Package ‘coloc’

February 19, 2015

Type Package

Depends methods, colorspace, MASS, BMA

Suggests ggplot2, snpStats

Title Colocalisation tests of two genetic traits

Version 2.3-1

Date 2013-09-26

Maintainer Chris Wallace <chris.wallace@cimr.cam.ac.uk>

URL https://github.com/chriswallace/coloc

BugReports https://github.com/chriswallace/coloc/issues

License GPL

LazyLoad yes

Collate 'AllClasses.R' 'bma.R' 'coloc-package.R' 'coloc.combine.R'
 'coloc.test.R' 'pcs.R' 'private.R' 'claudia.R'

Author Chris Wallace [aut, cre],
 Claudia Giambartolomei [aut],
 Vincent Plagnol [ctb]

NeedsCompilation no

Repository CRAN

Date/Publication 2013-09-29 17:23:08

R topics documented:

 coloc-package .. 2
 approx.bf.estimates ... 3
 approx.bf.p .. 3
 bf .. 4
 coloc-class .. 5
 coloc.abf ... 5
Description

Performs the colocalisation tests described in Plagnol et al (2009) and Wallace et al (in preparation) and draws some plots.

Details

coloc.test() tests for colocalisation and returns an object of class coloc.

Author(s)

Chris Wallace <chris.wallace@cimr.cam.ac.uk>

References

approx.bf.estimates

Description
Internal function, approx.bf.estimates

Usage
approx.bf.estimates(z, V, type, suffix = NULL, sdy = 1)

Arguments
- **z**: normal deviate associated with regression coefficient and its variance
- **V**: its variance
- **sdy**: standard deviation of the trait. If not supplied, will be estimated.
- **type**: "quant" or "cc"
- **suffix**: suffix to append to column names of returned data.frame

Details
Calculate approximate Bayes Factors using supplied variance of the regression coefficients

Value
data.frame containing lABF and intermediate calculations

Author(s)
Vincent Plagnol, Chris Wallace

approx.bf.p

Description
Internal function, approx.bf.p

Usage
approx.bf.p(p, f, type, N, s, suffix = NULL)
Arguments

- `p`: p value
- `f`: MAF
- `type`: "quant" or "cc"
- `N`: sample size
- `s`: proportion of samples that are cases, ignored if `type=="quant"
- `suffix`: suffix to append to column names of returned data.frame

Details

Calculate approximate Bayes Factors

Value

data.frame containing IABF and intermediate calculations

Author(s)

Claudia Giambartolomei, Chris Wallace

bf

Bayes factors to compare specific values of eta

Description

Summarise the evidence for/against specific values or ranges of eta using bayes factors

Arguments

- `object`: of class `colocBayes`

Details

Only available for `colocBayes` objects, and you need to specify the specific values of interest using the `bayes.factor` argument when doing the proportional coloc analysis

Value

a matrix of Bayes factors

Author(s)

Chris Wallace
Description
Classes designed to hold objects returned by function `coloc.test` which performs a test of the null hypothesis that two genetic traits colocalise - that they share a common causal variant.

Objects from the Class
Objects can be created by calls to the function `coloc.test()`. Class `colocBayes` extends class `coloc`.

Author(s)
Chris Wallace.

References

See Also
`coloc.test, coloc.test.summary, coloc.bma`

Examples
```r
showClass("coloc")
showClass("colocBayes")
```

Description
Fully Bayesian colocalisation analysis using Bayes Factors

Usage
```r
coloc.abf(dataset1, dataset2, MAF = NULL, p1 = 1e-04, p2 = 1e-04, p12 = 1e-05)
```
Arguments

dataset1
a list with the following elements

- **pvalues** P-values for each SNP in dataset 1
- **N** Number of samples in dataset 1
- **MAF** minor allele frequency of the variants
- **beta** regression coefficient for each SNP from dataset 1
- **varbeta** variance of beta
- **type** the type of data in dataset 1 - either "quant" or "cc" to denote quantitative or case-control
- **s** the proportion of samples in dataset 1 that are cases (only relevant for case control samples)
- **snp** a character vector of snp ids, optional. If present, it will be used to merge dataset1 and dataset2. Otherwise, the function assumes dataset1 and dataset2 contain results for the same SNPs in the same order.

