Package ‘cgh’

February 19, 2015

Version 1.0-7.1
Date 2009-11-20
Title Microarray CGH analysis using the Smith-Waterman algorithm
Author Tom Price <t0mpr1c3@gmail.com>
Maintainer Tom Price <t0mpr1c3@gmail.com>
 Depends R (>= 2.6.0)
Description Functions to analyze microarray comparative genome hybridization data using the Smith-Waterman algorithm
LazyLoad Yes
License GPL (>= 2)

URL http://sgdp.iop.kcl.ac.uk/tprice/software.html
Repository CRAN
Date/Publication 2010-05-07 16:10:28

NeedsCompilation yes

R topics documented:

 sw ... 2
 sw.perm.test .. 3
 sw.plot ... 4
 sw.rob ... 6
 sw.threshold ... 7

Index 9
Perform the Smith-Waterman Algorithm

Description

Perform the Smith-Waterman algorithm on a vector of real values.

Usage

\[sw(x, \text{max.nIslands} = \text{NULL}, \text{trace} = \text{FALSE}) \]

Arguments

- \(x \) a vector of real values
- \(\text{max.nIslands} \) the number of iterations of the algorithm performed. Each iteration finds the next highest-scoring 'island' of positive values. Set to NULL to find all islands
- \(\text{trace} \) print verbose output if TRUE

Details

The Smith-Waterman algorithm detects 'islands' of positive scores in a vector of real values. The input values should have a negative mean. The algorithm can be used to identify regions of copy number change in microarray fluorescence logratios, once the logratios have been adjusted for sign and a suitable threshold value subtracted to ensure a negative mean: see \(\text{sw.threshold} \)

Value

- \(x \) the input vector
- \(s \) a numeric vector containing the partial sums after one iteration of the Smith-Waterman algorithm
- \(\text{score} \) a numeric vector of island scores
- \(\text{start} \) a numeric vector of indices identifying the start of each island
- \(\text{length} \) a numeric vector of island lengths

Author(s)

T.S.Price

References

See Also

sw.threshold sw.perm.test sw.rob sw.plot

Examples

```r
## simulate vector of logratios
set.seed(3)
logratio <- c(rnorm(20) - 1, rnorm(20))

## invert sign of values and subtract threshold to ensure negative mean
x <- sw.threshold(logratio, function(x) median(x) + .2 * mad(x), sign = -1)

## perform Smith-Waterman algorithm
sw(x, trace = TRUE)
```

Description

Perform a permutation test of island scores from the Smith-Waterman algorithm.

Usage

```r
sw.perm.test(x, max.nIslands = 1, nIter = 1000, seed = NULL, trace = FALSE)
```

Arguments

- `x`: a vector of real values
- `max.nIslands`: number of iterations of the algorithm, each iteration finding the next highest-scoring 'island' of positive values, or NULL to find all islands
- `nIter`: number of permutations of the input data used in the test
- `seed`: seed for the random number generator, or NULL to use a faster random number generator that cannot be seeded
- `trace`: print verbose output if TRUE

Value

A vector of probability values, calculated as the proportion of instances for which performing the Smith-Waterman algorithm on random permutations of the data identifies a higher-scoring island than the islands identified when the algorithm is performed on the original data

Author(s)

T.S.Price
References

See Also

sw

Examples

simulate vector of logratios
set.seed(3)
logratio <- c(rnorm(20) - 1, rnorm(20))

invert sign of values and subtract threshold to ensure negative mean
x <- sw.threshold(logratio, function(x) median(x) + .2 * mad(x), -1)

perform Smith-Waterman
sw(x)

perform permutation test on the islands identified
sw.perm.test(x, max.nIslands = NULL, nIter = 1e4)

sw.plot
Plot Results of Smith-Waterman Algorithm

Description

This function plots the sign-adjusted logratios by their chromosomal location. It can superimpose the location of the highest-scoring island found by the Smith-Waterman algorithm, the results of a robustness analysis, and the expected logratios based on known copy numbers in the test DNA.

