Package ‘coefplot’

February 8, 2018

Type Package
Title Plots Coefficients from Fitted Models
Version 1.2.6
Date 2018-02-07
Author Jared P. Lander
Maintainer Jared P. Lander <packages@jaredlander.com>
Description Plots the coefficients from model objects. This very quickly shows the user the point estimates and confidence intervals for fitted models.
License BSD_3_clause + file LICENSE
LazyLoad yes
Depends ggplot2 (>= 2.0.0)
Imports plyr, reshape2, useful, stats, dplyr (>= 0.6.0), dygraphs, tibble, magrittr, purrr
ByteCompile TRUE
Suggests testthat (>= 2.0.0), covr, glmnet, maxLik, xgboost, knitr, markdown
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2018-02-07 23:34:38 UTC

R topics documented:

annotateSeries .. 2
buildModelCI .. 3
buildModelCI.default .. 4
buildPlotting.default ... 6
coefpath ... 8
coefplot ... 9
coefplot.data.frame .. 11
Description

Annotate a series

Usage

```R
annotateSeries(dygraph, series, x = 0, text = series, tooltip = series, width = 50, ...)
```
buildModelCI

Arguments

- **dygraph**: Dygraph to add an annotation to
- **series**: Series to attach the annotation to. By default, the last series defined using `dySeries`.
- **x**: Either numeric or date value indicating where to place the annotation. For date value, this should be of class `POSIXct` or convertible to `POSIXct`.
- **text**: Text to overlay on the chart at the location of `x`
- **tooltip**: Additional tooltip text to display on mouse hover
- **width**: Width (in pixels) of the annotation flag.
- **...**: Further arguments passed to `link[dygraphs]{dyAnnotation}`

Details

A helper function that changes the order of some options for `link[dygraphs]{dyAnnotation}` so it is easier to use with `reduce`.

Author(s)

Jared P. Lander

buildModelCI

buildModelCI

Description

Construct Confidence Interval Values

Usage

`buildModelCI(model, ...)`

Arguments

- **model**: A Fitted model such as from `lm`, `glm`
- **...**: Arguments passed on onto other methods

Details

Takes a model and builds a data.frame holding the coefficient value and the confidence interval values.

Value

A `data.frame` listing coefficients and confidence bands.
Author(s)
Jared P. Lander

See Also
coeplot multiplot

Examples

data(diamonds)
modell <- lm(price ~ carat + cut, data=diamonds)
coefplot:::buildModelCI(modell)
coefplot(modell)

Description
Construct Confidence Interval Values

Usage

Default S3 method:
builtModelCI.default

Arguments

model A Fitted model such as from lm, glm
outerCI How wide the outer confidence interval should be, normally 2 standard deviations. If 0, then there will be no outer confidence interval.
innerCI How wide the inner confidence interval should be, normally 1 standard deviation. If 0, then there will be no inner confidence interval.
intercept logical; Whether the Intercept coefficient should be plotted
numeric logical; If true and factors has exactly one value, then it is displayed in a horizontal graph with continuous confidence bounds.; not used for now.
sort Determines the sort order of the coefficients. Possible values are c("natural", "magnitude", "alphabetical")
predictors A character vector specifying which variables to keep. Each individual variable has to be specified, so individual levels of factors must be specified. We are working on making this easier to implement, but this is the only option for now.

strict If TRUE then predictors will only be matched to its own coefficients, not its interactions

coefficients A character vector specifying which factor variables to keep. It will keep all levels and any interactions, even if those are not listed.

newNames Named character vector of new names for coefficients

trans A transformation function to apply to the values and confidence intervals. identity by default. Use invlogit for binary regression.

decreasing logical; Whether the coefficients should be ascending or descending

name A name for the model, if NULL the call will be used

interceptName Specifies name of intercept if case it is not the default of "(Intercept).

... See Details for information on factors, only and shorten

Details

Takes a model and builds a data.frame holding the coefficient value and the confidence interval values.

Value

A data.frame listing coefficients and confidence bands.

Author(s)

Jared P. Lander

See Also

c coefplot multiplot

Examples

data(diamonds, package='ggplot2')
model1 <- lm(price ~ carat + cut, data=diamonds)
coefplot:::buildModelCI(model1)
coefplot(model1)
buildPlotting.default

Description

Build ggplot object for coefplot

Usage

buildPlotting.default(modelCI, title = "Coefficient Plot", xlab = "Value", ylab = "Coefficient", lwdInner = 1, lwdOuter = 0, pointSize = 3, color = "blue", cex = 0.8, textAngle = 0, numberAngle = 0, shape = 16, linetype = 1, outerCI = 2, innerCI = 1, multi = FALSE, zeroColor = "grey", zeroLWD = 1, zeroType = 2, numeric = FALSE, fillColor = "grey", alpha = 1/2, horizontal = FALSE, facet = FALSE, scales = "free", value = "Value", coefficient = "Coefficient", errorHeight = 0, dodgeHeight = 1)

Arguments

modelCI
- An object created by buildModelCI

title
- The name of the plot, if NULL then no name is given

xlab
- The x label

ylab
- The y label

lwdInner
- The thickness of the inner confidence interval

lwdOuter
- The thickness of the outer confidence interval

pointSize
- Size of coefficient point

color
- The color of the points and lines

cex
- The text size multiplier, currently not used

textAngle
- The angle for the coefficient labels, 0 is horizontal

numberAngle
- The angle for the value labels, 0 is horizontal

shape
- The shape of the points

linetype
- The linetype of the error bars

outerCI
- How wide the outer confidence interval should be, normally 2 standard deviations. If 0, then there will be no outer confidence interval.

innerCI
- How wide the inner confidence interval should be, normally 1 standard deviation. If 0, then there will be no inner confidence interval.