Some of these items may be missing, but you must give type and then either pvalues, N and s (if type="cc") or beta and varbeta. If you use pvalues, then the function needs to know minor allele frequencies, and will either use the MAF given here or a global estimate of MAF supplied separately.

dataset2
as above, for dataset 2

- **MAF** Common minor allele frequency vector to be used for both dataset1 and dataset2
- **p1** prior probability a SNP is associated with trait 1, default 1e-4
- **p2** prior probability a SNP is associated with trait 2, default 1e-4
- **p12** prior probability a SNP is associated with both traits, default 1e-5

Details

This function calculates posterior probabilities of different causal variant configurations under the assumption of a single causal variant for each trait.

If regression coefficients and variances are available, it calculates Bayes factors for association at each SNP. If only p values are available, it uses an approximation that depends on the SNP’s MAF and ignores any uncertainty in imputation. Regression coefficients should be used if available.

Value

a list of two data.frames:

- **summary** is a vector giving the number of SNPs analysed, and the posterior probabilities of H0 (no causal variant), H1 (causal variant for trait 1 only), H2 (causal variant for trait 2 only), H3 (two distinct causal variants) and H4 (one common causal variant)
- **results** is an annotated version of the input data containing log Approximate Bayes Factors and intermediate calculations, and the posterior probability SNP.PP.H4 of the SNP being causal for the shared signal

Author(s)

Claudia Giambartolomei, Chris Wallace
Bayesian colocalisation analysis using data.frames

Description

Bayesian colocalisation analysis using data.frames

Usage

coloc.abf.datasets(df1, df2,
 snps = intersect(setdiff(colnames(df1), response1),
 setdiff(colnames(df2), response2)),
 response1 = "Y", response2 = "Y", ...)

Arguments

df1 dataset 1
 df2 dataset 2
 snps col.names for snps
 response1 col.name for response in dataset 1
 response2 col.name for response in dataset 2
 ... parameters passed to coloc.abf.snpStats

Details

Converts genetic data to snpStats objects, generates p values via score tests, then runs coloc.abf

Value

output of coloc.abf

Author(s)

Chris Wallace
Bayesian colocalisation analysis using snpStats objects

Description

Bayesian colocalisation analysis using snpStats objects

Usage

```r
coloc.abf.snpStats(x1, x2, y1, y2,
                   snps = intersect(colnames(x1), colnames(x2)),
                   type1 = c("quant", "cc"), type2 = c("quant", "cc"),
                   s1 = NA, s2 = NA, ...)
```

Arguments

- `x1`: genetic data for dataset 1
- `x2`: genetic data for dataset 2
- `y1`: response for dataset 1
- `y2`: response for dataset 2
- `snps`: optional subset of snps to use
- `type1`: type of data in Y1, "quant" or "cc"
- `type2`: type of data in Y2, "quant" or "cc"
- `s1`: the proportion of samples in dataset 1 that are cases (only relevant for case control samples)
- `s2`: the proportion of samples in dataset 2 that are cases (only relevant for case control samples)
- `...`: parameters passed to `coloc.abf`

Details

Generates p values via score tests, then runs `coloc.abf`

Value

output of `coloc.abf`

Author(s)

Chris Wallace
Description

Usage

coloc.bma(df1, df2,
 snps = intersect(setdiff(colnames(df1), response1),
 setdiff(colnames(df2), response2)),
 response1 = "Y", response2 = "Y", family1 = "binomial",
 family2 = "binomial", bayes = !is.null(bayes.factor),
 thr = 0.01, nsnps = 2, n.approx = 1001,
 bayes.factor = NULL, plot.coef = FALSE,
 r2.trim = 0.95, quiet = FALSE, ...)

Arguments

df1, df2 Each is a dataframe, containing response and potential explanatory variables for two independent datasets.

snps The SNPs to consider as potential explanatory variables

response1, response2 The names of the response variables in df1 and df2 respectively

family1, family2 The error family for use in glm

thr posterior probability threshold used to trim SNP list. Only SNPs with a marginal posterior probability of inclusion greater than this with one or other trait will be included in the full BMA analysis

nsnps number of SNPs required to model both traits. The BMA analysis will average over all possible nsnp SNP models, subject to thr above.

n.approx number of values at which to numerically approximate the posterior

r2.trim for pairs SNPs with r2>r2.trim, only one SNP will be retained. This avoids numerical instability problems caused by including two highly correlated SNPs in the model.

