Package ‘clusterfly’

February 19, 2015

Type Package
Title Explore clustering interactively using R and GGobi
Version 0.4
Author Hadley Wickham <h.wickham@gmail.com>
Maintainer Hadley Wickham <h.wickham@gmail.com>
Description Visualise clustering algorithms with GGobi. Contains both
general code for visualising clustering results and specific
visualisations for model-based, hierarchical and SOM clustering.

URL http://had.co.nz/clusterfly
Depends rggobi
Imports e1071, reshape2, plyr, RGtk2
Suggests som, mclust, kohonen, ggplot2
License MIT + file LICENSE
LazyData true
NeedsCompilation no
Repository CRAN
Date/Publication 2014-04-24 07:43:09

R topics documented:

addhull ... 2
as.data.frame.clusterfly 2
cfly_animate 3
cfly_clarify 3
cfly_cluster 4
cfly_dist 5
cfly_fluct 5
cfly_pcp 6
cfly_show 7
clarify .. 7
clusterfly 8
as.data.frame.clusterfly

Convert clusterfly object to data.frame. Concatenates data and cluster assignments into one data.frame. Cluster assignments are prefixed with cl_.

Description

Convert clusterfly object to data.frame. Concatenates data and cluster assignments into one data.frame. Cluster assignments are prefixed with cl_.

Usage

```r
## S3 method for class 'clusterfly'
as.data.frame(x, ...)
```
cfly_animate

Arguments

- `x` : clusterfly object
- `...` : ignored

Dynamic plot: Animate glyph colours

Description

This function will animate until you manually break the loop using Ctrl-Break or Ctrl-C.

Usage

```r
cfly_animate(cf, clusters = seq_along(cf$clusters), pause = 1,
             print = TRUE, max_iterations = 100)
```

Arguments

- `cf` : list of cluster ids that you want to animate across
- `clusters` : clusters to display
- `pause` : clusters number of seconds to pause between each change
- `print` : print current cluster to screen?
- `max_iterations` : maximum number of iterations

Examples

```r
# Press Ctrl-Break or Ctrl-C to exit
if (interactive()) {
  o <- olive_example()
  cfly_animate(cfly_clarify(o), max = 5)
  close(o)
}
```

cfly_clarify

Match all cluster indices to common reference.

Description

It's a good idea to run this before running any animation sequences so that unnecessary colour changes are minimised.

Usage

```r
cfly_clarify(cf, reference = 1, method = "rowmax")
```
cfly_cluster

Arguments

- `cf`: clusterfly object
- `reference`: index to reference clustering
- `method`: method to use, see `clarify`

Examples

```r
o <- olive_example()
o <- cfly_clarify(o, "Region")
```

cfly_cluster

Add clustering.

Description

Clustering method needs to respond to clusters, if the default does not work, you will need to write your own to extract clusters.

Usage

```r
cfly_cluster(cf, method, ..., name = deparse(substitute(method))
```

Arguments

- `cf`: clusterfly object
- `method`: clustering method (function)
- `...`: arguments passed to clustering method
- `name`: name of clustering

Examples

```r
o <- olive_example()
cfly_cluster(o, kmeans, 4)
cfly_cluster(o, kmeans, 4, name="blah")
```
Description

This allows you to quickly visualise how the cluster vary in a univariate manner. Currently, it is a bit of a hack, because `ggplot` does not support plots with different scales, so the variables are manually rescaled prior to plotting.

Usage

```r
cfly_dist(cfly, index, scale = "range")
```

Arguments

- `cfly`: clusterfly object
- `index`: clustering to use
- `scale`: scaling to use

Details

This plot is inspired by Gaguin http://www.rosuda.org/gaguin.

Examples

```r
if (require("ggplot2")) {
  o <- olive_example()
  cfly_dist(o, "kmeans")
  cfly_dist(o, "kmeans") + scale_y_continuous(limit=c(0, 2))
}
```

Description

Static plot: Fluctuation diagram. Draw a fluctuation diagram comparing two clusterings.

Usage

```r
cfly_fluct(cfly, a, b, clarify = TRUE)
```
Arguments

`cfly`
clusterfly object

`a`
first clustering, will be reordered to match b if clarify=TRUE

`b`
second clustering

`clarify`
use `clarify` to rearranged cluster indices?