multi
- Logical; If this is for multiplot then leave the colors as determined by the legend, if FALSE then make all colors the same

zeroColor
- The color of the line indicating 0

zeroLWD
- The thickness of the 0 line
buildPlotting.default

zeroType The type of 0 line, 0 will mean no line
numeric logical; If true and factors has exactly one value, then it is displayed in a horizontal graph with continuous confidence bounds.
fillColor The color of the confidence bounds for a numeric factor
alpha The transparency level of the numeric factor’s confidence bound
horizontal logical; If the plot should be displayed horizontally
facet logical; If the coefficients should be faceted by the variables, numeric coefficients (including the intercept) will be one facet
scales The way the axes should be treated in a faceted plot. Can be c("fixed", "free", "free_x", "free_y")
value Name of variable for value metric
coefficient Name of variable for coefficient names
errorHeight Height of error bars
dodgeHeight Amount of vertical dodging

Details

This function builds up the ggplot layer by layer for `coefplot.lm`

Value

a ggplot graph object

Author(s)

Jared P. Lander www.jaredlander.com

See Also

`coefplot.default` `coefplot` `multiplot`

Examples

data(diamonds)
model1 <- lm(price ~ carat + cut, data=diamonds)
theCI <- coefplot:::buildModelCI(model1)
coefplot:::buildPlotting.default(theCI)
coefplot(model1)
Description

Visualize the coefficient path resulting from the elastic net

Usage

```
coefpath(model, ...)  
```

S3 method for class 'glmnet'
```
coefpath(model, xlab = "Log Lambda", ylab = "Coefficients",  
showLegend = c("onmouseover", "auto", "always", "follow", "never"),  
annotate = TRUE, elementID = NULL, ...)
```

S3 method for class 'cv.glmnet'
```
coefpath(model, xlab = "Log Lambda",  
ylab = "Coefficients", showLegend = c("onmouseover", "auto", "always",  
"follow", "never"), annotate = TRUE, colorMin = "black",  
strokePatternMin = "dotted", labelMin = "lambda.min",  
locMin = c("bottom", "top"), color1se = "black",  
strokePattern1se = "dotted", label1se = "lambda.1se",  
loc1se = c("bottom", "top"), ...)
```

Arguments

- `model`: A `glmnet` model
- `...`: Arguments passed on to `extractPath`
- `xlab`: x-axis label
- `ylab`: y-axis label
- `showLegend`: When to display the legend. Specify "always" to always show the legend. Specify "onmouseover" to only display it when a user mouses over the chart. Specify "follow" to have the legend show as overlay to the chart which follows the mouse. The default behavior is "auto", which results in "always" when more than one series is plotted and "onmouseover" when only a single series is plotted.
- `annotate`: If TRUE (default) plot the name of the series
- `elementID`: Unique identified for dygraph, if NULL it will be randomly generated
- `colorMin`: Color for line showing lambda.min
- `strokePatternMin`: Stroke pattern for line showing lambda.min
- `labelMin`: Label for line showing lambda.min
- `locMin`: Location for line showing lambda.min, can be 'bottom' or 'top'
coefplot

`coefplot`

Description

Provides an S3 generic method for plotting coefficients from a model so it can be extended to other model types.

A graphical display of the coefficients and standard errors from a fitted model.

Value

A dygraphs object

Author(s)

Jared P. Lander

Examples

```r
library(glmnet)
library(ggplot2)
library(useful)
data(diamonds)
diaX <- useful::buildX(price ~ carat + cut + x - 1, data=diamonds, contrasts = TRUE)
diaY <- useful::buildY(price ~ carat + cut + x - 1, data=diamonds)
modG1 <- glmnet(x=diaX, y=diaY)
coefpath(modG1)

modG2 <- cv.glmnet(x=diaX, y=diaY, nfolds=5)
coefpath(modG2)

x <- matrix(rnorm(100*20),100,20)
y <- rnorm(100)
fit1 <- glmnet(x, y)
coefpath(fit1)
```
Usage

coefplot(model, ...)

Arguments

model The fitted model with coefficients to be plotted
...

See coefplot.lm for argument details

Details

Currently, methods are available for lm, glm and rxLinMod objects.
coefplot is the S3 generic method for plotting the coefficients from a fitted model.
This can be extended with new methods for other types of models not currently available.
A future iteration of coefplot.glm will also allow for plotting the coefficients on the transformed scale.
See coefplot.lm for specific documentation and the return value.

Value

A ggplot2 object or data.frame. See details in coefplot.lm for more information

Author(s)

Jared P. Lander

See Also

coefplot.lm

Examples

data(diamonds)
head(diamonds)
model1 <- lm(price ~ carat + cut*color, data=diamonds)
model2 <- lm(price ~ carat+color, data=diamonds)
model3 <- glm(price > 10000 ~ carat+color, data=diamonds)
coefplot(model1)
coefplot(model2)
coefplot(model3)
coefplot(model1, predictors="color")
coefplot(model1, predictors="color", strict=TRUE)
coefplot(model1, coefficients=c("(Intercept)", "color.Q"))
coefplot(model1, predictors="cut", coefficients=c("(Intercept)", "color.Q"), strict=TRUE)
coefplot(model1, predictors="cut", coefficients=c("(Intercept)", "color.Q"), strict=FALSE)
coefplot(model1, predictors="cut", coefficients=c("(Intercept)", "color.Q"),
strict=TRUE, newNames=c(color.Q="Color", "cut^4="Fourth"))
coefplot(model1, predictors=c("(Intercept)", "carat"), newNames=c(carat="Size"))
coefplot(model1, predictors=c("(Intercept)", "carat"),
newNames=c(carat="Size", "(Intercept)"="Constant"))

description

Dotplot for coefficients

Usage

S3 method for class 'data.frame'
coefplot(model, title = "Coefficient Plot",
 xlab = "Value", ylab = "Coefficient", lwdInner = 1, lwdOuter = 0,
 pointSize = 3, color = "blue", cex = 0.8, textAngle = 0,
 numberAngle = 0, shape = 16, linetype = 1, outerCI = 2, innerCI = 1,
 multi = FALSE, zeroColor = "grey", zeroLWD = 1, zeroType = 2,
 numeric = FALSE, fillColor = "grey", alpha = 1/2, horizontal = FALSE,
 facet = FALSE, scales = "free", value = "Value",
 coefficient = "Coefficient", errorHeight = 0, dodgeHeight = 1, ...)