quiet suppress messages about how the model spaced is trimmed for BMA

... other parameters passed to coloc.test

bayes Logical, indicating whether to perform Bayesian inference for the coefficient of proportionality, eta. If bayes.factor is supplied, Bayes factors are additionally computed for the specified values. This can add a little time as it requires numerical integration, so can be set to FALSE to save time in simulations, for example.
bayes.factor Calculate Bayes Factors to compare specific values of \eta. bayes.factor should either a numeric vector, giving single value(s) of \eta or a list of numeric vectors, each of length two and specifying ranges of \eta which should be compared to each other. Thus, the vector or list needs to have length at least two.

plot.coef TRUE if you want to generate a plot showing the coefficients from the two regressions together with confidence regions.

Details
This is a test for proportionality of regression coefficients from two independent regressions. Analysis can either be based on a profile likelihood approach, where the proportionality coefficient, \eta, is replaced by its maximum likelihood value, and inference is based on a chi-square test (p.value), or taking a hybrid-Bayesian approach and integrating the p value over the posterior distribution of \eta, which gives a posterior predictive p value. The Bayesian approach can also be used to give a credible interval for \eta. See the references below for further details.

Value
a coloc or colocBayes object

Author(s)
Chris Wallace

References

Examples
simulate covariate matrix (X) and continuous response vector (Y)
for two populations/trials Y1 and Y2 depend equally on f1 and f2
within each population, although their distributions differ between
populations. They are compatible with a null hypothesis that they
share a common causal variant
set.seed(1)
X1 <- matrix(rbinom(2000,1,0.4),ncol=4)
Y1 <- rnorm(500,rowSums(X1[,1:2]),2)
X2 <- matrix(rbinom(2000,1,0.6),ncol=4)
Y2 <- rnorm(500,rowSums(X2[,1:2]),5)
boxplot(list(Y1,Y2),names=c("Y1","Y2"))

fit and store linear model objects
colnames(X1) <- colnames(X2) <- sprintf("f%d",1:ncol(X1))
coloc.test

```
summary(lm1 <- lm(Y1~f1+f2+f3+f4, data=as.data.frame(X1)))
summary(lm2 <- lm(Y2~f1+f2+f3+f4, data=as.data.frame(X2)))
```

```r
## test colocalisation using bma
df1=cbind(Y1=Y1,X1)
df2=cbind(Y2=Y2,X2)

coloc.bma( df1, df2, snps=colnames(X1), response1="Y1", response2="Y2",
          family1="gaussian", family2="gaussian",
          nsnps=2, bayes.factor=c(1,2,3), plot.coeff=TRUE)
```

coloc.test
Function to do colocalisation tests of two traits

Description

Usage

```r
coloc.test(X, Y, vars.drop = NULL, ...)
```

Arguments

- **X**
 Either an `lm` or `glm` object for trait 1. The intersection of `names(coefficients(X))` and `names(coefficients(Y))` is used to identify SNPs in common which will be tested for colocalisation. Any Intercept term is dropped, but other covariates should have distinct names or be listed in `vars.drop` to avoid them being included in the colocalisation test.

- **Y**
 Either an `lm` or `glm` object for trait 2.

- **vars.drop**
 Character vector naming additional variables in either regression which are not SNPs and should not be used in the colocalisation test. They should appear in `c(names(coefficients(X)), names(coefficients(Y)))` and other arguments passed to `coloc.test.summary()`.

Details

This is a test for proportionality of regression coefficients from two independent regressions. Analysis can either be based on a profile likelihood approach, where the proportionality coefficient, `eta`, is replaced by its maximum likelihood value, and inference is based on a chisquare test (`p.value`), or taking a hybrid-Bayesian approach and integrating the `p` value over the posterior distribution of `eta`, which gives a posterior predictive `p` value. The Bayesian approach can also be used to give a credible interval for `eta`. See the references below for further details.
Value

A numeric vector with 3 named elements:

- **eta.hat**: The estimated slope.
- **chisquare**: The chisquared test statistic.
- **n**: The number of SNPs used in the test. If eta were known, this would be the degrees of freedom of the test. Because eta has been replaced by its ML estimate, Plagnol et al suggest we expect the degrees of freedom to be n-1, but this requires the likelihood to be well behaved which is not always the case. We prefer to consider the posterior predictive p value.
- **ppp**: The posterior predictive p value.

