Duration of Unemployment - Logit Model

February 8, 2012

At first the "unemployment" data from the "catdata" package are loaded and attached.

```r
> library(catdata)
> data(unemployment)
> attach(unemployment)
```

Now a frequency table is created and used to fit a Logit model based on grouped data.

```r
> durbin <- as.factor(durbin)
> table.durbin <- ftable(subset(unemployment, select=c("age", "durbin")), + col.vars="durbin")
> rels<-table.durbin[,1]/rowSums(table.durbin)
> age.new <- min(age):max(age)
> model1 <- glm(table.durbin ~ age.new, family=binomial)
> summary(model1)
```

Call:
```r
glm(formula = table.durbin ~ age.new, family = binomial)
```

Deviance Residuals:
```
Min 1Q Median 3Q Max
-2.01336 -0.74344 -0.00988 0.60784 1.72252
```

Coefficients:
```
Estimate Std. Error z value Pr(>|z|)  
(Intercept) 1.473369 0.195891 7.521 5.42e-14 ***  
age.new -0.027458 0.005886 -4.665 3.08e-06 ***  
---  
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 54.809 on 45 degrees of freedom
Residual deviance: 32.938 on 44 degrees of freedom
AIC: 178.56

Number of Fisher Scoring iterations: 3

Here the observed frequencies are plotted against the fitted probabilities.
The standardized deviance residuals are plotted against the predicted values and a quantile plot is created.

```r
> plot(model1$fitted.values, sqrt(rowSums(table.durbin))*rstandard(model1),
+ xlab="Predicted values", ylab="Residuals")
```
```r
> qqnorm(sqrt(rowSums(table.durbin))*rstandard(model1), main="", ylab="Standardized deviance residuals")
> qqline(sqrt(rowSums(table.durbin))*rstandard(model1), lwd=2.5, lty="dashed", col="red")
```