Package ‘camel’

February 19, 2015

Type Package
Title Calibrated Machine Learning
Version 0.2.0
Date 2013-09-09
Author Xingguo Li, Tuo Zhao, and Han Liu
Maintainer Xingguo Li <xingguo.leo@gmail.com>
Depends R (>= 2.15.0), lattice, igraph, MASS, Matrix
Description The package ‘camel’ provides the implementation of a family of high-dimensional calibrated machine learning tools, including (1) LAD, SQRT Lasso and Calibrated Dantzig Selector for estimating sparse linear models; (2) Calibrated Multivariate Regression for estimating sparse multivariate linear models; (3) Tiger, Calibrated Clime for estimating sparse Gaussian graphical models. We adopt the combination of the dual smoothing and monotone iterative soft-thresholding algorithm (MFISTA). The computation is memory-optimized using the sparse matrix output, and accelerated by the path following and active set tricks.
License GPL-2
Repository CRAN
NeedsCompilation yes
Date/Publication 2013-09-09 15:49:04

R topics documented:

camel-package .. 2
camel-internal ... 3
camel.cmr .. 4
camel.plot .. 6
camel.slim .. 7
camel.tiger .. 10
camel.tiger.generator 12
camel.tiger.roc ... 15
camel.tiger.select .. 16
eyedata .. 18
plot.roc ... 19
camel-package

Description

The package "camel" provides the implementation of a family of high-dimensional calibrated machine learning tools, including (1) LAD, SQRT Lasso and Calibrated Dantzig Selector for estimating sparse linear models; (2) Calibrated Multivariate Regression for estimating sparse multivariate linear models; (3) Tiger, Calibrated Clime for estimating sparse Gaussian graphical models. We adopt the combination of the dual smoothing and monotone fast iterative soft-thresholding algorithm (MFISTA). The computation is memory-optimized using the sparse matrix output, and accelerated by the path following and active set tricks.

Details

<table>
<thead>
<tr>
<th>Package: camel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: Package</td>
</tr>
<tr>
<td>Version: 0.2.0</td>
</tr>
<tr>
<td>Date: 2013-09-09</td>
</tr>
<tr>
<td>License: GPL-2</td>
</tr>
</tbody>
</table>

Author(s)

Xingguo Li, Tuo Zhao, and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>

References

See Also
\texttt{camel.tiger, camel.slim} and \texttt{camel.cmr}.

camel internal

camel functions

Description

Internal camel functions

Usage

\begin{verbatim}
tiger.likelihood(Sigma, Omega)
tiger.trace12(Sigma, Omega)
camel.tiger.cv(obj, loss=c("likelihood", "trace12"), fold=5)
part.cv(n, fold)
camel.tiger.clime.mfista(Sigma, d, maxdf, mu, lambda, shrink, prec, max.ite)
camel.tiger.slasso.mfista(data, n, d, maxdf, mu, lambda, shrink, prec, max.ite)
camel.slim.lad.mfista(Y, X, lambda, nlambda, n, d, maxdf, mu, max.ite, prec,
intercept, verbose)
camel.slim.sqrt.mfista(Y, X, lambda, nlambda, n, d, maxdf, mu, max.ite, prec,
intercept, verbose)
camel.slim.dantzig.mfista(Y, X, lambda, nlambda, n, d, maxdf, mu, max.ite, prec,
intercept, verbose)
camel.cmr.mfista(Y, X, lambda, nlambda, n, d, m, mu, max.ite, prec)
\end{verbatim}

Arguments

\begin{verbatim}
Sigma Covariance matrix.
Omega Inverse covariance matrix.
\end{verbatim}
obj An object with S3 class returned from "tiger".
loss Type of loss function for cross validation.
fold The number of fold for cross validation.
n The number of observations (sample size).
d Dimension of data.
m Columns of parameters in multivariate regression.
maxdf Maximal degree of freedom.
lambda Grid of non-negative values for the regularization parameter lambda.
nlambda The number of the regularization parameter lambda.
shrink Shrinkage of regularization parameter based on precision of estimation.
mu The smooth surrogate parameter.
prec Stopping criterion.
max.ite Maximal value of iterations.
data n by d data matrix.
y Dependent variables in linear regression.
x Design matrix in linear regression.
intercept Whether the intercept is included in the model.
verbose Tracing information printing is disabled if verbose = FALSE.