Examples

```r
if (require("ggplot2")) {
  o <- olive_example()
  cfly_fluct(o, "kmeans", "Region")
  cfly_fluct(o, "kmeans", "Region", clarify = FALSE)
}
```

cfly_pcp
Static plot: Parallel coordinates. Draw a parallel coordinates plot, faceted across clustering.

Description

This really only a proof of concept, a truly useful PCP needs interaction, especially to move the variables around.

Usage

cfly_pcp(cfly, index, ...)

Arguments

`cfly`
clusterfly object

`index`
clustering to use

`...`
other arguments passed to `geom_line`

Examples

```r
if (require("ggplot2")) {
  o <- olive_example()
  cfly_pcp(o, "kmeans")
  cfly_pcp(o, "kmeans", alpha = 1/10)
  cfly_pcp(o, "kmeans", alpha = 1/10) + coord_flip()
}
```
cfly_show

Show in ggobi. Opens an instance ggobi for this dataset (if not already open), and colours the points according the cluster assignment.

Usage

cfly_show(cfL idx = "true", hulls = FALSE)

Arguments

 cf clusterfly object
 idx clustering to display
 hulls add convex hull? see addhull for details

Examples

 o <- olive_example()
cfly_show(oL 1I
 cfly_show(o, "Region")
 if (!interactive()) close(o)

clarify

Clarify matrix Clarify matrix ordering to minimize off diagonals

Usage

clarify(a, b, method = "greedy")

Arguments

 a cluster assignments to reassign
 b matrix b
 method clarification method

Value

 vector of reassigned cluster a
See Also

matchClasses

clusterfly

Creates a convenient data structure for dealing with a dataset and a number of alternative clusterings.

Description

Once you have created a clusterfly object, you can add clusterings to it with cfly_cluster, and visualise them in GGobi with cfly_show and cfly_animate. Static graphics are also available: cfly_pcp will produce a parallel coordinates plot, cfly_dist will show the distribution of each variable in each cluster, and cfly_fluct compares two clusterings with a fluctuation diagram.

Usage

clusterfly(df, extra = NULL, rescale = TRUE)

Arguments

df data frame to be clustered
extra extra variables to be included in output, but not clustered
rescale rescale, if true each variable will be scaled to have mean 0 and variance 1.

Details

If you want to standardise the cluster labelling to one group, look at clarify and cfly_clarify

See Also

vignette("introduction")

Examples

ol <- olive_example()

if (interactive()) {
 ggobi(ol)
 cfly_show(ol, "k4-1")
 cfly_animate(ol, max = 5)
 close(ol)
}
cut.hierfly
Cut hierfly object into k clusters/colours.

Description
Cut hierfly object into k clusters/colours.

Usage
```r  
## S3 method for class 'hierfly'  
cut(x, k = 2, g = ggobi(x), ...)  
```

Arguments
- `x`: hierfly object to colour
- `k`: number of clusters
- `g`: GGobi instance displaying `x`, will create new if not specified
- `...`: ignored

Examples
```r  
h <- hierfly(iris)  
hf <- ggobi(h)  
cut(h, 2, hf)  
h <- hierfly(iris, method="ward")  
g <- ggobi(h)  
cut(h, 2, g)  
```

ggobi.hierfly
Visualise hierarchical clustering with GGobi. Displays both data and dendrogram in original high-d space.

Description
This adds four new variables to the original data set:

Usage
```r  
## S3 method for class 'hierfly'  
ggobi(data, ...)  
```

Arguments
- `data`: hierfly object to visualise in GGobi
- `...`: ignored
Details

- ORDER, the order in which the clusters are joined
- HEIGHT, the height of the branch, i.e. the dissimilarity between the branches
- LEVEL, the level of the branch
- POINTS, the number of points in the branch

Make sure to select "attach edge set (edges)" in the edges menu on the plot window, when you create a new plot.

A tour over the original variables will show how the clusters agglomerate in space. Plotting order vs height, level or points will give various types of dendograms. A correlation tour with height/level/points on the y axis and the original variables on the x axis will show a mobile blowing in the wind.

See Also

cut.hierfly

Examples

```r
h <- hierfly(iris)
ggobi(h)
h <- hierfly(iris, method="single")
```

Description

Map variables added as map1 and map2. Plot these to get traditional SOM plot. Tour over all other variables to see how well the map fits the original data.

