First the dataset vaso is loaded.

```r
> library(catdata)
> data(vaso)
> attach(vaso)
```

For fitting a logit model, the response is 0-1 coded. (data set contains 12). Moreover, the covariates vol and rate are log-transformed.

```r
> y <- vaso$vaso
> y[vaso$vaso==2] <- 0
```

Fit of a logit-model with log-transformed covariates.

```r
> vaso1 <- glm(y ~ vol + rate, family=binomial)
> summary(vaso1)
```

Call:
```r
glm(formula = y ~ vol + rate, family = binomial)
```
Deviance Residuals:
```
        Min 1Q Median 3Q Max
-1.4527 -0.6110  0.1001  0.6181  2.2775
```

Coefficients:
```
                          Estimate Std. Error   z value Pr(>|z|)  
(Intercept)             -2.875     1.321    -2.177 0.02946 * 
vol                    5.179     1.865     2.778 0.00547 **
rate                   4.562     1.838     2.482 0.01306 *
```
```
---
```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 54.040  on 38 degrees of freedom
Residual deviance: 29.227  on 36 degrees of freedom
AIC: 35.227

Number of Fisher Scoring iterations: 6

Next, a logit-model with original covariates is fitted.
```r
> vaso2 <- glm(y ~ I(exp(vol)) + I(exp(rate)), family=binomial)
> summary(vaso2)

Call:
 glm(formula = y ~ I(exp(vol)) + I(exp(rate)), family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.50657 -0.73464 0.03997 0.48854 2.32935

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.5296 3.2332 -2.9470 0.00320 **
I(exp(vol)) 3.8822 1.4286 2.7170 0.00658 **
I(exp(rate)) 2.6491 0.9142 2.8980 0.00376 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 54.040 on 38 degrees of freedom
Residual deviance: 29.772 on 36 degrees of freedom
AIC: 35.772

Number of Fisher Scoring iterations: 6
```