Details
These are not intended for use by users.

Author(s)
Xingguo Li, Tuo Zhao, and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>

See Also
camel.tiger, camel.slim, camel.cmr and camel-package.

--
camel.cmr Calibrated Multivariate Regression
--

Description
The function "camel.cmr" implements calibrated multivariate regression using jointly sparse regularization.
camel.cmr

Usage

camel.cmr(xL yL lambda = NULL, nlambda = NULL, prec = 1e-3, max.ite = 1e3, mu = 0.01, verbose = TRUE)

Arguments

Y The n by m dimensional response matrix.
X The n by d design matrix.
lambda A sequence of decreasing positive value to control the regularization. Typical usage is to leave the input lambda = NULL and have the program compute its own lambda sequence based on nlambda, d and m. Users can also specify a sequence to override this.
nlambda The number of values used in lambda. Default value is 10.
prec Stopping criterion. The default value is 1e-3.
max.ite The iteration limit. The default value is 1e3.
mu The smoothing parameter. The default value is 0.01.
verbose Tracing information is disabled if verbose = FALSE. The default value is TRUE.

Details

Calibrated multivariate regression adjusts the regularization with respect to the noise level of each task. Thus it achieves improved statistical performance and the tuning insensitiveness.

Value

An object with S3 class "camel.cmr" is returned:

beta A list of matrices of regression estimates where each entry corresponds to a regularization parameter.
intercept The value of intercepts corresponding to regularization parameters.
Y The value of Y used in the program.
X The value of X used in the program.
lambda The sequence of regularization parameters lambda used in the program.
nlambda The number of values used in lambda.
sparsity The sparsity levels of the solution path.
ite A list of vectors where ite[1] is the number of external iteration and ite[2] is the number of internal iteration with the i-th entry corresponding to the i-th regularization parameter.
verbose The verbose from the input.

Author(s)

Xingguo Li, Tuo Zhao, and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>
References

See Also
camel-package.

Examples

```r
## Generate the design matrix and regression coefficient vector
n = 200
d = 400
m = 13
Sigma = matrix(0.5,d,d)
diag(Sigma) = 1
X = mvrnorm(n,rep(0,d),Sigma)
B = matrix(0,d,m)
B[1,] = 3
B[2,] = 2
B[4,] = 1.5
W = matrix(rnorm(n*m,0,1),n,m)
sig = sqrt(2)
D = sig*diag(2^c(0:-12)/4))
Z = W%*%D
Y = X%*%B + Z
out = camel.cmr(X, Y)
```

camel.plot

Graph visualization

Description

Implements the graph visualization using adjacency matrix. It can automatic organize 2D embedding layout.

Usage

```r
camel.plot(G, epsflag = FALSE, graph.name = "default", cur.num = 1,
location)
```

Arguments

- `G` The adjacency matrix corresponding to the graph.
- `epsflag` If `epsflag = TRUE`, save the plot as an eps file in the target directory. The default value is `FALSE`.
- `graph.name` The name of the output eps files. The default value is "default".
cur.num The number of plots saved as eps files. Only applicable when epsflag = TRUE. The default value is 1.
location Target directory. The default value is the current working directory.

Details

The user can change cur.num to plot several figures and select the best one. The implementation is based on the popular package 'igraph'.

Author(s)

Xingguo Li, Tuo Zhao, and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>

See Also
camel and camel-package

Examples

```r
## visualize the hub graph
L = camel.tiger.generator(graph = "hub")
camel.plot(L$theta)

## visualize the band graph
L = camel.tiger.generator(graph = "band", g=5)
camel.plot(L$theta)

## visualize the cluster graph
L = camel.tiger.generator(graph = "cluster")
camel.plot(L$theta)

#show working directory
getwd()
#plot 5 graphs and save the plots as eps files in the working directory
camel.plot(L$theta, epsflag = TRUE, cur.num = 5)
```

camel.slim Calibrated Linear Regression

Description

The function "camel.slime" implements LAD/L1 Lasso, SQRT/L2 Lasso, and calibrated Dantzig selector using L1 regularization.

