First the dust data are loaded from the package "catdata".

```r
> library(catdata)
> data(dust)
```

Trees can be fitted by use of the function "rpart" from package "rpart".

```r
> library(rpart)
```

Now a tree is fitted. We take "years" as the only covariate, "bronch" is the binary response. Afterwards the corresponding tree is plotted.

```r
> tree1 <- rpart(as.factor(bronch) ~ years, data = dust, method = "class",
+                      control = rpart.control(cp = 0.001, parms=list(split='information'),
+                      maxdepth = 4))
> plot(tree1, xpd=TRUE)
> text(tree1)
```

In the following the fit is plotted. It shows how the tree can be interpreted as regression function.

```r
> pred <- predict(tree1)
> year<- dust$years
```
```r
> year[dust$years<15.5] <- 1
> year[dust$years>=15.5 & dust$years<36.5] <- 2
> year[dust$years>=36.5 & dust$years<47.5] <- 3
> year[dust$years>=47.5 & dust$years<50.5] <- 4
> year[dust$years>=50.5] <- 5
> pre5 <- unique(pred[,2][year==5])
> pre4 <- unique(pred[,2][year==4])
> pre3 <- unique(pred[,2][year==3])
> pre2 <- unique(pred[,2][year==2])
> pre1 <- unique(pred[,2][year==1])
> meanyear <- c()
> for (i in min(dust$years):max(dust$years)){
+ meanyear[i] <- sum(dust$bronch[dust$year==i])
+ if (sum(dust$bronch[dust$year==i])!=0){
+ meanyear[i] <- mean(dust$bronch[dust$year==i])
+ }
+ }
> dust$means <- rep(2, nrow(dust))
> for (k in 1:nrow(dust)){
+ dust$means[k] <- meanyear[dust$years[k]]
+ }

> plot(dust$years, dust$means, xlab="years", ylab="")
> segments(x0=3, x1=15.5, y0=pre1)
> segments(x0=15.5, x1=15.5, y0=pre1, y1=pre2)
> segments(x0=15.5, x1=36.5, y0=pre2)
> segments(x0=36.5, x1=36.5, y0=pre2, y1=pre3)
> segments(x0=36.5, x1=47.5, y0=pre3)
> segments(x0=47.5, x1=47.5, y0=pre3, y1=pre4)
> segments(x0=47.5, x1=50.5, y0=pre4)
> segments(x0=50.5, x1=50.5, y0=pre4, y1=pre5)
> segments(x0=50.5, x1=66, y0=pre5)
```
An alternative package to generate trees is "party" which contains the function "ctree".

```r
> library(party)
```

As before with "rpart" we fit a tree with "years" as only covariate.

```r
> treeP1 <- ctree(as.factor(bronch) ~ years, data = dust)
> plot(treeP1)
```

```r
> year<- dust$years
> year [dust$years<7.5] <- 1
> year [dust$years>7.5 & dust$years<15.5] <- 2
> year [dust$years>15.5 & dust$years<36.5] <- 3
> year [dust$years>36.5] <- 4
> pre4 <- mean(dust$bronch[year==4])
> pre3 <- mean(dust$bronch[year==3])
> pre2 <- mean(dust$bronch[year==2])
> pre1 <- mean(dust$bronch[year==1])

> plot(dust$years, dust$means, xlab="years",ylab="")
> segments(x0=3,x1=7.5,y0=pre1)
> segments(x0=7.5,x1=7.5,y0=pre1,y1=pre2)
> segments(x0=7.5,x1=15.5,y0=pre2)
> segments(x0=15.5,x1=15.5,y0=pre2,y1=pre3)
> segments(x0=15.5,x1=36.5,y0=pre3)
> segments(x0=36.5,x1=36.5,y0=pre3,y1=pre4)
> segments(x0=36.5,x1=66,y0=pre4)

```
Now we take "smoke", "years" and "dust" as covariates for the binary response "bronch" and again plot the tree.

```r
> treeP2 <- ctree(as.factor(bronch) ~ smoke + years + dust, data = dust)
> plot(treeP2)
```