Arguments

model A data.frame like that built from coefplot(..., plot=FALSE)
title The name of the plot, if NULL then no name is given
xlab The x label
ylab The y label
lwdInner The thickness of the inner confidence interval
lwdOuter The thickness of the outer confidence interval
pointSize Size of coefficient point
color The color of the points and lines
cex The text size multiplier, currently not used
textAngle The angle for the coefficient labels, 0 is horizontal
numberAngle The angle for the value labels, 0 is horizontal
shape The shape of the points
linetype The linetype of the error bars
outerCI How wide the outer confidence interval should be, normally 2 standard deviations. If 0, then there will be no outer confidence interval.
innerCI How wide the inner confidence interval should be, normally 1 standard deviation. If 0, then there will be no inner confidence interval.
multi logical; If this is for multiplot then leave the colors as determined by the leg-
zeroColor The color of the line indicating 0
zeroLWD The thickness of the 0 line
zeroType The type of 0 line, 0 will mean no line
numeric logical; If true and factors has exactly one value, then it is displayed in a horizontal graph with continuous confidence bounds.
fillColor The color of the confidence bounds for a numeric factor
alpha The transparency level of the numeric factor’s confidence bound
horizontal logical; If the plot should be displayed horizontally
facet logical; If the coefficients should be faceted by the variables, numeric coefficients (including the intercept) will be one facet
scales The way the axes should be treated in a faceted plot. Can be c("fixed", "free", "free_x", "free_y")
value Name of variable for value metric
coefficient Name of variable for coefficient names
errorHeight Height of error bars
dodgeHeight Amount of vertical dodging
... Further Arguments

Details
A graphical display of the coefficients and standard errors from a fitted model, this function uses a data.frame as the input.

Value
a ggplot graph object

Author(s)
Jared P. Lander

Examples
data(diamonds)
head(diamonds)
model1 <- lm(price ~ carat + cut+color, data=diamonds)
model2 <- lm(price ~ carat*color, data=diamonds)
df1 <- coefplot(model1, plot=FALSE)
df2 <- coefplot(model2, plot=FALSE)
coefplot(df1)
coefplot(df2)
Description

Dotplot for coefficients

Usage

```r
## Default S3 method:
coefplot(model, title = "Coefficient Plot",
xlab = "Value", ylab = "Coefficient", innerCI = 1, outerCI = 2,
lwdInner = 1, lwdOuter = 0, pointSize = 3, color = "blue",
shape = 16, cex = 0.8, textAngle = 0, numberAngle = 0,
zeroColor = "grey", zeroLWD = 1, zeroType = 2, facet = FALSE,
scales = "free", sort = c("natural", "magnitude", "alphabetical"),
decreasing = FALSE, numeric = FALSE, fillColor = "grey", alpha = 1/2,
horizontal = FALSE, factors = NULL, only = NULL, shorten = TRUE,
intercept = TRUE, interceptName = "(Intercept)", coefficients = NULL,
predictors = NULL, strict = FALSE, trans = identity, newNames = NULL,
plot = TRUE, ...)
```

Arguments

- `model` The model to plot.
- `title` The name of the plot, if NULL then no name is given
- `xlab` The x label
- `ylab` The y label
- `innerCI` How wide the inner confidence interval should be, normally 1 standard deviation. If 0, then there will be no inner confidence interval.
- `outerCI` How wide the outer confidence interval should be, normally 2 standard deviations. If 0, then there will be no outer confidence interval.
- `lwdInner` The thickness of the inner confidence interval
- `lwdOuter` The thickness of the outer confidence interval
- `pointSize` Size of coefficient point
- `color` The color of the points and lines
- `shape` The shape of the points
- `cex` The text size multiplier, currently not used
- `textAngle` The angle for the coefficient labels, 0 is horizontal
- `numberAngle` The angle for the value labels, 0 is horizontal
- `zeroColor` The color of the line indicating 0
- `zeroLWD` The thickness of the 0 line
zeroType: The type of 0 line, 0 will mean no line

facet: logical; If the coefficients should be faceted by the variables, numeric coefficients (including the intercept) will be one facet. Currently not available.

scales: The way the axes should be treated in a faceted plot. Can be c("fixed", "free", "free_x", "free_y"). Currently not available.

sort: Determines the sort order of the coefficients. Possible values are c("natural", "normal", "magnitude", "size", "alphabetical")

decreasing: logical; Whether the coefficients should be ascending or descending

numeric: logical; If true and factors has exactly one value, then it is displayed in a horizontal graph with continuous confidence bounds. Currently not available.

fillColor: The color of the confidence bounds for a numeric factor. Currently not available.

alpha: The transparency level of the numeric factor’s confidence bound. Currently not available.

horizontal: logical; If the plot should be displayed horizontally. Currently not available.

factors: Vector of factor variables that will be the only ones shown

only: logical; If factors has a value this determines how interactions are treated. True means just that variable will be shown and not its interactions. False means interactions will be included.

shorten: logical or character; If FALSE then coefficients for factor levels will include their variable name. If TRUE coefficients for factor levels will be stripped of their variable names. If a character vector of variables only coefficients for factor levels associated with those variables will the variable names stripped. Currently not available.

intercept: logical; Whether the Intercept coefficient should be plotted

interceptName: Specifies name of intercept it case it is not the default of "(Intercept)".

coefficients: A character vector specifying which factor coefficients to keep. It will keep all levels and any interactions, even if those are not listed.

predictors: A character vector specifying which coefficients to keep. Each individual coefficient can be specified. Use predictors to specify entire factors.

strict: If TRUE then predictors will only be matched to its own coefficients, not its interactions

trans: A transformation function to apply to the values and confidence intervals. identity by default. Use invlogit for binary regression.

newNames: Named character vector of new names for coefficients

plot: logical; If the plot should be drawn, if false then a data.frame of the values will be returned

... Arguments passed on to other functions

Details

A graphical display of the coefficients and standard errors from a fitted model
coeffplot is the S3 generic method for plotting the coefficients from a fitted model.
This method also plots coefficients from glm (using coefplot.lm) and rxLinMod models (through a redirection from coefplot.rxLinMod)
Value

If plot is TRUE then a ggplot object is returned. Otherwise a data.frame listing coefficients and confidence bands is returned.