Usage

camel.slim(X, Y, lambda = NULL, nlambda = NULL, lambda.min.ratio = NULL, method="lq", q = 2, prec = 1e-4, max.ite = 1e4, mu = 0.01, intercept = TRUE, verbose = TRUE)
Arguments

\(Y \)
The \(n \) dimensional response vector.

\(X \)
The \(n \) by \(d \) design matrix.

\(\lambda \)
A sequence of decreasing positive value to control the regularization. Typical usage is to leave the input \(\lambda = \text{NULL} \) and have the program compute its own \(\lambda \) sequence based on \(n_{\lambda} \text{and } \lambda_{\min} \text{ratio} \). Users can also specify a sequence to override this. Default value is from \(\lambda_{\text{max}} \) to \(\lambda_{\text{min}} \text{ratio}\times\lambda_{\text{max}} \). For \(L_q \) regression, the default value of \(\lambda_{\text{max}} \) is \(\pi \sqrt{\log(d)/n} \). For Dantzig selector, the default value of \(\lambda_{\text{max}} \) is the minimum regularization parameter, which yields an all-zero estimates.

\(n_{\lambda} \)
The number of values used in \(\lambda \). Default value is 5.

\(\lambda_{\min} \text{ratio} \)
The smallest value for \(\lambda \), as a fraction of the upperbound (MAX) of the regularization parameter. The program can automatically generate \(\lambda \) as a sequence of length = \(n_{\lambda} \text{and } \lambda_{\min} \text{ratio}\times\lambda_{\text{max}} \) in log scale. The default value is 0.25 for \(L_q \) Lasso and 0.5 for Dantzig selector.

\(\text{method} \)
Dantzig selector is applied if \text{method} = "dantzig" and \(L_q \) Lasso is applied if \text{method} = "1q". The default value is "1q".

\(q \)
The loss function used in \(L_q \) Lasso. It is only applicable when \text{method} = "1q" and must be either 1 or 2. The default value is 2.

\(\text{prec} \)
Stopping criterion. The default value is 1e-4.

\(\text{max.ite} \)
The iteration limit. The default value is 1e4.

\(\mu \)
The smoothing parameter. The default value is 0.01.

\(\text{intercept} \)
Whether the intercept is included in the model. The default value is TRUE.

\(\text{verbose} \)
Tracing information is disabled if \text{verbose} = FALSE. The default value is TRUE.

Details

Calibrated Linear Regression adjust the regularization with respect to the noise level. Thus it achieves both improved finite sample performance and tuning insensitiveness.

Value

An object with S3 class "camel.slim" is returned:

\(\beta \)
A matrix of regression estimates whose columns correspond to regularization parameters.

\(\text{intercept} \)
The value of intercepts corresponding to regularization parameters.

\(Y \)
The value of \(Y \) used in the program.

\(X \)
The value of \(X \) used in the program.

\(\lambda \)
The sequence of regularization parameters \(\lambda \) used in the program.

\(n_{\lambda} \)
The number of values used in \(\lambda \).

\(\text{method} \)
The method from the input.
sparsity: The sparsity levels of the solution path.

ite: A list of vectors where ite[[1]] is the number of external iteration and ite[[2]] is the number of internal iteration with the i-th entry corresponding to the i-th regularization parameter.

verbose: The verbose from the input.

Author(s)
Xingguo Li, Tuo Zhao, and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>

References

See Also
camel-package.

Examples

```r
## Generate the design matrix and regression coefficient vector
n = 200
d = 400
X = matrix(rnorm(n*d), n, d)
beta = c(3,2,0,1.5,rep(0,d-4))

eps.sqrt = rnorm(n)
Y.sqrt = X%*%beta + eps.sqrt
out.sqrt = camel.slim(X = X, Y = Y.sqrt, lambda = seq(0,0.1,0.01,length.out=5))

## Generate response using Cauchy noise, and fit a sparse linear model using LAD Lasso
eps.lad = rt(n = n, df = 1)
Y.lad = X%*%beta + eps.lad
out.lad = camel.slim(X = X, Y = Y.lad, q = 1, lambda = seq(0.5,0.2,length.out=5))

camel::plot(out.sqrt)
camel::plot(out.lad)
```
Description

The function "camel.cmr" implements TIGER and Calibrated CLIME using L1 norm regularization.

