartial.mbst (mbst), 20
fpartial.mhingebst (mhingebst), 22
gaussloss (loss), 18
gaussngra (loss), 18
gr adient (loss), 18
hingeloss (loss), 18
hingengra (loss), 18
loss, 18
mada, 10, 19
mbst, 11, 20, 20, 25
mbst_fit (loss), 18
mhingebst, 13, 22, 23, 25
mhingebst_fit (loss), 18
mhingeova, 14, 24, 24
ngradient (loss), 18
sel, 25
permute.rows (loss), 18
plot, 3, 4, 23, 27, 30
plot.bst (bst), 3
plotCVbst (loss), 18
predict, 3, 4, 21, 23, 27, 30
predict.bst (bst), 3
predict.mbst (mbst), 20
predict.mhingebst (mhingebst), 22
print, 4, 21, 23, 24, 27, 30
print.bst (bst), 3
print.mbst (mbst), 20
print.mhingebst (mhingebst), 22
print.mhingeova (mhingeova), 24
rbst, 15, 26, 28
rbstpath, 28
rmbst, 17, 25, 29

32