Author(s)

Jared P. Lander

See Also

lm glm ggplot coefplot plotcoef

Examples

data(diamonds)
head(diamonds)
model1 <- lm(price ~ carat + cut*color, data=diamonds)
model2 <- lm(price ~ carat*color, data=diamonds)
coefplot(model1)
coefplot(model2)
coefplot(model1, predictors="color")
coefplot(model1, predictors="color", strict=TRUE)
coefplot(model1, coefficients=c("(Intercept)", "color.Q"))

Description

Dotplot for glm coefficients

Usage

S3 method for class 'glm'
coefplot(...)

Arguments

... All arguments are passed on to coefplot.default. Please see that function for argument information.

Details

A graphical display of the coefficients and standard errors from a fitted glm model

coefplot is the S3 generic method for plotting the coefficients from a fitted model.

For more information on this function and it's arguments see coefplot.default
Value

A ggplot object. See `coefplot.lm` for more information.

Author(s)

Jared P. Lander

Examples

```r
model2 <- glm(price > 10000 ~ carat + cut*color, data=diamonds, family=binomial(link="logit"))
coefplot(model2)
coefplot(model2, trans=invlogit)
```

Description

Dotplot for lm coefficients

Usage

```r
## S3 method for class 'lm'
coefplot(...)```

Arguments

`...` All arguments are passed on to `coefplot.default`. Please see that function for argument information.

Details

A graphical display of the coefficients and standard errors from a fitted lm model.

`coefplot` is the S3 generic method for plotting the coefficients from a fitted model.

For more information on this function and it's arguments see `coefplot.default`

Value

A ggplot object. See `coefplot.lm` for more information.

Author(s)

Jared P. Lander
Examples

```r
mod1 <- lm(price ~ carat + cut*color, data=diamonds)
coefplot(mod1)
```

Description

Dotplot for rxGlm coefficients

Usage

```r
S3 method for class 'rxGlm'
coefplot(...)
```

Arguments

... All arguments are passed on to `coefplot.default`. Please see that function for argument information.

Details

A graphical display of the coefficients and standard errors from a fitted rxGlm model.

`coefplot` is the S3 generic method for plotting the coefficients from a fitted model.

For more information on this function and it's arguments see `coefplot.default`

Value

A ggplot object. See `coefplot.lm` for more information.

Author(s)

Jared P. Lander

Examples

```r
Not run:
mod4 <- rxGlm(price ~ carat + cut + x, data=diamonds)
mod5 <- rxGlm(price > 10000 ~ carat + cut + x, data=diamonds, family="binomial")
coefplot(mod4)
coefplot(mod5)

End(Not run)
```
Description

Dotplot for rxLinMod coefficients

Usage

```r
S3 method for class 'rxLinMod'
coefplot(...)
```

Arguments

... All arguments are passed on to `coefplot.lm`. Please see that function for argument information.

Details

A graphical display of the coefficients and standard errors from a fitted rxLinMod model.

`coefplot` is the S3 generic method for plotting the coefficients from a fitted model.

For more information on this function and it's arguments see `coefplot.lm`

Value

A ggplot object. See `coefplot.lm` for more information.

Author(s)

Jared P. Lander www.jaredlander.com

Examples

```r
Not run:
data(diamonds)
mod3 <- rxLinMod(price ~ carat + cut + x, data=diamonds)
coefplot(mod3)

End(Not run)
```
**Description**

Dotplot for rxLogit coefficients

**Usage**

```r
S3 method for class 'rxLogit'
ccoefplot(...)
```

**Arguments**

`...`  All arguments are passed on to `coefplot.lm`. Please see that function for argument information.

**Details**

A graphical display of the coefficients and standard errors from a fitted rxLogit model

`coefplot` is the S3 generic method for plotting the coefficients from a fitted model.

For more information on this function and its arguments see `coefplot.lm`

**Value**

A ggplot object. See `coefplot.lm` for more information.

**Author(s)**

Jared P. Lander www.jaredlander.com

**Examples**

```r
Not run:
data(diamonds)
mod6 <- rxLogit(price > 10000 ~ carat + cut + x, data=diamonds)
ccoefplot(mod6)

End(Not run)
```
doRegex

**Description**

Helper function for matching coefficients

**Usage**

```r
doRegex(x, matchAgainst, pattern = "(^|)%s($|,|=)"")
```

**Arguments**

- `x` Root pattern to search for
- `matchAgainst` Text to search through
- `pattern` Regex pattern to build x into

**Details**

Only used by `getCoefsFromPredictorsRevo` for finding matches between predictors and coefficients

**Value**

A list of indices of matchAgainst that is matched

**Author(s)**

Jared P. Lander

---

extract.coef

**Description**

Extract Coefficient Information from glm Models

**Usage**

```r
extract.coef(model, ...)
```

**Arguments**

- `model` Model object to extract information from.
- `...` Further arguments
Details

Gets the coefficient values and standard errors, and variable names from a glm model.

Value

A data.frame containing the coefficient, the standard error and the variable name.

Author(s)

Jared P. Lander

Examples

```r
Not run:
require(ggplot2)
data(diamonds)
library(coefplot)
mod1 <- lm(price ~ carat + cut + x, data=diamonds)
mod2 <- glm(price > 10000 ~ carat + cut + x, data=diamonds, family=binomial(link="logit"))
mod3 <- lm(price ~ carat*cut + x, data=diamonds)
extract.coef(mod1)
extract.coef(mod2)
extract.coef(mod3)

mod4 <- rXlinMod(price ~ carat*cut + x, diamonds)
End(Not run)
```

Description

Extract Coefficient Information from Models

Usage