Usage

```r
camel.tiger(data, lambda = NULL, nlambdas = NULL, lambdamax = NULL, method = "clime", shrink=FALSE, prec = 1e-4, mu = 0.01,
max.ite = 1e4, standardize = FALSE, correlation = FALSE,
perturb = TRUE, verbose = TRUE)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data</code></td>
<td>There are 2 options for "clime": (1) data is an n by d matrix (2) a d by d sample covariance matrix. The program automatically identifies the input matrix by checking the symmetry. (n is the sample size and d is the dimension). For "lasso", covariance input is not supported.</td>
</tr>
<tr>
<td><code>lambda</code></td>
<td>A sequence of decreasing positive numbers to control the regularization. Typical usage is to leave the input lambda = NULL and have the program compute its own lambda sequence based on nlambdas and lambdamin.ratio. Users can also specify a sequence to override this. Default value is from lambdamax to lambdamin.ratio*lambdamax. For TIGER, the default value of lambdamax is $\pi \sqrt{\log(d)/n}$. For CLIME, the default value of lambdamax is the minimum regularization parameter, which yields an all-zero off-diagonal estimates.</td>
</tr>
<tr>
<td><code>nlambdas</code></td>
<td>The number of values used in lambda. Default value is 10.</td>
</tr>
<tr>
<td><code>lambdamin.ratio</code></td>
<td>The smallest value for lambda, as a fraction of the upperbound (MAX) of the regularization parameter. The program can automatically generate lambda as a sequence of length = nlambdas starting from MAX to lambdamin.ratio*MAX in log scale. The default value is 0.25 for TIGER and 0.5 for CLIME.</td>
</tr>
<tr>
<td><code>method</code></td>
<td>TIGER is applied if method = "clime", CLIME is applied if method="clime". Default value is "clime".</td>
</tr>
<tr>
<td><code>sym</code></td>
<td>Symmetrization of output graphs. If sym = "and", the edge between node i and node j is selected ONLY when both node i and node j are selected as neighbors for each other. If sym = "or", the edge is selected when either node i or node j is selected as the neighbor for each other. The default value is "or".</td>
</tr>
<tr>
<td><code>shrink</code></td>
<td>Shrinkage of regularization parameter based on precision of estimation. The default value is 1.5 if method = "clime" and the default value is 0 if method="lasso" or method = "clime".</td>
</tr>
<tr>
<td><code>prec</code></td>
<td>Stopping criterion. The default value is 1e-4.</td>
</tr>
<tr>
<td><code>mu</code></td>
<td>The smoothing parameter. The default value is 0.01.</td>
</tr>
</tbody>
</table>
max.ite The iteration limit. The default value is 1e4.
standardize All variables are standardized to have mean zero and standard deviation one if standardize = TRUE. The default value is FALSE.
correlation Correlation matrix is used as the input of Sigma for method = "clime" if correlation = TRUE. The default value is FALSE.
perturb The diagonal of Sigma is added by a positive value to guarantee that Sigma is positive definite if perturb = TRUE. User can specify a numeric value for perturb. The default value is TRUE.
verbose Tracing information is disabled if verbose = FALSE. The default value is TRUE.

Details
TIGER and Calibrated CLIME adjust the regularization with respect to each column of the sparse precision matrix. Thus it achieves both improved finite sample performance and tuning insensitivity.

Value
An object with S3 class "tiger" is returned:

data The n by d data matrix or d by d sample covariance matrix from the input.
cov.input An indicator of the sample covariance.
lambda The sequence of regularization parameters lambda used in the program.
nlambda The number of values used in lambda.
icov A list of d by d precision matrices corresponding to regularization parameters.
sym The sym from the input.
method The method from the input.
path A list of d by d adjacency matrices of estimated graphs as a graph path corresponding to lambda.
sparsity The sparsity levels of the graph path.
ite If method = "clime", it is a list of two matrices where ite[1] is the number of external iterations and ite[2] is the number of internal iterations with the entry of (i,j) as the number of iteration of i-th column and j-th lambda. If method="slasso", it is a matrix of iteration with the entry of (i,j) as the number of iteration of i-th column and j-th lambda.
df It is a d by nlambda matrix. Each row contains the number of nonzero coefficients along the lasso solution path.
standardize The standardize from the input.
correlation The correlation from the input.
perturb The perturb from the input.
verbose The verbose from the input.
Author(s)
Xingguo Li, Tuo Zhao, and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>

References

See Also
camel-package, camel.tiger.generator, camel.tiger.select, camel.plot, camel.tiger.roc, plot.tiger, plot.select, plot.roc, plot.sim, print.tiger, print.select, print.roc and print.sim.

Examples