Note

Plagnol et al’s original test was available in his R package QTLMatch v0.8 which now appears unavailable. The numerically identical test, extended to allow for more than two SNPs, can be found in this package by looking at the chisquare statistic and the degrees of freedom given by chisquare() and df() respectively. http://www.gene.cimr.cam.ac.uk/vplagnol/software.shtml

Author(s)

Chris Wallace

References

Examples

```r
## simulate covariate matrix (X) and continuous response vector (Y)
## for two populations/triats Y1 and Y2 depend equally on f1 and f2
## within each population, although their distributions differ between
## populations. They are compatible with a null hypothesis that they
## share a common causal variant
set.seed(1)
X1 <- matrix(rbinom(1000,1.0.4),ncol=2)
Y1 <- rnorm(500,apply(X1,1,sum),2)
X2 <- matrix(rbinom(1000,1,0.6),ncol=2)
Y2 <- rnorm(500,2*apply(X2,1,sum),5)

boxplot(list(Y1,Y2),names=c("Y1","Y2"))

## fit and store linear model objects
```
coloc.test.summary <- coloc.test(X1) <- c("f1","f2")
summary(lm1 <- lm(Y1~f1+f2,data=as.data.frame(X1)))
summary(lm2 <- lm(Y2~f1+f2,data=as.data.frame(X2)))

test whether the traits are compatible with colocalisation
ppp should be large (>0.05, for example), indicating that they are.
par(mfrow=c(2,2))
coloc.test(lm1,lm2,plot.coef=TRUE,
plots.extra=list(x=c("eta","theta"),
y=c("lhood","lhood")))

coloc.test.summary
Colocalisation testing using regression coefficients

Description

Colocalisation testing supplying only regression coefficients and their variance-covariants matrices

Usage

coloc.test.summary(b1, b2, V1, V2, k = 1,
plot.coef = TRUE, plots.extra = NULL,
bayes = !is.null(bayes.factor), n.approx = 1001,
level.ci = 0.95, bayes.factor = NULL, bma = FALSE)

Arguments

b1 regression coefficients for trait 1
b2 regression coefficients for trait 2
V1 variance-covariance matrix for trait 1
V2 variance-covariance matrix for trait 2
k Theta has a Cauchy(0,k) prior. The default, k=1, is equivalent to a uniform (un-informative) prior. We have found varying k to have little effect on the results.
plot.coef TRUE if you want to generate a plot showing the coefficients from the two regressions together with confidence regions.
bayes parameter set to TRUE when coloc.test is called by coloc.bma. DO NOT SET THIS WHEN CALLING coloc.test DIRECTLY!
plots.extra list with 2 named elements, x and y, equal length character vectors containing the names of the quantities to be plotted on the x and y axes. x is generally a sequence of theta and eta, with y selected from post.theta, the posterior density of theta, chisq, the chi-square values of the test, and lhood, the likelihood function.
bayes Logical, indicating whether to perform Bayesian inference for the coefficient of proportionality, eta. If bayes.factor is supplied, Bayes factors are additionally computed for the specified values. This can add a little time as it requires numerical integration, so can be set to FALSE to save time in simulations, for example.
bayes.factor Calculate Bayes Factors to compare specific values of eta. bayes.factor should either a numeric vector, giving single value(s) of eta or a list of numeric vectors, each of length two and specifying ranges of eta which should be compared to each other. Thus, the vector or list needs to have length at least two.

level.ci,n.approx
level.ci denotes the required level of the credible interval for eta. This is calculated numerically by approximating the posterior distribution at n.approx distinct values.

Details
Typically this should be called from coloc.test() or coloc.bma(), but is left as a public function, to use at your own risk, if you have some other way to define the SNPs under test.

Value
an object of class coloc, colocBayes or colocBMA

Author(s)
Chris Wallace
References

See Also

pcs.prepare, pcs.model

Examples

showClass("colocPCs")
showClass("colocPCs")

Description

Internal function, calculate posterior probabilities for configurations, given logABFs for each SNP and prior probs

Usage

combine.abf(11, 12, p1, p2, p12)

Arguments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>merged.df$ABF.df1</td>
</tr>
<tr>
<td>12</td>
<td>merged.df$ABF.df2</td>
</tr>
<tr>
<td>p1</td>
<td>prior probability a SNP is associated with trait 1, default 1e-4</td>
</tr>
<tr>
<td>p2</td>
<td>prior probability a SNP is associated with trait 2, default 1e-4</td>
</tr>
<tr>
<td>p12</td>
<td>prior probability a SNP is associated with both traits, default 1e-5</td>
</tr>
</tbody>
</table>
Value

named numeric vector of posterior probabilities

Author(s)

Claudia Giambartolomei, Chris Wallace

eta

Methods to extract information from a coloc or colocBayes object

Description

Extract information from a coloc object.

