Package ‘bujar’

April 27, 2017

Type Package
Title Buckley-James Regression for Survival Data with High-Dimensional Covariates
Version 0.2-3
Date 2017-04-26
Author Zhu Wang and others (see COPYRIGHTS)
Maintainer Zhu Wang <zwang@connecticutchildrens.org>
Description Buckley-James regression for right-censoring survival data with high-dimensional covariates. Implementations for survival data include boosting with componentwise linear least squares, componentwise smoothing splines, regression trees and MARS. Other high-dimensional tools include penalized regression for survival data.
Imports mda, mpath, mboost, gbm, earth, elasticnet, rms, methods, modeltools, bst, parallel
Depends R (>= 2.10)
Suggests TH.data, survival, R.rsp
VignetteBuilder R.rsp
License GPL-2
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2017-04-27 10:18:42 UTC

R topics documented:

bujar-package .. 2
bujar ... 2
chop .. 6
rchop ... 7

Index 8
bujar-package

Title: Buckley-James Regression with High-Dimensional Biomarker Data

Description

Buckley-James regression for right-censoring survival data

Details

Buckley-James regression for right-censoring survival data with high-dimensional covariates. Including L_2 boosting with componentwise linear least squares, componentwise smoothing splines, P-splines, regression trees and boosted MARS. Other high-dimensional tools include elastic net, MARS, ACOSSO.

- **Package:** bujar
- **Type:** Package
- **Version:** 0.1-2
- **Date:** 2012-12-20
- **License:** GPL (version 2 or newer)
- **LazyLoad:** yes

Author(s)

Zhu Wang Maintainer: Zhu Wang <zwang@ccmckids.org>

References

bujar

Buckley-James Regression

Description

Buckley-James regression for right-censoring survival data with high-dimensional covariates. Including L_2 boosting with componentwise linear least squares, componentwise P-splines, regression trees. Other Buckley-James methods including elastic net, MCP, SCAD, MARS and ACOSSO (ACOSSO not supported for the current version).
Usage

bujar(y, cens, x, valdata = NULL, degree = 1, learner = "linear.regression",
center=TRUE, mimpu = NULL, iter bj = 20, max.cycle = 5, nu = 0.1, mstop = 50,
twin = FALSE, mstop2 = 100, tuning = TRUE, cv = FALSE, nfold = 5, method = "corrected",
vimpint = TRUE, gamma = 3, lamb = NULL, whichlamb = NULL, lamb = 0, s = 0.5, nk = 4,
wt.pow = 1, theta = NULL, rel.inf = FALSE, tol = .Machine$double.eps, n.cores = 2,
rng = 123, trace = FALSE)

Arguments

y survival time
cens censoring indicator, must be 0 or 1 with 0=alive, 1=dead
x covariate matrix
valdata test data, which must have the first column as survival time, second column as
censoring indicator, and the remaining columns similar to same x.
degree mars/tree/linear regression degree of interaction; if 2, second-order interaction,
if degree=1, additive model;
learner methods used for BJ regression.
center center covariates
mimpu initial estimate. If TRUE, mean-imputation; FALSE, imputed with the marginal
best variable linear regression; if NULL, 0.
iter bj number of B-J iteration
max. cycle max cycle allowed
nu step-size boosting parameter
mstop boosting tuning parameters. It can be one number or have the length iter bj+max. cycle.
If cv=TRUE, then mstop is the maximum number of tuning parameter
twin logical, if TRUE, twin boosting
mstop2 twin boosting tuning parameter
tuning logical value. if TRUE, the tuning parameter will be selected by cv or AIC/BIC
methods. Ignored if twin=TRUE for which no tuning parameter selection is im-
plemented
cv logical value. if TRUE, cross-validation for tuning parameter, only used if
tuning=TRUE. If tuning=FALSE or twin=TRUE, then ignored
nfold number of fold of cv
method boosting tuning parameter selection method in AIC
vimpint logical value. If TRUE, compute variable importance and interaction measures
for MARS if learner="mars" and degree > 1.
gamma MCP, or SCAD gamma tuning parameter
lambda MCP, or SCAD lambda tuning parameter
whichlamb which lambda used for MCP or SCAD lambda tuning parameter
lamb elastic net lambda tuning parameter, only used if learner="enet"
the second enet tuning parameter, which is a fraction between (0, 1), only used if learn="enet"

nk
number of basis function for learner="mars"

wt.pow
not used but kept for historical reasons, only for learner=ACOSSO. This is a parameter (power of weight). It might be chosen by CV from c(0, 1.0, 1.5, 2.0, 2.5, 3.0). If wt.pow=0, then this is COSSO method

theta
For learner="acosso", not used now. A numerical vector with 0 or 1. 0 means the variable not included and 1 means included. See Storlie et al. (2009).

rel.inf
logical value. if TRUE, variable importance measure and interaction importance measure computed

tol
convergency criteria

n.cores
The number of CPU cores to use. The cross-validation loop will attempt to send different CV folds off to different cores. Used for learner="tree"

rng
a number to be used for random number generation in boosting trees

trace
logical value. If TRUE, print out interim computing results

Details
Buckley-James regression for right-censoring survival data with high-dimensional covariates. Including L_2 boosting with componentwise linear least squares, componentwise P-splines, regression trees. Other Buckley-James methods including elastic net, SCAD and MCP. learner="enet" and learner="enetR" use two different implementations of LASSO. Some of these methods are discussed in Wang and Wang (2010) and the references therein. Also see the references below.