```r
## generating data
n = 100
d = 100
D = camel.tiger.generator(n=n,d=d,graph="hub",g=10)
plot(D)

## sparse precision matrix estimation with method "clime"
out1 = camel.tiger(D$data, method = "clime")
plot(out1)
camel.plot(out1$path[[7]])

## sparse precision matrix estimation with method "slasso"
out2 = camel.tiger(D$data, method = "slasso")
plot(out2)
camel.plot(out2$path[[4]])
```

camel.tiger.generator Data generator for undirected graph estimation.

Description
Implements the data generation from multivariate normal distributions with different graph structures, including "random", "hub", "cluster", "band", and "scale-free".

Usage
camel.tiger.generator(n = 200, d = 50, graph = "random", v = NULL, u = NULL, g = NULL, prob = NULL, seed = NULL, vis = FALSE, verbose = TRUE)
Arguments

\(n\) The number of observations (sample size). The default value is 200.
\(d\) The number of variables (dimension). The default value is 10.
\(\text{graph}\) The graph structure with 5 options: "random", "hub", "cluster", "band", and "scale-free".
\(v\) The off-diagonal elements of the precision matrix, controlling the magnitude of partial correlations with \(u\). The default value is 0.3.
\(u\) A positive number being added to the diagonal elements of the precision matrix, to control the magnitude of partial correlations. The default value is 0.1.
\(g\) For "cluster" or "hub" graph, \(g\) is the number of hubs or clusters in the graph. The default value is about \(d/20\) if \(d \geq 40\) and 2 if \(d < 40\). For "band" graph, \(g\) is the bandwidth and the default value is 1. NOT applicable to "random" graph.
\(\text{prob}\) For "random" graph, it is the probability that a pair of nodes has an edge. The default value is \(3/d\). For "cluster" graph, it is the probability that a pair of nodes has an edge in each cluster. The default value is \(6g/d\) if \(g \leq 30\) and \(0.3\) if \(d/g > 30\). NOT applicable to "hub", "band", and "scale-free" graphs.
\(\text{seed}\) Set seed for data generation. The default value is 1.
\(\text{vis}\) Visualize the adjacency matrix of the true graph structure, the graph pattern, the covariance matrix and the empirical covariance matrix. The default value is FALSE.
\(\text{verbose}\) If \(\text{verbose} = \text{FALSE}\), tracing information printing is disabled. The default value is TRUE.

Details

Given the adjacency matrix \(\theta\), the graph patterns are generated as below:

(I) "random": Each pair of off-diagonal elements are randomly set \(\theta[i,j]=\theta[j,i]=1\) for \(i\neq j\) with probability \(\text{prob}\), and 0 otherwise. It results in about \(d*(d-1)*\text{prob}/2\) edges in the graph.

(II) "hub": The row/columns are evenly partitioned into \(g\) disjoint groups. Each group is associated with a "center" row \(i\) in that group. Each pair of off-diagonal elements are set \(\theta[i,j]=\theta[j,i]=1\) for \(i\neq j\) if \(j\) also belongs to the same group as \(i\) and 0 otherwise. It results in \(d - g\) edges in the graph.

(III) "cluster": The row/columns are evenly partitioned into \(g\) disjoint groups. Each pair of off-diagonal elements are set to be \(\theta[i,j]=1\) if \(1\leq|i-j|<g\) and 0 otherwise. It results in \((2d-1\times g)/2\) edges in the graph.

(IV) "band": The graph is generated using B-A algorithm. The initial graph has two connected nodes and each new node is connected to only one node in the existing graph with the
probability proportional to the degree of the each node in the existing graph. It results in d edges in the graph.

The adjacency matrix \(\theta \) has all diagonal elements equal to 0. To obtain a positive definite covariance matrix, the smallest eigenvalue of \(\theta \times v \) (denoted by \(e \)) is computed. Then we set the covariance matrix equal to \(\text{cov2cor}(\text{solve}(\theta \times v + (|e| + 0.1 + u) \times I)) \) to generate multivariate normal data.

Value

An object with S3 class "sim" is returned:

- **data**: The \(n \times d \) matrix for the generated data
- **sigma**: The covariance matrix for the generated data
- **omega**: The precision matrix for the generated data
- **sigmahat**: The empirical covariance matrix for the generated data
- **theta**: The adjacency matrix of true graph structure (in sparse matrix representation) for the generated data

Author(s)

Xingguo Li, Tuo Zhao and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>

See Also

`camel` and `camel-package`

Examples

