cloudUtil: Cloud Utilization Visualizations

Christian Panse Ermir Qeli

June 9, 2016

Contents

1 Recent changes and updates 2
2 Introduction 2
3 Data preparation 2
4 Analysis 3
1 Recent changes and updates

'vignettes' directory has been migrated.

2 Introduction

cloudUtil is a package for creating comparison plots for
Cluster, Grid and Cloud utilization data. Under utilization data we understand collected
accounting data measuring the job execution time in the above mentioned environments.
The idea behind this package is to create a single visualization of such data that has the
following main features:

• gives an overview over the compute system utilization within a certain time frame
• allows the comparison of job lengths between different platforms giving thus hints on
 how well the respective job queues function e.g. how efficient the queue of Sun Grid
 Engine is performing
• allows the integration of replicates within the same visualization
• allows the comparison on both absolute and relative timescales

The functionality of cloudUtilPlot function was first used in [3].

3 Data preparation

The package includes sample accounting data for demonstration purposes. These data were
collected by comparing the running times of several hundred compute jobs: each one of these
jobs performs peptide-spectrum matching in proteomics (data published in [1]).
The fragment below shows a random extract from the dataset provided in the package:

```r
> library(cloudUtil)
> data(cloudms2)
> cloudms2[sort(sample(nrow(cloudms2),10)),c(1,5,6,15)]

   CLOUD BEGIN_PREPROCESS END_PREPROCESS   id
1348  FGCZ2   1263480345   1263480348  1630
2085  EC2_1   1263510160   1263510169   969
3747  UZH1   1261633035   1261633048   678
3847  UZH2   1263408520   1263408549   579
3889  UZH2   1263421226   1263421248   865
4642  EC2_1   1263508062   1263508069   912
6744  UZH1   1261646787   1261646792  1390
7531  FGCZ1   1263001139   1263001162   280
10760 UZH1  1261645841   1261645847  1330
10872 FGCZ2  1263297904   1263297913    96
```

The attributes of interest are CLOUD, BEGIN_PREPROCESS, END_PREPROCESS, and id. Additionally, it is also possible to use accounting data collected from other sources e.g. Sun Grid Engine accounting data [2].
4 Analysis

The code extract below creates a plot of the data shown in Section 3:

```r
> hist(cloudms2$END_PREPROCESS - cloudms2$BEGIN_PREPROCESS,100)
> ##
> boxplot((cloudms2$END_PROCESS-cloudms2$BEGIN_PROCESS)/3600~cloudms2$CLOUD,
+ main="process time",
+ ylab="time [hours]"
> ##
> boxplot(throughput~cloudms2$CLOUD,
+ main="copy input network throughput",
+ ylab="MBytes/s"
> ##
>
> cloudUtilPlot(begin=cloudms2$BEGIN_PROCESS,
+ end=cloudms2$END_PROCESS,
+ id=cloudms2$id,
+ group=cloudms2$CLOUD)
```

Transparency through alpha blending allows furthermore to compare several plots with each other. An example is given in the code fragment below:

```r
> #green
> col.amazon<-rgb(0.1,0.8,0.1,alpha=0.2)
> col.amazon2<-rgb(0.1,0.8,0.1,alpha=0.2)
> #blue
> col.fgcz<-rgb(0.1,0.1,0.8,alpha=0.2)
> col.fgcz2<-rgb(0.1,0.1,0.5,alpha=0.2)
> #red
> col.uzh<-rgb(0.8,0.1,0.1,alpha=0.2)
> col.uzh2<-rgb(0.5,0.1,0.1,alpha=0.2)
> cm<-c(col.amazon, col.amazon2, col.fgcz, col.fgcz2, col.uzh, col.uzh2)
> jpeg("cloudms2Fig.jpg", 640, 640)
> op<-par(mfrow=c(2,1))
> cloudUtilPlot(begin=cloudms2$BEGIN_PROCESS,
+ end=cloudms2$END_PROCESS,
+ id=cloudms2$id,
+ group=cloudms2$CLOUD,
+ colormap=cm,
+ normalize=FALSE,
+ plotConcurrent=TRUE);
> cloudUtilPlot(begin=cloudms2$BEGIN_PROCESS,
+ end=cloudms2$END_PROCESS,
+ id=cloudms2$id,
+ group=cloudms2$CLOUD,
```

Figure 1: cloudUtilPlot visualization for the cloudms2 data set. On the graphics each horizontal line indicates the start and the end of one single job. Color is used for classifying the different groups. On the upper plot the time of each group was not normalized. The visualization on the bottom on the other side uses normalized time scales which help to compare the compute systems. Transparent colors were used to dial with the overplotting. The solid lines on the bottom plot show the total number of concurrently running jobs. The squares on the solid lines indicate the maxima on the respective system. The user can make use of all R graphic devices.

```r
+    colormap=cm,
+    normalize=TRUE,
+    plotConcurrent=TRUE,
+    plotConcurrentMax=TRUE)
> dev.off()

pdf
2
```

The output of the above listed R session is shown in Figure 1.
References

