Foodstamp - Residuals of Logistic Regression

February 8, 2012

Load and attach the data foodstamp.

> library(catdata)
> data(foodstamp)
> attach(foodstamp)

With binary response one can fit a logit model.

> food1 <- glm(y ~ TEN + SUP + INC, family=binomial, data=foodstamp)
> summary(food1)

Call:
 glm(formula = y ~ TEN + SUP + INC, family = binomial, data = foodstamp)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.2376 -0.5564 -0.3464 -0.1545 2.7955

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.34003 0.53965 -0.630 0.52864
 TEN -1.76030 0.52922 -3.326 0.00088 ***
 SUP 0.77525 0.50655 1.530 0.12591
 INC -0.00149 0.00094 -1.588 0.11218

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 131.90 on 149 degrees of freedom
Residual deviance: 104.33 on 146 degrees of freedom
AIC: 112.33

Number of Fisher Scoring iterations: 6

Have a look at the distribution of the residuals. Therefore a Normal Q-Q Plot is generated.

> plot(food1,2)
Theoretical Quantiles

\texttt{glm(y \sim TEN + SUP + INC)}

Normal Q-Q