```r
## band graph with bandwidth 3
L = camel.tiger.generator(graph = "band", g = 3)
plot(L)

## random sparse graph
L = camel.tiger.generator(vis = TRUE)

## random dense graph
L = camel.tiger.generator(prob = 0.5, vis = TRUE)

## hub graph with 6 hubs
L = camel.tiger.generator(graph = "hub", g = 6, vis = TRUE)

## cluster graph with 8 clusters
L = camel.tiger.generator(graph = "cluster", g = 8, vis = TRUE)

## scale-free graphs
L = camel.tiger.generator(graph="scale-free", vis = TRUE)
```
camel.tiger.roc

Draw ROC Curve for a graph path

Description

Draws ROC curve for a graph path according to the true graph structure.

Usage

camel.tiger.roc(path, theta, verbose = TRUE)

Arguments

- path: A graph path.
- theta: The true graph structure.
- verbose: If `verbose = FALSE`, tracing information printing is disabled. The default value is `TRUE`.

Details

To avoid the horizontal oscillation, false positive rates is automatically sorted in the ascent order and true positive rates also follow the same order.

Value

An object with S3 class "roc" is returned:

- `f1`: The F1 scores along the graph path.
- `tp`: The true positive rates along the graph path.
- `fp`: The false positive rates along the graph path.
- `auc`: Area under the ROC curve.

Note

For a lasso regression, the number of nonzero coefficients is at most n. If $d \gg n$, even when regularization parameter is very small, the estimated graph may still be sparse. In this case, the AUC may not be a good choice to evaluate the performance.

Author(s)

Xingguo Li, Tuo Zhao, and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>

See Also

camel.tiger and camel-package
Examples

```r
# generate data
L = camel.tiger.generator(d = 50, graph = "random", prob = 0.1)
out1 = camel.tiger(L$data, lambda=10^(seq(log10(.4), log10(0.03)), length.out=20))

# draw ROC curve
Z1 = camel.tiger.roc(out1$path,L$theta)

# Maximum F1 score
max(Z1$F1)
```

Description

Implements the regularization parameter selection for high dimensional undirected graph estimation. The optional approaches are stability approach to regularization selection (stars) and cross validation selection (cv).

Usage

