Package ‘cggd’

February 19, 2015

Version 0.8
Date 2007-04-16
Title Continuous Generalized Gradient Descent
Author Cun-Hui Zhang and Ofer Melnik
Maintainer Cun-Hui Zhang <czhang@stat.rutgers.edu>
Depends R (>= 2.10), grDevices, graphics, stats, utils
Description Efficient procedures for fitting an entire regression sequences with different model types.
License GPL (>= 2)
Repository CRAN
Date/Publication 2012-07-23 10:35:32
NeedsCompilation no

R topics documented:

cggd ... 2
cv.cggd .. 3
housing .. 4
OI ... 5
plot.cggd .. 6
predict.cggd ... 7
Wine ... 8

Index 9
cggd

Fits Continuous Generalized Gradient Descent models

Description

These CGGD models all provide the entire sequence of coefficients and fits, to the least squares fit. This package is based on the lars package.

Usage

cggd(x, y, beta0 = rep(0, 2), kmax = 300,
 TRR=FALSE, t0 = 1, TRACE=FALSE,
 alpha1 = 0, alpha2 = 0, w = 1,
 tau = 1, tautil = -1, eps = -1, fctr=1e8)

Arguments

x matrix of predictors
y response
beta0 initial coefficient values
kmax the maximum number of steps
TRACE If TRUE, cggd prints out its progress
TRR If TRUE builds a Threshold Ridge Regression (TRR) model. If FALSE builds a Functional Gradient Descent Kernel model.
t0 The initial time in the TRR model.
alpha1, alpha2, w Values used in kernel generation.
tau, tautil, eps Values used in variable selection.
fctr Used to tune the search routine. Smaller values tighten the search (more sampling).

Details

CGGD is a general method for performing different types of regressions while continuously varying regularization and other parameters (similar to LARS but broader). It returns the models fit along the continuous paths of parameter modification. Note that y is automatically centered and x is centered and normalized.

Value

A "cggd" object is returned, for which plot and predict methods exist.

Some significant components of the object are:

beta.tk The coefficients of the model at the different steps (k).
tk The time at the different steps (k).
a.set.tk The active coefficients of the model at the different steps (k).
cv.cggd

Author(s)
Cun-Hui Zhang and Ofer Melnik

References

See Also
plot, and predict methods for cggd, and cv.cggd

Examples

data(housing)
attach(housing)
object <- cggd(x,y)
plot(object)
object2 <- cggd(x,y,TRR=TRUE)
plot(object2)
detach(housing)

cv.cggd

Computes K-fold cross-validated error curve for cggd

Description
Computes the K-fold cross-validated mean squared prediction error for cggd.

Usage

```
cv.cggd(x, y, nfolds = 6, kmax=40,
        trace = FALSE, plot.it = TRUE, se=TRUE, ...)
```

Arguments

- `x` Input to cggd
- `y` Input to cggd
- `nfolds` Number of folds
- `kmax` Max number of iterations per model
- `trace` Show computations
- `plot.it` Plot it
- `se` Include standard error bands
- `...` Additional arguments to cggd
Value

\begin{itemize}
 \item \texttt{cv} \quad \text{The CV loss curve at each value of } k
 \item \texttt{cv.error} \quad \text{The standard error of the CV curve}
\end{itemize}

Author(s)

Cun-Hui Zhang and Ofer Melnik

References

Examples

\begin{verbatim}
data(wine)
attach(wine)
cv.cggd(x, learning, y, learning, kmax=40, fctr=1e3)
detach(wine)
\end{verbatim}

\begin{itemize}
 \item \texttt{housing} \quad \textit{Covariates related to housing prices}
\end{itemize}

Description

The housing data frame has 506 rows and 13 attributes.

Usage

\begin{verbatim}
housing
\end{verbatim}

Format

This data frame contains the following columns:

\begin{itemize}
 \item \texttt{x} \quad \text{a matrix with 13 columns of attributes}
 \item \texttt{y} \quad \text{a numeric vector of median value of owner-occupied homes in 1000's}
\end{itemize}

Details

The \texttt{x} matrix has been standardized to have unit L2 norm in each column and zero mean. The matrix \texttt{x2} consists of \texttt{x} plus certain interactions.
Source

Description

The OJ datafile has both learning and test data.