```r
S3 method for class 'cv.glmnet'
extract.coef(model, lambda = "lambda.min", ...)
```

Arguments

- `model` : Model object from which to extract information.
- `lambda` : Value of penalty parameter. Can be either a numeric value or one of "lambda.min" or "lambda.1se"
- `...` : Further arguments
### Details

Gets the coefficient values and variable names from a model. Since glmnet does not have standard errors, those will just be NA.

### Value

A data.frame containing the coefficient, the standard error and the variable name.

### Author(s)

Jared P. Lander

### Examples

```r
library(glmnet)
library(ggplot2)
library(useful)
data(diamonds)
diaX <- useful::build.x(price ~ carat + cut + x - 1, data=diamonds, contrasts=FALSE)
diaY <- useful::build.y(price ~ carat + cut + x - 1, data=diamonds)
modG1 <- cv.glmnet(x=diaX, y=diaY, k=5)
extract.coef(modG1)
```

---

**Description**

Extract Coefficient Information from Models

**Usage**

```r
Default S3 method:
extract.coef(model, ...)
```

**Arguments**

- `model` Model object to extract information from.
- `...` Further arguments

**Details**

Gets the coefficient values and standard errors, and variable names from a model.

**Value**

A data.frame containing the coefficient, the standard error and the variable name.
Examples

```r
Not run:
require(ggplot2)
library(coefplot)
data(diamonds)
mod1 <- lm(price ~ carat + cut + x, data=diamonds)
exttract.coef(mod1)

End(Not run)
```

Description

Extract Coefficient Information from glm Models

Usage

```r
S3 method for class 'glm'
extact.coef(model, ...)
```

Arguments

- `model` Model object to extract information from.
- `...` Further arguments

Details

Gets the coefficient values and standard errors, and variable names from a glm model.

Value

A `data.frame` containing the coefficient, the standard error and the variable name.

Author(s)

Jared P. Lander
Examples

```r
Not run:
require(ggplot2)
data(diamonds)
library(coefplot)
mod2 <- glm(price > 10000 ~ carat + cut + x, data=diamonds, family=binomial(link="logit"))
ext.coef(mod2)

End(Not run)
```

Description

Extract Coefficient Information from Models

Usage

```r
S3 method for class 'glmnet'
ext.coef(model, lambda = stats::median(model$lambda), ...)
```

Arguments

- `model`: Model object from which to extract information.
- `lambda`: Value of penalty parameter
- `...`: Further arguments

Details

Gets the coefficient values and variable names from a model. Since glmnet does not have standard errors, those will just be NA.

Value

A `data.frame` containing the coefficient, the standard error and the variable name.

Author(s)

Jared P. Lander
Examples

## Not run:
library(glmnet)
library(ggplot2)
library(useful)
data(diamonds)
diaX <- build.x(price ~ carat + cut + x - 1, data=diamonds, contrasts = TRUE)
diaY <- build.y(price ~ carat + cut + x - 1, data=diamonds)
modG1 <- glmnet(x=diaX, y=diaY)
exttract.coef(modG1)

## End(Not run)

---

**Description**

Extract Coefficient Information from lm Models

**Usage**

```r
S3 method for class 'lm'
extact.coef(model, ...)
```

**Arguments**

- `model` Model object to extract information from.
- `...` Further arguments

**Details**

Gets the coefficient values and standard errors, and variable names from an lm model.

**Value**

A `data.frame` containing the coefficient, the standard error and the variable name.

**Author(s)**

Jared P. Lander
Examples

```r
Not run:
require(ggplot2)
data(diamonds)
library(coefplot)
mod1 <- lm(price ~ carat + cut + x, data=diamonds)
extract.coef(mod1)

End(Not run)
```

Description

Extract Coefficient Information from Models

Usage

```r
S3 method for class 'maxLik'
extract.coef(model, ...)
```

Arguments

- `model`: Model object from which to extract information.
- `...`: Further arguments

Details

Gets the coefficient values and variable names from a model.

Value

A `data.frame` containing the coefficient, the standard error and the variable name.

Author(s)

Jared P. Lander

Examples

```r
Not run:
library(maxLik)
loglik <- function(param) {
 mu <- param[1]
 sigma <- param[2]
 ll <- -0.5*N*log(2*pi) - N*log(sigma) - sum(0.5*(x - mu)^2/sigma^2)
```
Description

Extract Coefficient Information from rxGlm Models

Usage

## S3 method for class 'rxGlm'
extract.coef(model, ...)

Arguments

model Model object to extract information from.
...
Further arguments

Details

Gets the coefficient values and standard errors, and variable names from an rxGlm model.

Value

A data.frame containing the coefficient, the standard error and the variable name.

Author(s)

Jared P. Lander

Examples

## Not run:
require(ggplot2)
data(diamonds)
mod4 <- rxGlm(price ~ carat + cut + x, data=diamonds)
mod5 <- rxGlm(price > 10000 ~ carat + cut + x, data=diamonds, family="binomial")
extract.coef(mod4)
extract.coef(mod5)

## End(Not run)
Description

Extract Coefficient Information from rxLinMod Models

Usage

```r
S3 method for class 'rxLinMod'
extract.coef(model, ...)
```

Arguments

- `model`: Model object to extract information from.
- `...`: Further arguments

Details

Gets the coefficient values and standard errors, and variable names from an rxLinMod model.

Value

A `data.frame` containing the coefficient, the standard error and the variable name.

Author(s)

Jared P. Lander

Examples

```r
Not run:
require(ggplot2)
data(diamonds)
mod3 <- rxLinMod(price ~ carat + cut + x, data=diamonds)
extract.coef(mod3)
End(Not run)
```
Description

Extract Coefficient Information from rxLogit Models

Usage

```r
S3 method for class 'rxLogit'
extract.coef(model, ...)
```

Arguments

- `model` Model object to extract information from.
- `...` Further arguments

Details

Gets the coefficient values and standard errors, and variable names from an rxLogit model.

Value

A `data.frame` containing the coefficient, the standard error and the variable name.

Author(s)

Jared P. Lander

Examples

```r
Not run:
require(ggplot2)
data(diamonds)
mod6 <- rxLogit(price > 10000 ~ carat + cut + x, data=diamonds)
extract.coef(mod6)
End(Not run)
```
**extract.coef.xgb.Booster**

**Description**

Extract Coefficient Information from Models

**Usage**