```r
camel.tiger.select(est, criterion = "stars", stars.subsample.ratio = NULL, 
  stars.thresh = 0.1, rep.num = 20, fold = 5, 
  loss="likelihood", verbose = TRUE)
```

Arguments

- `est` An object with S3 class "camel.tiger"
- `criterion` Model selection criterion. "stars" and "cv" are available for both graph estimation methods. The default value is "stars".
- `stars.subsample.ratio` The subsampling ratio. The default value is $10 \times \sqrt{n}/n$ when $n>144$ and 0.8 when $n<=144$, where n is the sample size. Only applicable when criterion = "stars".
- `stars.thresh` The variability threshold in stars. The default value is 0.1. Only applicable when criterion = "stars".
- `rep.num` The number of subsamplings. The default value is 20.
- `fold` The number of folds used in cross validation. The default value is 5. Only applicable when criterion = "cv".
- `loss` Loss to be used in cross validation. Two losses are available: "likelihood" and "trace12". Default "likelihood". Only applicable when criterion = "cv".
- `verbose` If `verbose = FALSE`, tracing information printing is disabled. The default value is TRUE.
Details

Stability approach to regularization selection (stars) is a natural way to select optimal regularization parameter for all three estimation methods. It selects the optimal graph by variability of subsamplings and tends to over-select edges in Gaussian graphical models. Besides selecting the regularization parameters, stars can also provide an additional estimated graph by merging the corresponding subsampled graphs using the frequency counts. The K-fold cross validation is also provided for selecting the parameter \(\lambda \), and two loss functions are adopted as follow

\[
\text{likelihood} : \text{Tr}(\Sigma \Omega) - \log |\Omega|
\]

\[
\text{tracel2} : \text{Tr}([\text{diag}(\Sigma \Omega - I)]^2).
\]

Value

An object with S3 class "select" is returned:

- refit: The optimal graph selected from the graph path
- opt.icov: The optimal precision matrix selected.
- merge: The graph path estimated by merging the subsampling paths. Only applicable when the input criterion = "stars".
- variability: The variability along the subsampling paths. Only applicable when the input criterion = "stars".
- opt.index: The index of the selected regularization parameter.
- opt.lambda: The selected regularization/thresholding parameter.
- opt.sparsity: The sparsity level of "refit".

and anything else included in the input est

Note

The model selection is NOT available when the data input is the sample covariance matrix.

Author(s)

Xingguo Li, Tuo Zhao and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>

References

See Also

camel.tiger and camel-package.
Examples

```r
# generate data
data = camel.tiger.generator(d = 20, graph="hub")
out1 = camel.tiger(L$data)

# model selection using stars
out1.select2 = camel.tiger.select(out1, criterion = "stars", stars.thresh = 0.05)
plot(out1.select2)

# model selection using cross validation
out1.select3 = camel.tiger.select(out1, criterion = "cv")
plot(out1.select3)
```

data(eyedata)

Format

The format is a list containing two elements:

1. `x` - an 120 by 200 matrix, which represents the data of 120 rats with 200 gene probes.
2. `y` - a 120-dimensional vector of which represents the expression level of TRIM32 gene.

Description

Gene expression data (20 genes for 120 samples) from the microarray experiments of mammalian-eye tissue samples of Scheetz et al. (2006).

Details

This data set contains 120 samples with 200 predictors.

References

Description

Plot the ROC curve for an object with S3 class "roc"

Usage

```r
# S3 method for class 'roc'
plot(x, ..., )
```

Arguments

- `x`
 An object with S3 class "roc"
- `...`
 System reserved (No specific usage)

Author(s)

Xingguo Li, Tuo Zhao, and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>

See Also

camel.tiger.roc
plot.select

Plot function for S3 class "select"

Description

Plot the optimal graph by model selection.

Usage

```r
## S3 method for class 'select'
plot(x, ...)
```

Arguments

- `x`: An object with S3 class "select"
- `...`: System reserved (No specific usage)

Author(s)

Xingguo Li, Tuo Zhao, and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>

See Also

`camel.tiger` and `camel.tiger.select`

plot.sim

Plot function for S3 class "sim"

Description

Visualize the covariance matrix, the empirical covariance matrix, the adjacency matrix and the graph pattern of the true graph structure.

Usage

```r
## S3 method for class 'sim'
plot(x, ...)
```

Arguments

- `x`: An object with S3 class "sim"
- `...`: System reserved (No specific usage)
plot.slim

Author(s)
Xingguo Li, Tuo Zhao, and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>

See Also

camel.tiger and camel.tiger.generator

plot.slim

Plot function for S3 class "slim"

Description

Visualize the solution path of regression estimate corresponding to regularization parameters.

Usage

```r
## S3 method for class 'slim'
plot(x, ...)  
```

Arguments

- `x`: An object with S3 class "slim"
- `...`: System reserved (No specific usage)

Author(s)

Xingguo Li, Tuo Zhao, and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>

See Also

camel.slim
plot.tiger

Plot function for S3 class "camel.tiger"

Description

Plot sparsity level information and 3 typical sparse graphs from the graph path.

Usage