Usage

```r
## S3 method for class 'som'

ggobi(data, ...)
```

Arguments

- data: SOM object
- ...: ignored
Examples

```r
## Not run:
d.music <- read.csv("http://www.ggobi.org/book/data/music-all.csv")

music <- rescaler(d.music)[complete.cases(d.music), 1:10]
music.som <- som::som(music[, -(1:3)], 6, 6, neigh="bubble", rlen=1000)
ggobi(music.som)

## End(Not run)
## Not run:
d.music <- read.csv("http://www.ggobi.org/book/data/music-all.csv")

music <- rescaler(d.music)[complete.cases(d.music), 1:10]
music.hex <- kohonen::som(music[, -(1:3)], grid = somgrid(3, 3, "hexagonal"), rlen=1000)
music.rect <- kohonen::som(music[, -(1:3)], grid = somgrid(6, 6, "rectangular"), rlen=1000)
ggobi(music.rect)

## End(Not run)
```

hierarchical

Hierachical clustering Convenient methods for hierachical clustering

Description

Hierachical clustering Convenient methods for hierachical clustering

Usage

```r
hierarchical(df, method = "complete", metric = "euclidean", n = 5)
```

Arguments

- `df` data frame
- `method` method to use, see `hclust`
- `metric` distance metric to use, see `dist`
- `n` number of clusters to retrieve, see `cut`
hierfly

Visualising hierarchical clustering. This method supplements a data set with information needed to draw a dendrogram.

Description

Intermediate cluster nodes are added as needed, and positioned at the centroid of the combined clusters.

Usage

hierfly(data, metric = "euclidean", method = "average")

Arguments

data data set
metric distance metric to use, see dist for list of possibilities
method cluster distance measure to use, see hclust for details

Value

object of type, hierfly

See Also

cut.hierfly, ggobi.hierfly

Examples

h <- hierfly(iris)
ggobi(h)
h <- hierfly(iris, method="single")

mefly

Display model based clustering with mvn ellipses. Displays the results of model based clustering with an ellipse drawn from the multivariate normal model for each group.

Description

Display model based clustering with mvn ellipses. Displays the results of model based clustering with an ellipse drawn from the multivariate normal model for each group.

Usage

mefly(model, data)
Arguments

- **model**: output from `me` function
- **data**: input data frame to `me`

Examples

```r
if(require("mclust")) {
  eei <- me(modelName = "EEI", data = iris[, -5], z = unmap(iris[, 5]))
  vvv <- me(modelName = "VVV", data = iris[, -5], z = unmap(iris[, 5]))
  vvi <- me(modelName = "VVI", data = iris[, -5], z = unmap(iris[, 5]))
  mefly(eei, iris[, -5])
  mefly(vvi, iris[, -5])
  mefly(vvv, iris[, -5])
}
```

Description

Example clusterfly object created with olives data

Usage

`olive_example()`
Index

*Topic **cluster**
 cut.hierfly, 9
 ggobi.hierfly, 9
 ggobi.som, 10
 hierarchical, 11
 hierfly, 12
 mefly, 12
*Topic **dataset**
 olive_example, 13
*Topic **dynamic**
 cfly_animate, 3
 cfly_show, 7
 clusterfly, 8
 ggobi.hierfly, 9
 ggobi.som, 10
 mefly, 12
*Topic **hplot**
 addhull, 2
 cfly_dist, 5
 cfly_fluct, 5
 cfly_pcp, 6
*Topic **manip**
 as.data.frame.clusterfly, 2
 cfly_clarify, 3
 cfly_cluster, 4
 clarify, 7

addhull, 2, 7
as.data.frame.clusterfly, 2
cfly_animate, 3, 8
cfly_clarify, 3, 8
cfly_cluster, 4, 8
cfly_dist, 5, 8
cfly_fluct, 5, 8
cfly_pcp, 6, 8
cfly_show, 7, 8
clarify, 4, 6, 7, 8
clusterfly, 8
clusters, 4

cut, 11
cut.hierfly, 9, 10, 12
dist, 11, 12
geom_line, 6
ggobi.hierfly, 9, 12
ggobi.som, 10
ggplot, 5
hclust, 11, 12
hierarchical, 11
hierfly, 12
matchClasses, 8
mefly, 12
olive_example, 13
package-clusterfly(clusterfly), 8