Usage

```r
sw.plot(logratio, location = seq(length(logratio)),
        threshold.func = function(x) median(x) + .2 * mad(x),
        sign = -1, highest = TRUE, expected = NULL, rob = NULL, legend = TRUE,
        xlab = "Chromosomal location", ylab = "Intensity log ratio", ...)
```

Arguments

- `logratio`: a vector of logratios, not adjusted for sign or threshold
- `location`: a vector of chromosomal locations corresponding to the log ratios
- `threshold.func`: threshold function: see `sw.threshold`
sign

sign of logratio adjustment: see \texttt{sw.threshold}

highest

plot location of highest-scoring island if TRUE

eXpected

a vector of expected copy numbers, or NULL

rob

a vector of robustness scores, or NULL

legend

plot legend if TRUE

xlab

X axis label

ylab

Y axis label

...

other arguments passed to the 'plot' function

Author(s)

T.S.Price

References

See Also

\texttt{sw \ sw.threshold \ sw.perm.test \ sw.rob}

Examples

```r
## simulate vector of logratios
set.seed(3)
logratio <- c(rnorm(20) - 1, rnorm(20))

## invert sign of values and subtract threshold to ensure negative mean
x <- sw.threshold(logratio, function(x) median(x) + .2 * mad(x), -1)

## perform permutation test for islands identified
p <- sw.perm.test(x, max.nIslands = NULL, nIter = 1e4)

## calculate robustness scores
r <- sw.rob(x)

## plot results
sw.plot(logratio, seq(length(logratio)),
function(x) median(x) + .2 * mad(x), sign = -1, rob = r,
main = paste("Toy dataset, highest-scoring island p =", p[1]))
```
Description

Calculate robustness scores to evaluate how sensitive to the threshold value is the localisation of the highest-scoring island identified by the Smith-Waterman algorithm.

Usage

```r
sw.rob(x, lo.func = function(x) median(x),
       hi.func = function(x) median(x) + .4 * mad(x), prec = 100)
```

Arguments

- `x`: a vector of real values
- `lo.func`: a function for the lowest threshold value
- `hi.func`: a function for the highest threshold value
- `prec`: the precision of the calculation.

Details

This function performs a sensitivity analysis to determine the robustness the localisation of the highest-scoring island obtained by the Smith-Waterman algorithm to different values of the threshold. The Smith-Waterman algorithm is run repeatedly, each time using a different threshold value. The range of threshold values used is that obtained by dividing \((\text{lo.func}(x), \text{hi.func}(x))\) into \(\text{prec}\) equal intervals. The robustness is calculated as the proportion of times that a particular chromosomal location falls within the highest-scoring island.

Value

A vector of robustness values equal in length to the input vector.

Author(s)

T.S. Price

References

See Also

`sw`
sw.threshold

Examples

```r
## simulate vector of logratios
set.seed(3)
logratio <- c(rnorm(20) - 1, rnorm(20))

## invert sign of values and subtract threshold to ensure negative mean
x <- sw.threshold(logratio, function(x) median(x) + .2 * mad(x), -1)

## calculate robustness values
sw.rob(x)
```

sw.threshold

Threshold function

Description

Function to adjust intensity logratios for sign and threshold before performing the Smith-Waterman Algorithm.

Usage

```r
sw.threshold(logratio,  
             threshold.func = function(x) median(x) + .2 * mad(x), sign = +1)
```

Arguments

- `logratio`: a vector of real values, corresponding to fluorescence intensity logratios
- `threshold.func`: function for calculating threshold
- `sign`: sign of logratio adjustment

Details

The purpose of this function is to adjust the microarray fluorescence intensity logratios to ensure that they have the appropriate sign and a mean that is less than zero. `sign = +1` is used to detect polysomy (regions of copy number change increase) in test:control logratios. Conversely, `sign = -1` is used – inverting the sign of the logratios – to detect deletions (regions of copy number decrease). A threshold, calculated using the threshold function, is subtracted from the sign-adjusted logratios to ensure that they have a negative mean. The default threshold function is equal to the median, plus a small constant multiplied by a robust estimator of the standard deviation.

Value

A numeric vector equal to

```
sign * logratio - threshold.func( sign * logratio )
```
Author(s)

T.S. Price

References

See Also

sw

Examples

```r
## simulate vector of logratios
set.seed(3)
logratio <- c(rnorm(20) - 1, rnorm(20))

## invert sign of values and subtract threshold to ensure negative mean
x <- sw.threshold(logratio, function(x) median(x) + .2 * mad(x), sign = -1)

## perform Smith-Waterman algorithm
sw(x, trace = TRUE)
```
Index

*Topic misc
 sw, 2
 sw.perm.test, 3
 sw.plot, 4
 sw.rob, 6
 sw.threshold, 7

sw, 2, 4–6, 8
sw.perm.test, 3, 3, 5
sw.plot, 3, 4
sw.rob, 3, 5, 6
sw.threshold, 2–5, 7