```r
S3 method for class 'xgb.Booster'
extract.coef(model, feature_names = NULL,
 removeNonSelected = TRUE, ...)
```

**Arguments**

- `model`:
  Model object from which to extract information.
- `feature_names`:
  Names of coefficients.
- `removeNonSelected`:
  If TRUE (default) do not return the non-selected (0) coefficients.
- `...`:
  Further arguments.

**Details**

Gets the coefficient values and variable names from a model. Since xgboost does not have standard errors, those will just be NA.

**Value**

A `data.frame` containing the coefficient, the standard error and the variable name.

**Author(s)**

Jared P. Lander

**Examples**

```r
library(xgboost)
data(diamonds, package='ggplot2')
diaX <- useful::build.x(price ~ carat + cut + x, data=diamonds, contrasts=FALSE)
diaY <- useful::build.y(price ~ carat + cut + x, data=diamonds)
xg1 <- xgboost(data=diaX, label=diaY, booster='gblinear',
 objective='reg:linear', eval_metric='rmse',
 nrounds=50
)
extract.coef(xg1)
ex```
Description

Extracts the coefficient path of the elastic net

Usage

```r
extractPath(model, ...)  
```

```r
## S3 method for class 'glmnet'
extractPath(model, intercept = FALSE, ...)
```

```r
## S3 method for class 'cv.glmnet'
extractPath(model, ...)
```

Arguments

- `model`: A `glmnet` model
- `...`: Further arguments
- `intercept`: If FALSE (the default), no intercept will be provided

Details

This is a replacement plot for visualizing the coefficient path resulting from the elastic net.

Value

A link[tibble]{tibble} holding the coefficients for various lambdas

Author(s)

Jared P. Lander

Examples

```r
library(glmnet)
data(diamonds, package='ggplot2')
diaX <- useful::build.x(price ~ carat + cut + x - 1, data=diamonds, contrasts = TRUE)
diaY <- useful::build.y(price ~ carat + cut + x - 1, data=diamonds)
modG1 <- glmnet(x=diaX, y=diaY)
extractPath(modG1)

modG2 <- cv.glmnet(x=diaX, y=diaY, nfolds=5)
extractPath(modG2)
```
get.assign

Description
The assignment vector for a model

Usage
```r
get.assign(model, ...)
```

Arguments
- `model`: Fitted model
- `...`: Further arguments

Details
Gets relative positions of predictors

Value
The assignment vector

Author(s)
Jared P. Lander

get.assign.glm

Description
The assignment vector for a glm model

Usage
```r
# S3 method for class 'glm'
get.assign(model, ...)
```

Arguments
- `model`: Fitted model
- `...`: Further arguments
get.assign.lm

Details

Gets relative positions of predictors

Value

The assignment vector

Author(s)

Jared P. Lander

get.assign.lm

Description

The assignment vector for an lm model

Usage

```r
## S3 method for class 'lm'
get.assign(model, ...)
```

Arguments

- `model` Fitted model
- `...` Further arguments

Details

Gets relative positions of predictors

Value

The assignment vector

Author(s)

Jared P. Lander
getCoefsFromPredictors

Description

Generic function for finding which coefficients go with which predictors

Usage

getCoefsFromPredictors(model, predictors, ...)

Arguments

model A fitted model
predictors A character vector of predictors to match against
... further arguments

Details

The user specifies predictors whose coefficients should be included in the coefplot.

Value

A character vector of coefficients listing the coefficients that match the predictor

Author(s)

Jared P. Lander

getCoefsFromPredictors.default

Description

Default function (lm, glm) for matching coefficients with predictors

Usage

Default S3 method:
getCoefsFromPredictors(model, predictors = NULL,
strict = FALSE, ...)
getCoefsFromPredictors.rxGlm

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>A fitted model</td>
</tr>
<tr>
<td>predictors</td>
<td>A character vector of predictors to match against. Interactions can be explicitly specified by VariableA:VariableB.</td>
</tr>
<tr>
<td>strict</td>
<td>Logical specifying if interactions terms should be included (FALSE) or just the main terms (TRUE).</td>
</tr>
</tbody>
</table>

Details

The user specifies predictors whose coefficients should be included in the coefplot.

Value

A character vector of coefficients listing the coefficients that match the predictor

Author(s)

Jared P. Lander

desc

Description

Function for matching coefficients with predictors for rxGlm

Usage

```r
## S3 method for class 'rxGlm'
getCoefsFromPredictors(model, predictors = NULL,
strict = FALSE, ...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>A fitted model</td>
</tr>
<tr>
<td>predictors</td>
<td>A character vector of predictors to match against</td>
</tr>
<tr>
<td>strict</td>
<td>Logical specifying if interactions terms should be included (FALSE) or just the main terms (TRUE).</td>
</tr>
</tbody>
</table>

Details

The user specifies predictors whose coefficients should be included in the coefplot.
Value

A character vector of coefficients listing the coefficients that match the predictor

Author(s)

Jared P. Lander

getCoefsFromPredictors.rxLinMod

Description

Function for matching coefficients with predictors for rxLinMod

Usage

```r
## S3 method for class 'rxLinMod'
getCoefsFromPredictors(model, predictors = NULL,
                      strict = FALSE, ...)
```

Arguments

- `model` A fitted model
- `predictors` A character vector of predictors to match against
- `strict` Logical specifying if interactions terms should be included (FALSE) or just the main terms (TRUE).
- `...` further arguments

Details

The user specifies predictors whose coefficients should be included in the coefplot.

Value

A character vector of coefficients listing the coefficients that match the predictor

Author(s)

Jared P. Lander
Function for matching coefficients with predictors for rxLogit

Usage

```r
## S3 method for class 'rxLogit'
getCoefsFromPredictors(model, predictors = NULL, strict = FALSE, ...)
```

Arguments

- `model`: A fitted model
- `predictors`: A character vector of predictors to match against
- `strict`: Logical specifying if interactions terms should be included (FALSE) or just the main terms (TRUE).
- `...`: further arguments

Details

The user specifies predictors whose coefficients should be included in the coefplot.

Value

A character vector of coefficients listing the coefficients that match the predictor

Author(s)

Jared P. Lander

Function that does the work for Revo models for matching coefficients with predictors

Usage