Arguments

<table>
<thead>
<tr>
<th>argument</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Object returned by coloc.test() or coloc.bma() functions.</td>
</tr>
</tbody>
</table>

Details

- `eta()` returns eta.hat, the maximum likelihood value of eta.
- `theta()` returns theta.hat, the maximum likelihood value of eta.
- `summary()` returns a summary, giving eta, chisquare statistic, number of SNPs/PCs, p value and, if a colocBayes object, the ppp.value
- `ci()` returns the credible interval, or NA if not calculated.

Author(s)

Chris Wallace.

See Also

`coloc.test, pcs.prepare`
fillin
Impute missing genotypes

Description

Impute missing genotypes in a snpMatrix object in each SNP in turn, conditional on all the others.

Usage

```r
fillin(x, bp = 1:ncol(x), strata = NULL)
```

Arguments

- `x` a snpMatrix object
- `bp` optional vector giving basepair positions of the SNPs
- `strata` optional vector giving stratification of the samples, one entry for each sample, and samples with the same value are assumed to come from a single strata

Value

A numeric matrix of imputed genotypes, $0, 2 = \text{homs}, 1 = \text{het}$

logdiff

logdiff

Description

Internal function, logdiff

Usage

```r
logdiff(x, y)
```

Arguments

- `x` numeric
- `y` numeric

Details

This function calculates the log of the difference of the exponentiated logs taking out the max, i.e. insuring that the difference is not negative

Value

$$\max(x) + \log(\exp(x - \max(x,y)) - \exp(y - \max(x,y)))$$
Description

Internal function, `logsum`

Usage

```r
logsum(x)
```

Arguments

- `x` numeric vector

Details

This function calculates the log of the sum of the exponentiated logs taking out the max, i.e. insuring that the sum is not Inf

Value

```r
max(x) + log(sum(exp(x - max(x))))
```

Author(s)

Claudia Giambartolomei

Description

Functions to prepare principle component models for colocalisation testing

Usage

```r
pcs.model(object, group, Y, threshold = 0.8, family = if (all(Y %in% c(0, 1))) {
  "binomial"
} else {
  "gaussian"
})
```
Argument

object A colocPCs object, result of pcs.prepare().
group 1 or 2, indicating which group of samples to extract from principal components matrix
Y Numeric phenotype vector, length equal to the number of samples from the requested group
threshold The minimum number of principal components which captures at least threshold proportion of the variance will be selected. Simulations suggest threshold=0.8 is a good default value.
family Passed to glm() function. pcs.model attempts to guess, either "binomial" if Y contains only 0s and 1s, "gaussian" otherwise.

Details

Prepares models of response based on principal components of two datasets for colocalisation testing.

Value

pcs.prepare returns a colocPCs object, pcs.model returns a glm object.

Author(s)

Chris Wallace

References

Examples

simulate covariate matrix (X) and continuous response vector (Y)
for two populations/triats Y1 and Y2 depend equally on f1 and f2
within each population, although their distributions differ between
populations. They are compatible with a null hypothesis that they
share a common causal variant, with the effect twice as strong for
Y2 as Y1
set.seed(1)
X1 <- matrix(rbinom(5000,1,0.4),ncol=10)
Y1 <- rnorm(500,apply(X1[,1:2],1,sum),2)
X2 <- matrix(rbinom(5000,1,0.6),ncol=10)
Y2 <- rnorm(500,2*apply(X2[,1:2],1,sum),5)

generate principal components object
pcs.prepare

Functions to prepare principle component models for colocalisation testing

Description

Prepares principal components of two datasets for colocalisation testing.

Usage

pcs.prepare(X1, X2)

Arguments

X1, X2 Each is either a SnpMatrix or numeric matrix of genetic data. Columns index SNPs, rows index samples.

Details

If X1 and X2 are SnpMatrix objects, they are checked for missing data, and any missing values imputed by repeated use of impute.snps from the snpStats package. Columns with common names are rbined together and principal components calculated using prcomp. pcs.model can then be invoked to create glm objects.