Value

x
original covariates

y
survival time

cens
censoring indicator

ynew
imputed y

yhat
estimated y from ynew

pred.bj
estimated y from the testing sample

res.fit
model fitted with the learner

learner
original learner used

degree
=1, additive model, degree=2, second-order interaction

mse
MSE at each BJ iteration, only available in simulations, or when valdata provided

mse.bj
MSE from training data at the BJ termination

mse.bj.val
MSE with valdata

mse.all
a vector of MSE for uncensoring data at BJ iteration

nz.bj.iter
number of selected covariates at each BJ iteration

nz.bj
number of selected covariates at the claimed BJ termination
xselect: a vector of dimension of covariates, either 1 (covariate selected) or 0 (not selected)

coef.bj: estimated coefficients with linear model

vim: a vector of length of number of column of x, variable importance, between 0 to 100

interactions: measure of strength of interactions

ybstdiff: largest absolute difference of estimated y. Useful to monitor converyncg

ybstcon: a vector with length of BJ iteration each is a converynacy measure

cycleperiod: number of cycle of BJ iteration

cycle.coef.diff: within cycle of BJ, the maximum difference of coefficients for BJ boosting

nonconv: logical value. if TRUE, non-converyncg

fnorm2: value of L_2 norm, can be useful to access converyncgc

mselect: a vector of length of BJ iteration, each element is the tuning parameter mstop

contype: 0 (converged), 1, not converyncg but cycle found, 2, not converyncg and max iteration reached.

Author(s)

Zhu Wang

References

Examples

```r
data("wpbc", package = "TH.data")
wpbc2 <- wpbc[, 1:12]
wpbc2$status <- as.numeric(wpbc2$status) - 1
fit <- bujar(y=log(wpbc2$time), cens=wpbc2$status, x= wpbc2[, -(1:2)])
print(fit)
coef(fit)
pr <- predict(fit)
plot(fit)
fit <- bujar(y=log(wpbc2$time), cens=wpbc2$status, x= wpbc2[, -(1:2)], tuning = TRUE)
## Not run:
fit <- bujar(y=log(wpbc2$time), cens=wpbc2$status, x=wpbc2[, -(1:2)], learner="pspline")
fit <- bujar(y=log(wpbc2$time), cens=wpbc2$status, x=wpbc2[, -(1:2)],
learnerr=tree", degree=2)
## select tuning parameter for "enet"
tmp <- gcv.enet(y=log(wpbc2$time), cens=wpbc2$status, x=wpbc2[, -(1:2)])
fit <- bujar(y=log(wpbc2$time), cens=wpbc2$status, x=wpbc2[, -(1:2)], learner="enet",
lambda = tmp$lambda, s=tmp$s)

fit <- bujar(y=log(wpbc2$time), cens=wpbc2$status, x=wpbc2[, -(1:2)], learner="mars",
degree=2)
summary(fit)
## End(Not run)
```

chop
Survival of CHOP for diffuse large B cell lymphoma

Description

Microarray data for DLBCL patients undergoing CHOP treatment.

Usage

data(chop)

Format

The format is: num [1:181, 1:3835]

Details

Microarray data of DLBCL of 181 patients treated with a combination chemotherapy with cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP). The original data have 54675 probe sets or covariates. Due to the nature of high-dimensional data, a preselection procedure was conducted to filter out the genes with lower variations if a sample variance for a gene was smaller than the 10th percentile for that gene. The first column if the survival times. The second column is an indicator whether an the survival time was observed or right censoring occurred. 0=alive, 1=dead. There are 3833 genes after the filtering process.
Source

Examples

data(rchop)

str(rchop)

rchop

Survival of R-CHOP for diffuse large B cell lymphoma

Description

Microarray data for DLBCL patients undergoing R-CHOP treatment.

Usage

data(rchop)

Format

The format is: num [1:233, 1:3835]

Details

Microarray data of DLBCL of 233 patients treated with the current gold standard R-CHOP including rituxima immunotherapy in addition to the chemotherapy CHOP. The original data have 54675 probe sets or covariates. Due to the nature of high-dimensional data, a preselection procedure was conducted to filter out the genes to match those in chop. The first column if the survival times. The second column is an indicator whether an the survival time was observed or right censoring occurred. 0=alive, 1=dead. There are 3833 same genes as in chop. The data set is used to validate the prediction accuracy for models developed using training data chop.

Source

Examples

data(rchop)

str(rchop)
Index

*Topic **datasets**
 chop, 6
 rchop, 7
*Topic **package**
 bujar-package, 2

bujar, 2
bujar-package, 2

chop, 6

plot.bujar (bujar), 2
print.bujar (bujar), 2

rchop, 7

summary.bujar (bujar), 2