```r
getCoefsFromPredictorsRevo(model, predictors = NULL, strict = FALSE, ...)
```
Arguments

- **model**: A fitted model
- **predictors**: A character vector of predictors to match against
- **strict**: Logical specifying if interactions terms should be included (FALSE) or just the main terms (TRUE).
- **...**: further arguments

Details

The user specifies predictors whose coefficients should be included in the coefplot.

Value

A character vector of coefficients listing the coefficients that match the predictor. As of now interactions cannot be explicitly specified.

Author(s)

Jared P. Lander

invlogit

invlogit

Description

Calculates the inverse logit

Usage

`invlogit(x)`

Arguments

- **x**: Vector of numbers

Details

Maps the real line to [0, 1]

Value

- `x` mapped to [0, 1]

Author(s)

Jared P. Lander
matchCoefs

Examples

```
invlogit(3)
invlogit(-6:6)
invlogit(c(-1, 1, 2))
```

Description

Match coefficients to predictors

Usage

```
matchCoefs(model, ...)
```

Arguments

- **model**: Fitted model
- **...**: Further arguments

Details

Matches coefficients to predictors using information from model matrices

Value

a data.frame matching predictors to coefficients

Author(s)

Jared P. Lander

Examples

```r
## Not run:
require(reshape2)
require(plyr)
data("tips", package="reshape2")
mod1 <- lm(tip ~ total_bill * sex + day + tips)
mod2 <- lm(tip ~ total_bill * sex + day - 1, tips)
mod3 <- glm(tip ~ total_bill * sex + day, tips, family=gaussian(link="identity"))
mod4 <- lm(tip ~ (total_bill + sex + day)^3, tips)
mod5 <- lm(tip ~ total_bill * sex + day + I(total_bill^2), tips)
coefplot:::matchCoefs(mod1)
coefplot:::matchCoefs(mod2)
coefplot:::matchCoefs(mod3)
coefplot:::matchCoefs(mod4)
```
matchCoefs.default matchCoefs.default

Description
Match coefficients to predictors

Usage
Default S3 method:
matchCoefs(model, ...)

Arguments
- model: Fitted model
- ...: Further arguments

Details
Matches coefficients to predictors using information from model matrices

Value
a data.frame matching predictors to coefficients

Author(s)
Jared P. Lander

multiplot Plot multiple coefplots

Description
Plot the coefficients from multiple models
Usage

`multiplot(..., title = "Coefficient Plot", xlab = "Value",`
` ylab = "Coefficient", innerCI = 1, outerCI = 2, lwdInner = 1,`
` lwdOuter = 0, pointSize = 3, dodgeHeight = 1, color = "blue",`
` shape = 16, linetype = 1, cex = 0.8, textAngle = 0,`
` numberAngle = 90, zeroColor = "grey", zeroLWD = 1, zeroType = 2,`
` single = TRUE, scales = "fixed", ncol = length(unique(modelCI$Model)),`
` sort = c("natural", "normal", "magnitude", "size", "alphabetical"),`
` decreasing = FALSE, names = NULL, numeric = FALSE, fillColor = "grey",`
` alpha = 1/2, horizontal = FALSE, factors = NULL, only = NULL,`
` shorten = TRUE, intercept = TRUE, interceptName = "(Intercept)",`
` coefficients = NULL, predictors = NULL, strict = FALSE,`
` newNames = NULL, plot = TRUE, drop = FALSE, by = c("Coefficient",`
` "Model"), plot.shapes = FALSE, plot.linetypes = FALSE,`
` legend.position = c("right", "left", "bottom", "top", "none"),`
` secret.weapon = FALSE, legend.reverse = FALSE, trans = identity)`

Arguments

... Models to be plotted

title The name of the plot, if NULL then no name is given

xlab The x label

ylab The y label

innerCI How wide the inner confidence interval should be, normally 1 standard deviation. If 0, then there will be no inner confidence interval.

outerCI How wide the outer confidence interval should be, normally 2 standard deviations. If 0, then there will be no outer confidence interval.

lwdInner The thickness of the inner confidence interval

lwdOuter The thickness of the outer confidence interval

pointSize Size of coefficient point

dodgeHeight Amount of vertical dodging

color The color of the points and lines

shape The shape of the points

linetype The type of line drawn for the standard errors

cex The text size multiplier, currently not used

textAngle The angle for the coefficient labels, 0 is horizontal

numberAngle The angle for the value labels, 0 is horizontal

zeroColor The color of the line indicating 0

zeroLWD The thickness of the 0 line

zeroType The type of 0 line, 0 will mean no line

single logical; If TRUE there will be one plot with the points and bars stacked, otherwise the models will be displayed in separate facets
scales The way the axes should be treated in a faceted plot. Can be c("fixed", "free", "free_x", "free_y")
ncol The number of columns that the models should be plotted in
sort Determines the sort order of the coefficients. Possible values are c("natural", "magnitude", "alphabetical")
decreasing logical; Whether the coefficients should be ascending or descending
names Names for models, if NULL then they will be named after their inputs
numeric logical; If true and factors has exactly one value, then it is displayed in a horizontal graph with continuous confidence bounds.
fillColor The color of the confidence bounds for a numeric factor
alpha The transparency level of the numeric factor’s confidence bound
horizontal logical; If the plot should be displayed horizontally
factors Vector of factor variables that will be the only ones shown
only logical; If factors has a value this determines how interactions are treated. True means just that variable will be shown and not its interactions. False means interactions will be included.
shorten logical or character; If FALSE then coefficients for factor levels will include their variable name. If TRUE coefficients for factor levels will be stripped of their variable names. If a character vector of variables only coefficients for factor levels associated with those variables will the variable names stripped.
intercept logical; Whether the Intercept coefficient should be plotted
interceptName Specifies name of intercept it case it is not the default of "(Intercept)".
coefficients A character vector specifying which factor coefficients to keep. It will keep all levels and any interactions, even if those are not listed.
predictors A character vector specifying which coefficients to keep. Each individual coefficient can be specified. Use predictors to specify entire factors
strict If TRUE then predictors will only be matched to its own coefficients, not its interactions
newNames Named character vector of new names for coefficients
plot logical; If the plot should be drawn, if false then a data.frame of the values will be returned
drop logical; if TRUE then models without valid coefficients to show will not be plotted
by If "Coefficient" then a normal multiplot is plotted, if "Model" then the coefficients are plotted along the axis with one for each model. If plotting by model only one coefficient at a time can be selected. This is called the secret weapon by Andy Gelman.
plot.shapes If TRUE points will have different shapes for different models
plot.linetypes If TRUE lines will have different shapes for different models
legend.position position of legend, one of "left", "right", "bottom", "top", "none"
multiplot

secret.weapon If this is TRUE and exactly one coefficient is listed in coefficients then Andy Gelman’s secret weapon is plotted.

legend.reverse Setting to reverse the legend in a multiplot so that it matches the order they are drawn in the plot

trans A transformation function to apply to the values and confidence intervals. identity by default. Use invlogit for binary regression.

Details

Plots a graph similar to coefplot but for multiple plots at once.

For now, if names is provided the plots will appear in alphabetical order of the names. This will be adjusted in future iterations. When setting by to “Model” and specifying exactly one variable in variables that one coefficient will be plotted repeatedly with the axis labeled by model. This is Andy Gelman’s secret weapon.

Value

A ggplot object

See Also

link{coefplot}

Examples

data(diamonds)
model1 <- lm(price ~ carat + cut, data=diamonds)
model2 <- lm(price ~ carat + cut + color, data=diamonds)
model3 <- lm(price ~ carat + color, data=diamonds)
multiplot(model1, model2, model3)
multiplot(model1, model2, model3, single=FALSE)
multiplot(model1, model2, model3, plot=FALSE)
require(reshape2)
data(tips, package="reshape2")
mod1 <- lm(tip ~ total_bill + sex, data=tips)
mod2 <- lm(tip ~ total_bill * sex, data=tips)
mod3 <- lm(tip ~ total_bill * sex * day, data=tips)
mod7 <- lm(tip ~ total_bill + day + time, data=tips)
multiplot(mod1, mod2, mod3, mod7, single=FALSE, scales="free_x")
multiplot(mod1, mod2, mod3, mod7, single=FALSE, scales="free_x")
multiplot(mod1, mod2, mod3, mod7, single=FALSE, scales="free_x", plot.shapes=TRUE)
multiplot(mod1, mod2, mod3, mod7, single=TRUE, scales="free_x", plot.shapes=TRUE)
multiplot(mod1, mod2, mod3, mod7, single=TRUE, scales="free_x", plot.shapes=TRUE, legend.position="bottom")
the secret weapon
multiplot(mod1, mod2, mod3, mod7, coefficients="total_bill", secret.weapon=TRUE)
horizontal secret weapon
multiplot(mod1, mod2, mod3, mod7, coefficients="total_bill", by="Model", horizontal=FALSE)
position_dodgev

Adjust position by dodging overlaps to the side.

Description

Adjust position by dodging overlaps to the side.

Usage

