Duration of Unemployment - Different Codings of Covariables

February 8, 2012

The unemployment data represent a contingency table with rows referring to gender and columns to duration of unemployment.

```r
> unemployment <- matrix(c(403, 238, 167, 175), nrow=2, ncol=2)
> rownames(unemployment) <- c("male","female")
> colnames(unemployment) <- c("<6 month",">6 month")
> unemployment

<6 month >6 month
male 403 167
female 238 175

> rowSums(unemployment)

     male female
570  413
```

Calculation of odds and log-odds.

```r
> ( odds_m <- 403/167 )
[1] 2.413174
> ( odds_w <- 238/175 )
[1] 1.36
> ( log_odds_m <- log(403/167) )
[1] 0.8809427
> ( log_odds_w <- log(238/175) )
[1] 0.3074847
```

For the fitting of a logit-model an alternative dataset is generated. First (0-1)-coding is considered.

```r
> gender <- c(rep(1, 403+167), rep(0,238+175))
> unemp <- c(rep(1, 403),  rep(0, 167), rep(1, 238), rep(0, 175))
```
For control, one can compute the crosstabulation of the generated data.

```r
> table(gender, unemp)

        unemp
  gender  0  1
       0 175 238
       1 167 403
```

Fit of a logit model.

```r
> bin <- glm(unemp ~ gender, family=binomial)
> summary(bin)
```

```
Call:
glm(formula = unemp ~ gender, family = binomial)

Deviance Residuals:
  Min       1Q   Median       3Q      Max
-1.5669  -1.3105   0.8327   0.8327   1.0499

Coefficients:              Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.3074847  0.0995784   3.088  0.00202 **
gender       0.5734580  0.1355832   4.229  2.34e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

  Null deviance: 1270.3  on 982  degrees of freedom
Residual deviance: 1252.4  on 981  degrees of freedom
AIC: 1256.4

Number of Fisher Scoring iterations: 4
```

```r
> bin$coef

(Intercept)   gender
  0.3074847    0.5734580
```

```r
> exp(bin$coef)

(Intercept)   gender
   1.360000    1.774392
```

Now a dataset in effect-coding is created.

```r
> gender_effect <- c(rep(1, 403+167), rep(-1, 238+175))
```

For control, one can compute the crosstabulation of the generated data.

```r
> table(gender_effect, unemp)
```
Fit a logit model.

```r
> bin_effect <- glm(unemp ~ gender_effect, family=binomial)
> summary(bin_effect)
```

```
Call:
glm(formula = unemp ~ gender_effect, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.5669 -1.3105 0.8327 0.8327 1.0499

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.5942 0.0678 8.765 < 2e-16 ***
gender_effect 0.2867 0.0678 4.229 2.34e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1270.3 on 982 degrees of freedom
Residual deviance: 1252.4 on 981 degrees of freedom
AIC: 1256.4

Number of Fisher Scoring iterations: 4
```

Now we consider education level as explanatory variable.

```r
> unemp_level <- matrix(c(202, 307, 87, 45,
+ 96, 162, 66, 18), nrow=4, ncol=2)
> colnames(unemp_level) <- c("Short term","Long term")
> unemp_level
```

```
     Short term Long term
[1,]     202       96
[2,]     307     162
[3,]     87      66
[4,]     45      18
```

3
For the fitting of a logit-model a new dataset is generated. First (0-1)-coding is considered.

```r
> level <- factor(c(rep(1, 202+96), rep(2,307+162), rep(3,87+66), rep(4,45+18)))
> unemp_l <- c(rep(1, 202), rep(0, 96), rep(1, 307), rep(0, 162),
+ rep(1, 87), rep(0, 66), rep(1, 45), rep(0, 18))
```

For control, one can compute the crosstabulation of the generated data.

```r
> table(level, unemp_l)

<table>
<thead>
<tr>
<th>level</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>96</td>
<td>202</td>
</tr>
<tr>
<td>2</td>
<td>162</td>
<td>307</td>
</tr>
<tr>
<td>3</td>
<td>66</td>
<td>87</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>45</td>
</tr>
</tbody>
</table>
```

Fit a logit model on the data. Define the variable level as a factor with the reference category 4.

```r
> level <- relevel(level, ref=4)
> bin_l <- glm(unemp_l ~ level, family=binomial)
> summary(bin_l)
```

```
Call:
glm(formula = unemp_l ~ level, family = binomial)

Deviance Residuals:
         Min          1Q        Median          3Q         Max
-1.5829    -1.4581       0.8819       0.9206     1.0626

Coefficients:  Estimate Std. Error z value Pr(>|z|)
(Intercept)   0.9163     0.2789   3.286 0.00102 **
level1       -0.1724     0.3052  -0.565 0.57222
level2       -0.2770     0.2953  -0.938 0.34818
level3       -0.6400     0.3231  -1.981 0.04763 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1270.3  on 982  degrees of freedom
Residual deviance: 1263.8  on 979  degrees of freedom
AIC: 1271.8

Number of Fisher Scoring iterations: 4
```
Now additionally quasi-variances can be computed. Therefore the function "qvcalc" from the "qvcalc"-library is used.

```r
> library(qvcalc)
> qv<-qvcalc(bin_l,"level")
> summary(qv)

Model call: glm(formula = unemp_l ~ level, family = binomial)
Factor name: level

<table>
<thead>
<tr>
<th>estimate</th>
<th>SE</th>
<th>quasiSE</th>
<th>quasiVar</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0.28</td>
<td>0.08</td>
</tr>
<tr>
<td>1</td>
<td>-0.17</td>
<td>0.31</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>-0.28</td>
<td>0.30</td>
<td>0.03</td>
</tr>
<tr>
<td>3</td>
<td>-0.64</td>
<td>0.32</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Worst relative errors in SEs of simple contrasts (%): 0 0
Worst relative errors over *all* contrasts (%): 0 0

> plot(qv)
```

Intervals based on quasi standard errors

![Plot showing intervals based on quasi standard errors](image-url)