Value

a colocPCs object.

Author(s)

Chris Wallace
References

Examples

```r
## simulate covariate matrix (X) and continuous response vector (Y)
## for two populations/trats Y1 and Y2 depend equally on f1 and f2
## within each population, although their distributions differ between
## populations. They are compatible with a null hypothesis that they
## share a common causal variant, with the effect twice as strong for
## Y2 as Y1
set.seed(1)
X1 <- matrix(rbinom(5000,1,0.4),ncol=10)
Y1 <- rnorm(500,apply(X1[,1:2],1,sum),2)
X2 <- matrix(rbinom(5000,1,0.6),ncol=10)
Y2 <- rnorm(500,2*apply(X2[,1:2],1,sum),5)

## generate principal components object
colnames(X1) <- colnames(X2) <- make.names(1:ncol(X1))
pcs <- pcs.prepare(X1,X2)

## generate glm objects
m1 <- pcs.model(pcs, group=1, Y=Y1)
m2 <- pcs.model(pcs, group=2, Y=Y2)

## test colocalisation using PCs
coloc.test(m1,m2,plot.coef=FALSE,bayes=FALSE)
```

process.dataset

Description

Internal function, process each dataset list for coloc.abf

Usage

```r
process.dataset(d, suffix)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>list</td>
</tr>
<tr>
<td>suffix</td>
<td>"df1" or "df2"</td>
</tr>
</tbody>
</table>
Value

data.frame with log(abf) or log(bf)

Author(s)

Chris Wallace

sdY.est

Estimate trait variance, internal function

Description

Estimate trait standard deviation given vectors of variance of coefficients, MAF and sample size

Usage

sdY.est(vbeta, maf, n)

Arguments

vbeta vector of variance of coefficients

maf vector of MAF (same length as vbeta)

n sample size

Details

Estimate is based on \(\text{var} (\beta \hat{\text{e}}) = \text{var}(Y) / (n \times \text{var}(X)) \) \(\text{var}(X) = 2 \times \text{maf} \times (1 - \text{maf}) \) so we can estimate \(\text{var}(Y) \) by regressing \(n \times \text{var}(X) \) against \(1 / \text{var}(\beta) \)

Value

estimated standard deviation of Y

Author(s)

Chris Wallace
Description

variance of MLE of beta for quantitative trait, assuming \(\text{var}(y)=0 \)

Usage

\[\text{Var.data}(f, N) \]

Arguments

- \(f \) : minor allele freq
- \(N \) : sample number

Details

Internal function

Value

variance of MLE beta

Author(s)

Claudia Giambartolomei

Description

variance of MLE of beta for case-control

Usage

\[\text{Var.data.cc}(f, N, s) \]

Arguments

- \(s \) : ???
- \(f \) : minor allele freq
- \(N \) : sample number
Details
 Internal function

Value
 variance of MLE beta

Author(s)
 Claudia Giambartolomei
Index

*Topic classes
 coloc-class, 5
 colocPCs-class, 14
*Topic methods
 bf, 4
 eta, 16
*Topic package
 coloc-package, 2
approx bf.estimates, 3
approx bf.p, 3
bf, 4
bf, colocBayes-method (bf), 4
ci (eta), 16
ci, coloc-method (eta), 16
ci, colocBayes-method (eta), 16
coloc-class, 5
coloc-package, 2
coloc.abf, 5, 7, 8
coloc.abf.datasets, 7
coloc.abf.snpStats, 7, 8
coloc.bma, 5, 9, 14
coloc.test, 5, 11, 14, 16
coloc.test.summary, 5, 11, 13
colocBayes-class (coloc-class), 5
colocBayesBMA (coloc-class), 5
colocBMA (coloc-class), 5
colocPCs-class, 14
combine.abf, 15
eta, 16
eta, coloc-method (eta), 16
eta, colocBayes-method (eta), 16
fillin, 17
logdiff, 17
logsum, 18

pcs.model, 14, 15, 18
pcs.prepare, 14–16, 20
process.dataset, 21
sdY.est, 22
summary(eta), 16
summary, coloc-method (eta), 16
summary, colocBayes-method (eta), 16
theta(eta), 16
theta, coloc-method (eta), 16
theta, colocBayes-method (eta), 16
Var.data, 23
Var.data.cc, 23