```r
## S3 method for class 'tiger'
plot(x, align = FALSE, ...)
```

Arguments

- `x`: An object with S3 class "tiger"
- `align`: If `align = FALSE`, 3 plotted graphs are aligned
- `...`: System reserved (No specific usage)

Author(s)

Xingguo Li, Tuo Zhao, and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>

See Also

camel.tiger and camel-package

print.cmr

Print a camel.cmr Object

Description

Print a summary of the information about the cmr object.

Usage

```r
## S3 method for class 'cmr'
print(x, ...)```

Arguments

- `x`: The cmr object.
- `...`: Additional print options.
print.roc

Details

This call simply outlines the options used for computing a cmr object.

Author(s)

Xingguo Li, Tuo Zhao, and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>

See Also

camel.cmr and camel-package.

print.roc  
Print function for S3 class "roc"

Description

Print the information about true positive rates, false positive rates, the area under curve and maximum F1 score

Usage

## S3 method for class 'roc'
print(x, ...)

Arguments

x      An object with S3 class "roc"
...
System reserved (No specific usage)

Author(s)

Xingguo Li, Tuo Zhao, and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>

See Also

camel.tiger and camel.tiger.roc
print.select

Description
Print the information about the model usage, graph dimension, model selection criterion, sparsity level of the optimal graph

Usage

```r
S3 method for class 'select'
print(x, ...)
```

Arguments

- `x`: An object with S3 class "select"
- `...`: System reserved (No specific usage)

Author(s)

Xingguo Li, Tuo Zhao, and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>

See Also

camel.tiger.select and camel.tiger

print.sim

Description
Print the information about the sample size, the dimension, the pattern and sparsity of the true graph structure.

Usage

```r
S3 method for class 'sim'
print(x, ...)
```

Arguments

- `x`: An object with S3 class "sim"
- `...`: System reserved (No specific usage)
Description

Print a summary of the information about the slim object.

Usage

```r
S3 method for class 'slim'
print(x, ...) # x: The slim object.
```

Arguments

- `x`: The slim object.
- `...`: Additional print options.

Details

This call simply outlines the options used for computing a slim object.

Author(s)

Xingguo Li, Tuo Zhao, and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>

See Also

`camel.slim` and `camel-package`.
print.tiger  

Print a `camel.tiger` Object

Description

Print a summary of the information about the tiger object.

Usage

```r
S3 method for class 'tiger'
print(x, ...,)
```

Arguments

- `x`  
  The tiger object.
- `...`  
  Additional print options.

Details

This call simply outlines the options used for computing a tiger object.

Author(s)

Xingguo Li, Tuo Zhao, and Han Liu
Maintainer: Xingguo Li <xingguo.leo@gmail.com>

See Also

camel and camel-package.
Index

camel, 7, 14, 26
camel (camel-package), 2
camel-internal, 3
camel-package, 2
camel.cmr, 3, 4, 4, 23
camel.cmr.mfista (camel-internal), 3
camel.plot, 6, 12
camel.slim, 3, 4, 7, 21, 25
camel.slim.dantzig.mfista
  (camel-internal), 3
camel.slim.lad.mfista (camel-internal), 3
camel.slim.sqrt.mfista
  (camel-internal), 3
camel.tiger, 3, 4, 10, 15, 17, 20–25
camel.tiger.clim.mfista
  (camel-internal), 3
camel.tiger.cv (camel-internal), 3
camel.tiger.generator, 12, 12, 21, 25
camel.tiger.roc, 12, 15, 19, 23
camel.tiger.select, 12, 16, 20, 24
camel.tiger.slasso.mfista
  (camel-internal), 3
eyedata, 18
part.cv (camel-internal), 3
plot.roc, 12, 19
plot.select, 12, 20
plot.sim, 12, 20
plot.slim, 21
plot.tiger, 12, 22
print.cmr, 22
print.roc, 12, 23
print.select, 12, 24
print.sim, 12, 24
print.slim, 25
print.tiger, 12, 26
tiger.likelihood (camel-internal), 3
tiger.tracel2 (camel-internal), 3