```r
position_dodgev(height = NULL)
```

Arguments

- `height`: Dodging height, when different to the height of the individual elements. This is useful when you want to align narrow geoms with wider geoms. See the examples for a use case.

Examples

```r
ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) + geom_bar(position = "dodge")

# To dodge items with different heights, you need to be explicit
df <- data.frame(x=c("a","a","b","b"), y=c(2:5), g = rep(1:2, 2))
p <- ggplo(df, aes(x, y, group = g)) + geom_bar(
  stat = "identity", position = "dodge",
  fill = "grey50", colour = "black"
)
p

# A line range has no height:
p + geom_linerange(aes(ymin = y-1, ymax = y+1), position = "dodge")

# You need to explicitly specify the height for dodging
p + geom_linerange(aes(ymin = y-1, ymax = y+1),
  position = position_dodge(width = 0.9))

# Similarly with error bars:
p + geom_errorbar(aes(ymin = y-1, ymax = y+1), width = 0.2,
  position = "dodge")
p + geom_errorbar(aes(ymin = y-1, ymax = y+1, height = 0.2),
  position = position_dodge(width = 0.9))
```
Index

*Topic coefficients
 coefplot, 9
*Topic coefficient
 coefplot, 9
*Topic coefplot
 coefplot, 9
*Topic dotplot
 coefplot, 9
*Topic glm
 coefplot, 9
*Topic linear
 coefplot, 9
*Topic lm
 coefplot, 9
*Topic model
 coefplot, 9
*Topic rxLinMod
 coefplot, 9
annotateSeries, 2

buildModelCI, 3, 6
buildModelCI.default, 4
buildPlotting.default, 6
coeffpath, 8
coeffplot, 4, 5, 7, 9, 14–19, 43
coeffplot-package (coefplot), 9
coeffplot.data.frame, 11
coeffplot.default, 7, 13, 15–17
coeffplot.glm, 15
coeffplot.lm, 7, 10, 16, 16, 17–19
coeffplot.rxGlm, 17
coeffplot.rxLinMod, 18
coeffplot.rxLogit, 19
data.frame, 3, 5, 15, 21–30
doRegex, 20
dySeries, 3
extract.coef, 20
extract.coef.cv.glmnet, 21
extract.coef.default, 22
extract.coef.glm, 23
extract.coef.glmnet, 24
extract.coef.lm, 25
extract.coef.maxLik, 26
extract.coef.rxGlm, 27
extract.coef.rxLinMod, 28
extract.coef.rxLogit, 29
extract.coef.xgb.Booster, 30
extractPath, 8, 31
glml, 15
invlogit, 38
lm, 15
matchCoefs, 39
matchCoefs.default, 40
multiplot, 4–7, 11, 40
plotcoef, 15
plotcoef(coefplot), 9
position_dodgev, 44
reduce, 3