Usage

OJ

Format

This data file contains the following items:

x.learning 150 spectra (lines), sampled with 700 points (columns)
y.learning Corresponding level of saccharose, in a column vector (150 lines).
x.test 68 spectra (lines), sampled with 700 points (columns)
y.test Corresponding level of saccharose, in a column vector (68 lines).

Details

The goal is to estimate the level of saccharose of an orange juice from its observed near-infrared spectrum.

Source

This database has been provided by Prof. Marc Meurens, Université catholique de Louvain, BNUT unit. Please acknowledge the origin of this database if you use it and/or publish about it. It can be found at http://www.ucl.ac.be/mlg/index.php?page=DataBases
plot.cggd

Plot method for cggd objects

Description

Produce a plot of a cggd fit. The default is a complete coefficient path.

Usage

plot.cggd(x, steps=5, breaks = TRUE, first_k=1, last_k=Inf, xvar=c("step","t"), omit.zeros = TRUE, eps = 1e-10, ...)

Arguments

x
cggd object

steps
Number of steps to sample coefficients between each model iteration.

breaks
If TRUE, then vertical lines are drawn at each break point in the piecewise linear coefficient paths

first_k
The starting k, model iteration, to plot from.

class
The final k, model iteration, to plot from.

type
The type of x variable against which to plot. xvar=step plots against iteration steps of the model (default). xvar=t plots against the time along the coefficient path.

omit.zeros
When the number of variables is much greater than the number of observations, many coefficients will never be nonzero; this logical (default TRUE) avoids plotting these zero coefficients

eps
Definition of zero above, default is 1e-10

...
Additional arguments for generic plot. Can be used to set xlims, change colors, line widths, etc

Value

NULL

Author(s)

Cun-Hui Zhang and Ofer Melnik

References

Example

```r
data(housing)
attach(housing)
object <- cggd(x,y)
plot(object)
detach(housing)
```

predict.cggd

Make predictions or extract coefficients from a fitted cggd model

Description

While cggd produces the entire path of solutions, predict.cggd allows one to extract a prediction at a particular point along the path.

Usage

```r
## S3 method for class 'cggd'
predict(object, newx, t, type = c("fit", "coefficients"), mode=c("k","t"), ...)
```

Arguments

- `object`: A fitted cggd object
- `newx`: If type="fit", then newx should be the x values at which the fit is required. If type="coefficients", then newx can be omitted.
- `t`: A value specifying the desired model. Its values depends on the mode argument. By default (mode="k"), t should take on values between 0 and max k (e.g., a step of 1.3 means .3 of the way between step 1 and 2.)
- `type`: If type="fit", predict returns the fitted value. If type="coefficients", predict returns the coefficients.
- `mode`: Mode="k" means the t= argument indexes the cggd step number, and the coefficients will be returned corresponding to the values at step t. If mode="t", then t is a time on the coefficient path.
- `...`: additional parameters.

Value

Either the fitted value, or a vector of coefficients.

Author(s)

Cun-Hui Zhang and Ofer Melnik

References

See Also

plot, cggd, cv.cggd

Examples

data(housing)
attach(housing)
object <- cggd(x, y)
coef4.1 <- predict(object, t=4.1, type="coefficients", mode="k")
detach(housing)

Description

The wine data file has both learning and test data.

Usage

wine

Format

This data file contains the following items:

x.learning 94 spectra (lines), sampled with 256 points (columns)
y.learning Corresponding level of alcohol, in a column vector (94 lines).
x.test 30 spectra (lines), sampled with 256 points (columns)
y.test Corresponding level of alcohol, in a column vector (30 lines).

Details

To estimate the level of alcohol of a wine from its observed mean infrared spectrum.

Source

This database has been provided by Prof. Marc Meurens, Université catholique de Louvain, BNUT unit. Please acknowledge the origin of this database if you use it and/or publish about it. It can be found at http://www.ucl.ac.be/mlg/index.php?page=DataBases
Index

*Topic **datasets**
 housing, 4
 OJ, 5
 Wine, 8
*Topic **hplot**
 plot.cggd, 6
*Topic **methods**
 plot.cggd, 6
 predict.cggd, 7
*Topic **regression**
 cggd, 2
 cv.cggd, 3
 predict.cggd, 7

cggd, 2
cv.cggd, 3
housing, 4
OJ, 5
plot.cggd, 6
predict.cggd, 7
Wine, 8